Identifying Emerging Trends of Financial Business Method Patents
Abstract
:1. Introduction
2. Research Framework and Literature Review
2.1. Research Framework
2.2. Business Method in Finance and Patent Analysis
2.3. Topic Modeling of Patents
2.4. Survival Analysis and Topic Emergence
3. Methodology
3.1. Data
3.2. Research Variables
3.3. LDA and Survival Analysis
3.3.1. Latent Dirichlet Allocation (LDA) and Topic Clusters
3.3.2. Prentice, William, and Peterson Gap Time (PWP-GT) Model
4. Empirical Analysis
4.1. Topic Discovery with LDA
4.2. Descriptive Analysis
4.3. Survival Analysis of Topic Emergence
5. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Han, E.J.; Sohn, S.Y. Firms’ Negative Perceptions on Patents, Technology Management Strategies, and Subsequent Performance. Sustainability 2017, 9, 440. [Google Scholar] [CrossRef]
- Kim, Y.S.; Han, E.J.; Sohn, S.Y. Demand Forecasting for Heavy-Duty Diesel Engines Considering Emission Regulations. Sustainability 2017, 9, 166. [Google Scholar] [CrossRef]
- Sadri McCampbell, A.; Moorhead Clare, L.; Howard Gitters, S. Knowledge management: The new challenge for the 21st century. J. Knowl. Manag. 1999, 3, 172–179. [Google Scholar] [CrossRef]
- Spiegler, I. Technology and knowledge: Bridging a generating gap. Inf. Manag. 2003, 40, 533–539. [Google Scholar] [CrossRef]
- Leal-Millán, A.; Roldan, J.L.; Leal-Rodríguez, A.L.; Ortega-Gutiérrez, J. IT and relationship learning in networks as drivers of green innovation and customer capital: Evidence from the automobile sector. J. Knowl. Manag. 2016, 20, 444–465. [Google Scholar] [CrossRef]
- Spulber, D.F. Should business method inventions be patentable? J. Legal Anal. 2011, 3, 265–340. [Google Scholar] [CrossRef]
- Moon, T.H.; Kim, Y.; Sohn, S.Y. Technology credit rating system for funding SMEs. J. Oper. Res. Soc. 2011, 62, 608–615. [Google Scholar] [CrossRef]
- Moon, T.H.; Sohn, S.Y. Survival analysis for technology credit scoring adjusting total perception. J. Oper. Res. Soc. 2011, 62, 1159–1168. [Google Scholar] [CrossRef]
- Moon, T.H.; Sohn, S.Y. Technology credit scoring model considering both SME characteristics and economic conditions: The Korean case. J. Oper. Res. Soc. 2010, 61, 666–675. [Google Scholar] [CrossRef]
- Sohn, S.Y.; Moon, T.H.; Kim, S.H. Improved technology scoring model for credit guarantee fund. Expert Syst. Appl. 2005, 28, 327–331. [Google Scholar] [CrossRef]
- Sohn, S.Y.; Kim, Y.S. Behavioral credit scoring model for technology-based firms that considers uncertain financial ratios obtained from relationship banking. Small Bus. Econ. 2013, 41, 1–13. [Google Scholar] [CrossRef]
- Austin, N. The future of the financial workplace: Banks, workplace and property in a changing world. Corp. Real Estate J. 2015, 4, 156–165. [Google Scholar]
- Walker, A. Banking without banks: Exploring the disruptive effects of converging technologies that will shape the future of banking. J. Secur. Oper. Custody. 2014, 7, 69–80. [Google Scholar]
- Hirsch-Kreinsen, H. Financial market and technological innovation. Ind. Innov. 2011, 18, 351–368. [Google Scholar] [CrossRef]
- Petruzzi, C.; Del Valle, M.; Judlowe, S. Patent and copyright protection for innovations in finance. Financ. Manag. 1988, 17, 66–71. [Google Scholar] [CrossRef]
- Hall, B.H. Business Method Patents, Innovation, and Policy; Working Paper; National Bureau of Economic Research: Cambridge, MA, USA, 2003. [Google Scholar]
- Ju, Y.H.; Sohn, S.Y. Identifying patterns in rare earth element patents based on text and data mining. Scientometrics 2015, 102, 389–410. [Google Scholar] [CrossRef]
- Arora, S.K.; Porter, A.L.; Youtie, J.; Shapira, P. Capturing new developments in an emerging technology: An updated search strategy for identifying nanotechnology research outputs. Scientometrics 2013, 95, 351–370. [Google Scholar] [CrossRef]
- Ju, Y.H.; Sohn, S.Y. Patent network analysis for finance sector. Financ. Inf. Res. 2012, 1, 1–32. [Google Scholar]
- Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent dirichlet allocation. J. Mach. Learn. Res. 2003, 3, 993–1022. [Google Scholar]
- Yan, Z.; Zhou, J. Optimal answerer ranking for new questions in community question answering. Inf. Process. Manag. 2015, 51, 163–178. [Google Scholar] [CrossRef]
- Chen, S.H. The influencing factors of enterprise sustainable innovation: An empirical study. Sustainability 2016, 8, 425. [Google Scholar] [CrossRef]
- Gorissen, L.; Vrancken, K.; Manshoven, S. Transition Thinking and Business Model Innovation—Towards a Transformative Business Model and New Role for the Reuse Centers of Limburg, Belgium. Sustainability 2016, 8, 112. [Google Scholar] [CrossRef]
- De Marchi, V.; Grandinetti, R. Knowledge strategies for environmental innovations: The case of Italian manufacturing firms. J. Knowl. Manag. 2013, 17, 569–582. [Google Scholar] [CrossRef]
- Ou, W.; Xie, Z.; Jia, X.; Xie, B. Detection of Topic Communities in Social Networks Based on Tri-LDA Model. In Proceedings of the 4th International Conference on Computer Engineering and Networks, Shanghai, China, 19–20 July 2014; Springer: Cham, Switzerland, 2015; pp. 1245–1253. [Google Scholar]
- Kim, C.; Jeon, J.H.; Kim, M.S. Identification and Management of opportunities for technology-based services: A patent-based portfolio approach. Innovation 2015, 17, 232–249. [Google Scholar] [CrossRef]
- Ju, Y.H.; Sohn, S.Y. Technology credit scoring based on a quantification method. Sustainability 2017, 9, 1057. [Google Scholar] [CrossRef]
- Starešinic, M.; Boh, B. Patent informatics: The issue of relevance in full-text patent document searches. Online Inf. Rev. 2009, 33, 157–172. [Google Scholar] [CrossRef]
- Roach, M. Lens? Or Prism? Patent Citations as a Measure of Knowledge Flows from Public Research; Working Paper No. 18292; National Bureau of Economic Research: Cambridge, MA, USA, 2012. [Google Scholar]
- Harhoff, D.; Narin, F.; Scherer, F.M.; Vopel, K. Citation frequency and the value of patented inventions. Rev. Econ. Stat. 1999, 81, 511–515. [Google Scholar] [CrossRef]
- Harhoff, D.; Scherer, F.M.; Vopel, K. Citation, family size, opposition and the value of patent rights. Res. Policy 2003, 32, 1343–1363. [Google Scholar] [CrossRef]
- Lerner, J. The importance of patent scope: An empirical analysis. RAND J. Econ. 1994, 25, 319–333. [Google Scholar] [CrossRef]
- Han, E.J.; Sohn, S.Y. Patent valuation based on text mining and survival analysis. J. Technol. Transf. 2014, 40, 821–839. [Google Scholar] [CrossRef]
- Daim, T.U.; Rueda, G.; Martin, H.; Gerdsr, P. Forecasting emerging technologies: Use of bibliometircs and patent analysis. Technol. Forecast. Soc. Chang. 2006, 73, 981–1012. [Google Scholar] [CrossRef]
- Grönqvist, C. The private value of patents by patent characteristics: Evidence from Finland. J. Technol. Transf. 2009, 34, 159–168. [Google Scholar] [CrossRef]
- Tseng, Y.H.; Lin, C.J.; Lin, Y.I. Text mining techniques for patent analysis. Inf. Process. Manag. 2007, 43, 1216–1247. [Google Scholar] [CrossRef]
- Lee, W.S.; Han, E.J.; Sohn, S.Y. Predicting the pattern of technology convergence using big-data technology on large-scale triadic patents. Technol. Forecast. Soc. Chang. 2015, 100, 317–329. [Google Scholar] [CrossRef]
- Ma, J.; Porter, A.L. Analyzing patent topical information to identify technology pathways and potential opportunities. Scientometrics 2015, 102, 811–827. [Google Scholar] [CrossRef]
- Al-Hassan, A.A.; Alshameri, F.; Sibley, E.H. A research case study: Difficulties and recommendations when using a textual data mining tool. Inf. Manag. 2013, 50, 540–552. [Google Scholar] [CrossRef]
- Herschel, R.T.; Jones, N.E. Knowledge management and business intelligence: The importance of integration. J. Knowl. Manag. 2005, 9, 45–55. [Google Scholar] [CrossRef]
- Lee, M.Y.; Lee, A.S.; Sohn, S.Y. Behavior scoring model for coalition loyalty programs by using summary variables of transaction data. Expert Syst. Appl. 2012, 40, 1564–1570. [Google Scholar] [CrossRef]
- Mikawa, K.; Ishida, T.; Goto, M. An Optimal Weighting Method in Supervised Learning of Linguistic Model for Text Classification. Ind. Eng. Manag. Syst. 2012, 11, 87–93. [Google Scholar] [CrossRef]
- McGarry, K.; Garfield, S.; Morris, N. Recent trends in knowledge and data integration for the life sciences. Expert Syst. 2006, 23, 330–341. [Google Scholar] [CrossRef]
- Sun, J.; Wang, G.; Cheng, X.; Fu, Y. Mining affective text to improve social media item recommendation. Inf. Process. Manag. 2014, 51, 444–457. [Google Scholar] [CrossRef]
- Uramoto, N.; Matsuzawa, H.; Nagano, T.; Murakami, A.; Takeuchi, H.; Takeda, K. A text-mining system for knowledge discovery from biomedical documents. IBM Syst. J. 2004, 43, 516–533. [Google Scholar] [CrossRef]
- Yang, H.C.; Lee, C.H. A text mining approach on automatic generation of web directories and hierarchies. Expert Syst. Appl. 2004, 27, 645–663. [Google Scholar] [CrossRef]
- Choi, J.Y.; Jeong, S.; Kim, K. A study on diffusion pattern of technology convergence: Patent analysis for Korea. Sustainability 2015, 7, 11546–11569. [Google Scholar] [CrossRef]
- Romano, M.; Del Giudice, M.; Nicotra, M. Knowledge creation and exploitation in Italian universities: The role of internal policies for patent activity. J. Knowl. Manag. 2014, 18, 952–970. [Google Scholar] [CrossRef]
- Lee, W.J.; Lee, W.K.; Sohn, S.Y. Patent Network Analysis and Quadratic Assignment Procedures to Identify the Convergence of Robot Technologies. PLoS ONE 2016, 11, e0165091. [Google Scholar] [CrossRef] [PubMed]
- Seol, H.; Lee, S.; Kim, C. Identifying new business areas using patent information: A DEA and text mining approach. Expert Syst. Appl. 2011, 38, 2933–2941. [Google Scholar] [CrossRef]
- Trappey, A.J.; Trappey, C.V. An R&D knowledge management method for patent document summarization. Ind. Manag. Data Syst. 2008, 108, 245–257. [Google Scholar]
- Zhu, D.; Porter, A.L. Automated extraction and visualization of information for technological intelligence and forecasting. Technol. Forecast. Soc. Chang. 2002, 69, 498–506. [Google Scholar] [CrossRef]
- Feldman, R.; Fresko, M.; Hirsh, H.; Aumann, Y.; Liphstat, O.; Schler, Y.; Rajman, M. Knowledge management: A text mining approach. In Proceedings of the 2nd International Conference on Practical Aspects of Knowledge Management (PAKM98), Swiss Life Information Systems Research, Zurich, Switzerland, 29–30 October 1998. [Google Scholar]
- Alter, O.; Brown, P.O.; Botstein, D. Singular value decomposition for genome-wide expression data processing and modeling. Proc. Natl. Acad. Sci. USA 2000, 97, 10101–10106. [Google Scholar] [CrossRef] [PubMed]
- Husbands, P.; Simon, H.; Ding, C. On the use of the singular value decomposition for text retrieval. Comput. Inf. Retr. 2001, 106, 145–156. [Google Scholar]
- Momeni, A.; Rost, K. Identification and monitoring of possible disruptive technologies by patent-development paths; topic modeling. Technol. Forecast. Soc. Chang. 2016, 104, 16–29. [Google Scholar] [CrossRef]
- Jiang, H.; Qiang, M.; Lin, P. A topic modeling based bibliometric exploration of hydropower research. Renew. Sustain. Energy Rev. 2016, 57, 226–237. [Google Scholar] [CrossRef]
- Lewensohn, D.; Dahlborg, C.; Kowalski, J.; Lundin, P. Applying patent survival analysis in the academic context. Res. Eval. 2015, 24, 197–212. [Google Scholar] [CrossRef]
- Tsang, S.S.; Chang, F.C.; Wang, W.C. A Survival Analysis on Fuel Cell Technology Patent Maintenance and Values Exploration between 1976 and 2001. Adv. Mater. Sci. Eng. 2015, 2015. [Google Scholar] [CrossRef]
- Hosmer, D.W.L.S.; Lemeshow, S.; May, S. Applied Survival Analysis; Wiley: Hoboken, NY, USA, 2008. [Google Scholar]
- Deans, K.J.; Thackeray, J.; Groner, J.I.; Cooper, J.N.; Minneci, P.C. Risk factors for recurrent injuries in victims of suspected non-accidental trauma: A retrospective cohort study. BMC Pediatr. 2014, 14, 217. [Google Scholar] [CrossRef] [PubMed]
- Frick, U.; Frick, H.; Langguth, B.; Landgrebe, M.; Hübner-Liebermann, B.; Hajak, G. The revolving door phenomenon revisited: Time to readmission in 17’415 patients with 37’697 hospitalisations at a German psychiatric hospital. PLoS ONE 2013, 8, e75612. [Google Scholar] [CrossRef]
- Godlewski, C.J. The dynamics of bank debt renegotiation in Europe: A survival analysis approach. Econ. Model. 2015, 49, 19–31. [Google Scholar] [CrossRef]
- Larney, S.; Toson, B.; Burns, L.; Dolan, K. Effect of prison based opioid substitution treatment and post-release retention in treatment on risk of re-incarceration. Addiction 2012, 107, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Hall, B.H. Business and Financial Method Patents, Innovation, and Policy; Working Paper; National Bureau of Economic Research: Cambridge, MA, USA, 2009. [Google Scholar]
- Lerner, J. The new financial thing: The origins of financial innovations. J. Financ. Econ. 2006, 79, 223–255. [Google Scholar] [CrossRef]
- USPTO. Automated Financial or Management Data Processing Methods (Business Methods); White Paper; USPTO: Alexandria, VA, USA, 1999.
- Lanjouw, J.O.; Schankerman, M. Patent quality and research productivity: Measuring innovation with multiple indicators. Econ. J. 2004, 114, 441–465. [Google Scholar] [CrossRef]
- Lee, B.K.; Sohn, S.Y. Exploring the effect of dual use on the value of military technology patents based on the renewal decision. Scientometrics 2017, 112, 1203–1227. [Google Scholar] [CrossRef]
- Guellec, D.; van Pottelsberghe de la Potterie, B. Applications, grants and the value of patent. Econ. Lett. 2000, 69, 109–114. [Google Scholar] [CrossRef]
- Sohn, S.Y.; Lee, W.S.; Ju, Y.H. Valuing academic patents and intellectual properties: Different perspectives of willingness to pay and sell. Technovation 2013, 33, 13–24. [Google Scholar] [CrossRef]
- Lee, J.; Sohn, S.Y. What makes the first forward citation of a patent occur earlier? Scientometrics 2017. [Google Scholar] [CrossRef]
- Harhoff, D.; Wagner, S. Modeling the Duration of Patent Examination at the European Patent Office; Paper No. 5283; Centre for Economic Policy Research: London, UK, 2005. [Google Scholar]
- Gilsing, V.A.; Cloodt, M.; Bertrand–Cloodt, D. What makes you more central? Antecedents of changes in betweenness-centrality in technology-based alliance networks. Technol. Forecast. Soc. Chang. 2016, 111, 209–221. [Google Scholar] [CrossRef]
- Lazzeretti, L.; Capone, F. How proximity matters in innovation networks dynamics along the cluster evolution. A study of the high technology applied to cultural goods. J. Bus. Res. 2016, 69, 5855–5865. [Google Scholar] [CrossRef]
- Wang, C.; Rodan, S.; Fruin, M.; Xu, X. Knowledge networks, collaboration networks, and exploratory innovation. Acad. Manag. J. 2014, 57, 484–514. [Google Scholar] [CrossRef]
- Choi, H.S.; Lee, W.S.; Sohn, S.Y. Analyzing research trends in personal information privacy using topic modeling. Comput. Secur. 2017, 67, 244–253. [Google Scholar] [CrossRef]
- Srivastava, A.N.; Sahami, M. (Eds.) Text Mining: Classification, Clustering, and Applications; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Jacobson, K.; Sandler, M.B.; Fields, B. Using Audio Analysis and Network Structure to Identify Communities in On-Line Social Networks of Artists. In Proceedings of the ISMIR 2008—9th International Conference of Music Information Retrieval, Philadelphia, PA, USA, 14–18 September 2008; pp. 269–274. [Google Scholar]
- Bolelli, L.; Ertekin, Ş.; Giles, C.L. Topic and trend detection in text collections using latent dirichlet allocation. In Advances in Information Retrieval; Springer: Berlin/Heidelberg, Germany, 2009; pp. 776–780. [Google Scholar]
- Linstead, E.; Lopes, C.; Baldi, P. An application of latent dirichlet allocation to analyzing software evolution. In Proceedings of the ICMLA’08—Seventh International Conference on Machine Learning and Applications, San Diego, CA, USA, 11–13 December 2008; pp. 813–818. [Google Scholar]
- Hornik, K.; Grün, B. Topicmodels: An R package for fitting topic models. J. Stat. Softw. 2011, 40, 1–30. [Google Scholar]
- Duque, A.; Martinez-Romo, J.; Araujo, L. Choosing the best dictionary for cross-lingual word sense disambiguation. Knowl.-Based Syst. 2015, 81, 65–75. [Google Scholar] [CrossRef]
- Ferreira, L.N.; Zhao, L. Time series clustering via community detection in networks. Inf. Sci. 2016, 326, 227–242. [Google Scholar] [CrossRef]
- Moon, T.H.; Sohn, S.Y. Case-based reasoning for predicting multiperiod financial performances of technology-based SMEs. Appl. Artif. Intell. 2008, 22, 602–615. [Google Scholar] [CrossRef]
- Sohn, S.Y.; Kim, J.W. Decision tree-based technology credit scoring for start-up firms: Korean case. Expert Syst. Appl. 2012, 39, 4007–4012. [Google Scholar] [CrossRef]
- Wu, I.L.; Chen, J.L. Knowledge management driven firm performance: The roles of business process capabilities and organizational learning. J. Knowl. Manag. 2014, 18, 1141–1164. [Google Scholar] [CrossRef]
- Wu, K.J.; Liao, C.J.; Tseng, M.L.; Chou, P.J. Understanding innovation for sustainable business management capabilities and competencies under uncertainty. Sustainability 2015, 7, 13726–13760. [Google Scholar] [CrossRef]
- Rajan, R.G. Presidential address: The corporation in finance. J. Financ. 2012, 67, 1173–1217. [Google Scholar] [CrossRef]
- Ray, S. Towards searching the relevance of intellectual property audit in India: An appraisal. Res. J. Financ. Account. 2011, 2, 86–97. [Google Scholar]
Variable Type | Variable | Abbreviation | References | Reasoning |
---|---|---|---|---|
Dependent variable | Gap in time | GT | - | To measure the gap in time between the emergence of hot or cold topics |
Explanatory variables: patents related variables per each topic | Average number of references per topic | meanBCK | Harhoff et al. [31], Lanjouw and Schankerman [68], Lee and Sohn [69] | To indicate breadth of scope and the existence of technologies |
Average number of International Patent Classification (IPC) classes | meanIPC | Lerner [32], Guellec, and Potterie [70], Sohn et al. [71] | To reflect technological diversity embodied in the invention as a combination of ideas and devices | |
Average number of forward citations | meanFWD | Harhoff et al. [30], Lee and Sohn [72] | To reflect the value of patents | |
Average period from the date of application to the date of registration (years) | meanPRD | Harhoff and Wagner [73] | To be associated with the complexity of the examination of the patent | |
Average number of countries | meanCTRY | Lee and Sohn [69] | To reflect national diversity embodied in the invention | |
Average years from the grant date of patent to present | meanAGE | Hall et al. [65] | To indicate the number of years from the date of grant of the patent to the present time | |
Explanatory variables: topic network related variables | Betweenness Centrality from topic network | betCentrality | Gilsing et al. [74] | To indicate how central the topic is from the financial BM area |
Transitivity from topic network | transitivity | Lazzeretti and Capone [75] | To indicate how closed the topic is | |
Degree Centrality from topic network | degree | Wang et al. [76] | To indicate how associated with other areas the topic is | |
Trend of topic emergence | slope | Choi et al. [77] | To reflect the emergence of each topic over periods |
# | Most Probable Terms (Stemmed) | Label |
---|---|---|
11 | parti rule paramet fee agreement refer resourc negoti subject assign part complianc queri satisfi involv restrict advisor independ advic interchange | Advisory Service |
22 | quantiti object level indic tradeabl axi screen locat entri graphic region associ queue predefin enter chart tradabl work center side | Trading System |
33 | investor limit addit list support line submit computerimpl platform dealer day enhanc threshold subset involv made complex revenu note networkbas | Investor Support Platform |
44 | alloc structur incom current holder fix class pool state oblig common action hold altern size stream retir substanti block default | Asset allocation System |
55 | properti real code under hedg softwar total effect indic deal exposur estat volatil benchmark yield depend test surfac continu trend | S/W for hedging Volatility |
66 | busi factor return condit tax predetermin weight target averag exist intern computer composit rank prepar measur ratio travel univers refund | Tax |
77 | client report person enter function web site close open integr featur interact virtual lot schedul host page internet subsequ center | Client Reporting Web System |
88 | collect type file link broker track clear status settlement content standard swap rout forward assign packag usag ach settl leg | Brokerage |
99 | specif score quot accept potenti tool monitor assess counterparti variabl categori fraud detect general relationship anonym correl high cross abil | Fraud Detection |
110 | futur estim distribut point predict vehicl liquid characterist liabil expect reward probabl conting earn fuel deliveri exercis behavior disclosur outcome | Financing Vehicles |
111 | individu valu evalu group analysi histor valuat appli actual decis develop statist recommend underwrit compar purpos sampl seri tabl variabl | Financial Analysis for individual |
112 | autom repres combin posit spread strategi singl algorithm graphic aspect accord margin permit impli function rang short offset long require | Automated Trade Strategy and Algorithm |
113 | transfer termin author unit messag transmit connect money central remot send locat identif node wireless mobil capabl recipi atm advertis | Mobile System for Transferring Money and Message |
114 | compani establish charg financ requir debit facil capit vendor member call metric made meet suppli growth maintain public payabl contact | Corporate Finance |
115 | match prefer deriv engin updat chang reduc level subscrib modifi search volum environ book desir prioriti trigger increas place maker | Engines for Matching Preferences on Derivatives |
116 | contract share sell buy life annuiti date guarante predetermin net benefit variabl administ matur percentag withdraw phase accumul equal convers | Trading Annuity |
117 | compon plan cash simul adjust mean result flow make project construct produc statement detail econom budget contribut accord administr retail | Simulation Component for Cash Flow |
118 | auction buyer seller onlin sale bidder good conduct internet invoic supplier maintain desir mechan reserv allow computer marketplac proxi seat | Auction Market Place |
119 | bill institut bank portion deposit aggreg currenc agent instruct biller format machin station foreign award countri held act larg send | Machine & Equipment for Banking |
220 | merchant commod activ issuer sourc balanc improv profil util commerci valid spend cardhold approv acquir output prepaid commerc wallet descry | Electronic Wallet |
221 | consum control form respect optim techniqu convert primari dynam uniqu authent certif constraint secondari electr signal telephon problem intermediari solute | Authentication via Electronic Environment |
222 | claim polici cost premium loss coverag appli health scenario compens case expens medic care healthcar cover medium patient procedur enterpris | Health Insurance |
223 | check record modul stock document imag digit retriev storag compar separ filter element captur enrol arrang print ticket comparison previous | Processing Digitized Stock Documents |
224 | event index analyz attribut organ criteria equiti profit propos protect forecast demand consist flexibl measur current accur methodolog occurr impact | Equity Analyzing Methodology |
225 | loan processor mortgag term borrow debt memori lender logic bond origin collater coupl field workflow coupon princip underwrit commit home | Processing Mortgage Loan |
226 | entiti benefit direct pay paye design payor employe employ payer end trust make opportun paid prior receipt behalf maintain suffice | Direct Pay System |
Variable | Median | Min | Max |
---|---|---|---|
Average number of forward citations | −0.30 | −1.17 | 3.23 |
Average age from the grant date to present (years) | −0.10 | −2.17 | 2.39 |
Average number of references | −0.07 | −2.00 | 2.22 |
Average number of IPC classes | −0.18 | −1.35 | 3.63 |
Average period from the date of application to the date of registration (years) | −0.25 | −1.27 | 2.04 |
Average number of countries | 0.25 | −1.69 | 1.54 |
Variable | Median | Min | Max |
---|---|---|---|
Trend of topic slope | 0.15 | −3.24 | 1.52 |
Degree from Topic Network | −0.04 | −1.91 | 1.84 |
Transitivity from Topic Network | 0.18 | −1.73 | 2.09 |
Betweenness Centrality from Topic Network | −0.27 | −1.14 | 3.09 |
Variable | Coefficient | exp(coef) | exp(-coef) | se(coef) | Robust se | z | Pr( > |z|) | |
---|---|---|---|---|---|---|---|---|
meanFWD | −0.4529 | 0.6358 | 1.5729 | 0.5065 | 0.2859 | −1.5840 | 0.1131 | |
meanAGE | 4.2773 | 72.0461 | 0.0139 | 0.9898 | 0.9430 | 4.5360 | 0.0000 | * |
meanBCK | 0.5008 | 1.6500 | 0.6061 | 0.3409 | 0.4062 | 1.2330 | 0.2176 | |
meanPRD | −0.5569 | 0.5730 | 1.7452 | 0.2896 | 0.2353 | −2.3670 | 0.0179 | * |
meanIPC | −2.2209 | 0.1085 | 9.2153 | 0.6272 | 0.6178 | −3.5950 | 0.0003 | * |
numCTRY | −0.0680 | 0.9342 | 1.0704 | 0.2824 | 0.2273 | −0.2990 | 0.7647 | |
betcent | −0.9540 | 0.3852 | 2.5961 | 0.6055 | 0.6069 | −1.5720 | 0.1160 | |
slope | 0.5662 | 1.7616 | 0.5677 | 0.3560 | 0.2963 | 1.9110 | 0.0560 | |
transitivity | 0.9973 | 2.7111 | 0.3689 | 0.4175 | 0.3817 | 2.6130 | 0.0090 | * |
degree | −1.8594 | 0.1558 | 6.4200 | 0.8698 | 0.7946 | −2.3400 | 0.0193 | * |
Variable | Coefficient | exp(coef) | exp(-coef) | se(coef) | Robust se | z | Pr( > |z|) | |
---|---|---|---|---|---|---|---|---|
meanFWD | −1.6811 | 0.1862 | 5.3716 | 0.7626 | 0.4522 | −3.7180 | 0.0002 | * |
meanAGE | 2.8145 | 16.6845 | 0.0599 | 1.0836 | 0.7855 | 3.5830 | 0.0003 | * |
meanBCK | −0.2907 | 0.7477 | 1.3374 | 0.3743 | 0.4144 | −0.7020 | 0.4829 | |
meanPRD | 0.0824 | 1.0859 | 0.9209 | 0.3579 | 0.3398 | 0.2430 | 0.8083 | |
meanIPC | −2.1897 | 0.1120 | 8.9324 | 0.7825 | 0.6250 | −3.5030 | 0.0005 | * |
numCTRY | −0.2171 | 0.8049 | 1.2425 | 0.3434 | 0.2583 | −0.8400 | 0.4007 | |
betcent | −0.2413 | 0.7856 | 1.2729 | 0.6791 | 0.4592 | −0.5260 | 0.5992 | |
slope | 0.7798 | 2.1810 | 0.4585 | 0.5442 | 0.3420 | 2.2800 | 0.0226 | * |
transitivity | 0.6803 | 1.9745 | 0.5065 | 0.4138 | 0.2537 | 2.6810 | 0.0073 | * |
degree | −0.8003 | 0.4492 | 2.2261 | 0.9347 | 0.6775 | −1.1810 | 0.2375 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, W.S.; Sohn, S.Y. Identifying Emerging Trends of Financial Business Method Patents. Sustainability 2017, 9, 1670. https://doi.org/10.3390/su9091670
Lee WS, Sohn SY. Identifying Emerging Trends of Financial Business Method Patents. Sustainability. 2017; 9(9):1670. https://doi.org/10.3390/su9091670
Chicago/Turabian StyleLee, Won Sang, and So Young Sohn. 2017. "Identifying Emerging Trends of Financial Business Method Patents" Sustainability 9, no. 9: 1670. https://doi.org/10.3390/su9091670
APA StyleLee, W. S., & Sohn, S. Y. (2017). Identifying Emerging Trends of Financial Business Method Patents. Sustainability, 9(9), 1670. https://doi.org/10.3390/su9091670