# Low Carbon Strategy Analysis of Competing Supply Chains with Different Power Structures

^{*}

## Abstract

**:**

## 1. Introduction

**RQ1.**Under what conditions are channel members motivated to implement low-carbon strategy?**RQ2.**What is the influence of channel power structures and product substitutability on the performance of channel members and the entire supply chain?**RQ3.**Is there a power structure always ensuring the entire supply chain getting the best performance under different supply chain structures?

## 2. Assumptions and Parameter Notations

**Assumption**

**1.**

**Assumption**

**2.**

## 3. The Model and Analysis

#### 3.1. Case 1: One Manufacturer and One Retailer

#### 3.2. Case 2: Two Manufacturers and Two Retailers

## 4. Equilibrium Analysis

#### 4.1. Equilibrium Analysis for Case 1

**Proposition**

**1.**

- (i)
- ${\pi}_{M}^{R{N}^{*}}<{\pi}_{M}^{M{N}^{*}}$, ${\pi}_{R}^{M{N}^{*}}<{\pi}_{R}^{M{N}^{*}}$, ${\pi}^{R{N}^{*}}={\pi}^{M{N}^{*}}$ for $0<b<A/c$;
- (ii)
- ${\pi}_{M}^{M{N}^{*}}<{\pi}_{M}^{M{C}^{*}}$, ${\pi}_{R}^{M{N}^{*}}<{\pi}_{R}^{M{C}^{*}}$, ${\pi}^{M{N}^{*}}<{\pi}^{M{C}^{*}}$ for ${t}^{2}/8k<b<A/c$;
- (iii)
- ${\pi}_{M}^{R{N}^{*}}<{\pi}_{M}^{R{C}^{*}}$, ${\pi}_{R}^{R{N}^{*}}<{\pi}_{R}^{R{C}^{*}}$, ${\pi}^{R{N}^{*}}<{\pi}^{R{C}^{*}}$ for ${t}^{2}/4k<b<A/c$;
- (iv)
- ${\pi}_{M}^{M{C}^{*}}<{\pi}_{R}^{M{C}^{*}}$ for ${t}^{2}/8k<b<{t}^{2}/4k$; and
- (v)
- ${\pi}^{M{C}^{*}}<{\pi}^{R{C}^{*}}$ for ${t}^{2}/4k<b<A/c$.

#### 4.2. Equilibrium Analysis for Case 2

**Proposition**

**2.**

- (i)
- ${\pi}_{Mi}^{RR{N}^{*}}<{\pi}_{Mi}^{MM{N}^{*}}$;
- (ii)
- ${\pi}_{Ri}^{MM{N}^{*}}<{\pi}_{Ri}^{RR{N}^{*}}$;
- (iii)
- ${\pi}_{Ri}^{MM{N}^{*}}<{\pi}_{Mi}^{MM{N}^{*}}$;
- (iv)
- ${\pi}_{Mi}^{RR{N}^{*}}<{\pi}_{Ri}^{RR{N}^{*}}$
- (v)
- ${\pi}_{i}^{MM{N}^{*}}>{\pi}_{i}^{RR{N}^{*}}$ for ${\hat{\mathrm{\Omega}}}_{1}^{MMN-\mathrm{RRN}}<\text{}\Omega {\Omega}_{u}$.

## 5. Numerical Analysis

#### 5.1. Comparisons with Asymmetric Channel Power

- (i)
- ${\mathsf{\pi}}_{\mathrm{Ri}}^{{\mathrm{MMC}}^{*}}<{\mathsf{\pi}}_{\mathrm{Ri}}^{{\mathrm{MMN}}^{*}}$ for ${\hat{\mathrm{\Omega}}}_{\mathrm{R}2}^{\mathrm{MMC}-\mathrm{MMN}}<\mathrm{\Omega}<{\hat{\mathrm{\Omega}}}_{\mathrm{R}1}^{\mathrm{MMC}-\mathrm{MMN}}$ and $\mathsf{\theta}\in \left[0.57,0.76\right]$; and
- (ii)
- ${\mathsf{\pi}}_{\mathrm{Mi}}^{{\mathrm{MMC}}^{*}}<{\mathsf{\pi}}_{\mathrm{Mi}}^{{\mathrm{MMN}}^{*}}$ for ${\hat{\mathrm{\Omega}}}_{\mathrm{M}2}^{\mathrm{MMC}-\mathrm{MMN}}<\mathrm{\Omega}<{\hat{\mathrm{\Omega}}}_{\mathrm{M}1}^{\mathrm{MMC}-\mathrm{MMN}}$ and $\mathsf{\theta}\in \left[0.57,0.76\right]$.

- (i)
- ${\mathsf{\pi}}_{\mathrm{Ri}}^{{\mathrm{RRC}}^{*}}<{\mathsf{\pi}}_{\mathrm{Ri}}^{{\mathrm{RRN}}^{*}}$ for ${\hat{\mathrm{\Omega}}}_{\mathrm{R}2}^{\mathrm{RRC}-\mathrm{RRN}}<\mathrm{\Omega}<{\hat{\mathrm{\Omega}}}_{\mathrm{R}1}^{\mathrm{RRC}-\mathrm{RRN}}$ and $\mathsf{\theta}\in \left[0.25,1\right]$; and
- (ii)
- ${\mathsf{\pi}}_{\mathrm{Mi}}^{{\mathrm{RRC}}^{*}}<{\mathsf{\pi}}_{\mathrm{Mi}}^{{\mathrm{RRN}}^{*}}$ for ${\hat{\mathrm{\Omega}}}_{\mathrm{R}2}^{\mathrm{RRC}-\mathrm{RRN}}<\mathrm{\Omega}<{\hat{\mathrm{\Omega}}}_{\mathrm{R}1}^{\mathrm{RRC}-\mathrm{RRN}}$ and $\mathsf{\theta}\in \left[0.25,0.46\right]$.

- (i)
- ${\mathsf{\pi}}_{\mathrm{Mi}}^{{\mathrm{MMC}}^{*}}<{\mathsf{\pi}}_{\mathrm{Ri}}^{{\mathrm{MMC}}^{*}}$ for ${\hat{\mathrm{\Omega}}}_{1}^{\mathrm{MMC}-\mathrm{MMC}}<\mathrm{\Omega}<{\mathrm{\Omega}}_{\mathrm{u}}$ and $\mathsf{\theta}\in \left[0,1\right]$;
- (ii)
- ${\mathsf{\pi}}_{\mathrm{Mi}}^{{\mathrm{RRC}}^{*}}<{\mathsf{\pi}}_{\mathrm{Ri}}^{{\mathrm{RRC}}^{*}}$ for $\mathsf{\theta}\in \left[0,1\right]$; and
- (iii)
- ${\mathsf{\pi}}_{\mathrm{Mi}}^{{\mathrm{MMC}}^{*}}<{\mathsf{\pi}}_{\mathrm{Mi}}^{{\mathrm{RRC}}^{*}}$ for ${\hat{\mathrm{\Omega}}}_{1}^{\mathrm{MMC}-\mathrm{RRC}}<\mathrm{\Omega}<{\mathrm{\Omega}}_{\mathrm{u}}$ and $\mathsf{\theta}\in \left[0.246,1\right]$.

**Conclusion**

**1.**

#### 5.2. Comparisons with Symmetric Channel Power

- (i)
- ${\mathsf{\pi}}^{{\mathrm{RRC}}^{*}}>{\mathsf{\pi}}^{{\mathrm{MMC}}^{*}}>{\mathsf{\pi}}^{{\mathrm{RRN}}^{*}}>{\mathsf{\pi}}^{{\mathrm{MMN}}^{*}}$ for $\mathsf{\theta}\in \left[0,0.57\right]$;
- (ii)
- ${\mathsf{\pi}}^{{\mathrm{MMC}}^{*}}>{\mathsf{\pi}}^{{\mathrm{RRC}}^{*}}>{\mathsf{\pi}}^{{\mathrm{RRN}}^{*}}>{\mathsf{\pi}}^{{\mathrm{MMN}}^{*}}$ for $\mathsf{\theta}\in \left[0.57,0.68\right]$;
- (iii)
- ${\mathsf{\pi}}^{{\mathrm{MMC}}^{*}}>{\mathsf{\pi}}^{{\mathrm{RRC}}^{*}}>{\mathsf{\pi}}^{{\mathrm{MMN}}^{*}}>{\mathsf{\pi}}^{{\mathrm{RRN}}^{*}}$ for $\mathsf{\theta}\in \left[0.73,0.95\right]$; and
- (iv)
- ${\mathsf{\pi}}^{{\mathrm{MMN}}^{*}}>{\mathsf{\pi}}^{{\mathrm{RRN}}^{*}}>{\mathsf{\pi}}^{{\mathrm{MMC}}^{*}}>{\mathsf{\pi}}^{{\mathrm{RRC}}^{*}}$ for $\mathsf{\theta}\in \left[0.95,1\right]$.

**Conclusion**

**2.**

## 6. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## Appendix A. Proof of Propositions

**Proof of Proposition**

**1.**

**Proof of Proposition**

**2.**

**Proof of Conclusion**

**1.**

## References

- Tsai, W.H.; Lin, W.R.; Fan, W.Y.; Lee, P.L.; Lin, S.J.; Hsu, J.L. Applying a mathematical programming approach for a green product mix decision. Int. J. Prod. Res.
**2012**, 50, 1–14. [Google Scholar] [CrossRef] - Wang, K.; Zhao, D.Z. Optimal decision of enterprise production and emission reduction with discriminated carbon tax considered. Soft Sci.
**2014**, 28, 21–25. [Google Scholar] - Ling, L.Y.; Dong, H.X.; Liang, L. Analysis of monopoly market for green products from the perspective of government subsidies. Oper. Res. Manag. Sci.
**2012**, 21, 139–144. [Google Scholar] - Tan, Z.J.; Yang, H. Pareto-efficient bot contracts for road franchising with government subsidy. J. Manag. Sci. China
**2013**, 16, 10–20. [Google Scholar] - Brecard, D.; Hlaimi, B.; Lucas, S.; Perraudeau, Y. Determinants of demand for green products: An application to eco-label demand for fish in Europe. Ecol. Econ.
**2009**, 69, 115–125. [Google Scholar] [CrossRef] - Laroche, M.; Bergeron, J.; Barbaro-Forleo, G. Targeting consumers who are willing to pay more for environmentally friendly products. J. Consum. Mark.
**2001**, 18, 503–520. [Google Scholar] [CrossRef] - Conrad, K. Price competition and product differentiation when consumers care for the environment. Environ. Resour. Econ.
**2005**, 31, 1–19. [Google Scholar] [CrossRef] - Waldman, D.A.; Ramírez, G.G.; House, R.J.; Puranam, P. Does leadership matter? CEO leadership attributes and profitability under conditions of perceived environmental uncertainty. Acad. Manag. J.
**2001**, 44, 134–143. [Google Scholar] [CrossRef] - Choi, S.; Fredj, K. Price competition and store competition: store brands vs. national brand. Eur. J. Oper. Res.
**2013**, 225, 166–178. [Google Scholar] [CrossRef] - Choi, S.C. Price competition in a duopoly common retailer channel. J. Retail.
**1996**, 72, 117–134. [Google Scholar] [CrossRef] - Ertek, G.; Griffin, P.M. Supplier- and buyer-driven channels in a two-stage supply chain. IIE Trans.
**2002**, 34, 691–700. [Google Scholar] [CrossRef] - Edirisinghe, N.C.P.; Bichescu, B.; Shi, X. Equilibrium analysis of supply chain structures under power imbalance. Eur. J. Oper. Res.
**2011**, 214, 568–578. [Google Scholar] [CrossRef] - Luo, Z.; Chen, X.; Chen, J.; Wang, X. Optimal pricing policies for differentiated brands under different supply chain power structures. Eur. J. Oper. Res.
**2017**, 259, 437–451. [Google Scholar] [CrossRef] - Zhang, G.X.; Fang, S.; Wang, Y.L. Game analysis in a dual-channel supply chain with different power structures. Syst. Eng.
**2015**, 33, 52–59. [Google Scholar] - Ji, J.; Zhang, Z.; Yang, L. Carbon emission reduction decisions in the retail-/dual-channel supply chain with consumers’ preference. J. Clean. Prod.
**2017**, 141, 852–867. [Google Scholar] [CrossRef] - Liu, Z.; Anderson, T.D.; Cruz, J.M. Consumer environmental awareness and competition in two-stage supply chains. Eur. J. Oper. Res.
**2012**, 218, 602–613. [Google Scholar] [CrossRef] - Mcguire, T.W.; Staelin, R. An industry equilibrium analysis of downstream vertical integration. Mark. Sci.
**2008**, 27, 115–130. [Google Scholar] [CrossRef] - Liu, B.; Cai, G.; Tsay, A.A. Advertising in asymmetric competing supply chains. Prod. Oper. Manag.
**2013**, 23, 1845–1858. [Google Scholar] [CrossRef] - Xu, X.P.; Zhang, W.; He, P.; Xu, X.Y. Production and pricing problems in make-to-order supply chain with cap-and-trade regulation. Omega
**2015**, 66, 248–257. [Google Scholar] [CrossRef] - Hafezalkotob, A. Competition of two green and regular supply chains under environmental protection and revenue seeking policies of government. Comput. Ind. Eng.
**2015**, 82, 103–114. [Google Scholar] [CrossRef] - Zhu, W.; He, Y. Green product design in supply chains under competition. Eur. J. Oper. Res.
**2016**, 258, 165–180. [Google Scholar] [CrossRef] - Wang, W.; Li, G.; Cheng, T.C.E. Channel selection in a supply chain with a multi-channel retailer: The role of channel operating costs. Int. J. Prod. Econ.
**2016**, 173, 54–65. [Google Scholar] [CrossRef] - Hafezalkotob, A. Competition, cooperation, and coopetition of green supply chains under regulations on energy saving levels. Transp. Res. Part E
**2017**, 97, 228–250. [Google Scholar] [CrossRef] - Mitra, S.; Webster, S. Competition in remanufacturing and the effects of government subsidies. Int. J. Prod. Econ.
**2008**, 111, 287–298. [Google Scholar] [CrossRef] - Zhang, C.T.; Liu, L.P. Research on coordination mechanism in three-level green supply chain under non-cooperative game. App. Math. Model.
**2013**, 37, 3369–3379. [Google Scholar] [CrossRef] - Tian, Y.; Govindan, K.; Zhu, Q. A system dynamics model based on evolutionary game theory for green supply chain management diffusion among Chinese manufacturers. J. Clean. Prod.
**2014**, 80, 96–105. [Google Scholar] [CrossRef] - Ghosh, D.; Shah, J. Supply chain analysis under green sensitive consumer demand and cost sharing contract. Int. J. Prod. Econ.
**2014**, 164, 319–329. [Google Scholar] [CrossRef] - Lee, K.H.; Min, B.; Yook, K.H. The impacts of carbon emissions and environmental research and development (R&D) investment on firm performance. Int. J. Prod. Econ.
**2015**, 167, 1–11. [Google Scholar] - Li, B.; Zhu, M.; Jiang, Y.; Li, Z. Pricing policies of a competitive dual-channel green supply chain. J. Clean. Prod.
**2015**, 112, 2029–2042. [Google Scholar] [CrossRef] - Zhang, Q.; Tang, W.; Zhang, J. Green supply chain performance with cost learning and operational inefficiency effects. J. Clean. Prod.
**2016**, 112, 3267–3284. [Google Scholar] [CrossRef] - Sengupta, A. Investment in cleaner technology and signaling distortions in a market with green consumers. J. Environ. Econ. Manag.
**2011**, 64, 468–480. [Google Scholar] [CrossRef] - Espínola-Arredondo, A.; Muñoz-García, F. When does environmental regulation facilitate entry-deterring practices. J. Environ. Econ. Manag.
**2013**, 65, 133–152. [Google Scholar] [CrossRef] - Heijnen, P.; Made, A.V.D. A signaling theory of consumer boycotts. J. Environ. Econ. Manag.
**2012**, 63, 404–418. [Google Scholar] [CrossRef] - Ingene, C.A.; Parry, M.E. Mathematical Models of Distribution Channels; Springer: Berlin, Germany, 2004; pp. 481–512. [Google Scholar]
- Cai, G. Channel selection and coordination in dual-channel supply chains. J. Retail.
**2010**, 86, 22–36. [Google Scholar] [CrossRef]

Decision Variables | Parameters | ||
---|---|---|---|

Symbol | Description | Symbol | Description |

${\mathrm{p}}_{\mathrm{i}}$ | Retailer i′s sale price | ${\mathrm{A}}_{\mathrm{i}}$ | The market potential of channel i |

${\mathrm{w}}_{\mathrm{i}}$ | Manufacturer i′s wholesale price | $\mathsf{\theta}$ | Product substitutability, $0\le \mathsf{\theta}<1$ |

${\mathrm{m}}_{\mathrm{i}}$ | Retailer i′s margins | k | Cost coefficient of emission reduction |

${\mathrm{e}}_{\mathrm{i}}$ | Emission reduction level | $\mathsf{\lambda}$ | Government subsidies |

t | Low-carbon sensitivity coefficient | ||

The other symbol and description | |||

${\mathsf{\pi}}_{\mathrm{Ri}}$ | Retailer i′s profit | MS | Manufacturer Stackelberg |

${\mathsf{\pi}}_{\mathrm{Mi}}$ | Manufacturer i′s profit | RS | Retailer Stackelberg |

${\mathsf{\pi}}_{\mathrm{i}}$ | Channel i′s profit | $\mathrm{\Omega}$ | Relative channel status |

Equilibrium | MN | MC | RN | RC |
---|---|---|---|---|

${\mathrm{e}}^{*}$ | — | $\frac{\mathrm{t}(\mathrm{A}-\mathrm{bc}+\mathrm{b}\mathsf{\lambda}))}{8\mathrm{bk}-{\mathrm{t}}^{2}}$ | — | $\frac{\mathrm{t}(\mathrm{A}-\mathrm{bc}+\mathrm{b}\mathsf{\lambda})}{8\mathrm{bk}-2{\mathrm{t}}^{2}}$ |

${\mathrm{w}}^{*}$ | $\frac{\mathrm{A}+\mathrm{bc}}{2\mathrm{b}}$ | $\frac{4\mathrm{Ak}+(4\mathrm{bk}-{\mathrm{t}}^{2})(\mathrm{c}-\mathsf{\lambda})}{8\mathrm{bk}-{\mathrm{t}}^{2}}$ | $\frac{\mathrm{A}+3\mathrm{bc}}{4\mathrm{b}}$ | $\frac{\mathrm{Ak}+(3\mathrm{bk}-{\mathrm{t}}^{2})(\mathrm{c}-\mathsf{\lambda})}{4\mathrm{bk}-{\mathrm{t}}^{2}}$ |

${\mathrm{p}}^{*}$ | $\frac{3\mathrm{A}+\mathrm{bc}}{4\mathrm{b}}$ | $\frac{6\mathrm{Ak}+(2\mathrm{bk}-{\mathrm{t}}^{2})(\mathrm{c}-\mathsf{\lambda})}{8\mathrm{bk}-{\mathrm{t}}^{2}}$ | $\frac{3\mathrm{A}+\mathrm{bc}}{4\mathrm{b}}$ | $\frac{\mathrm{A}(6\mathrm{bk}-{\mathrm{t}}^{2})+\mathrm{b}(2\mathrm{bk}-{\mathrm{t}}^{2})(\mathrm{c}-\mathsf{\lambda})}{2\mathrm{b}(4\mathrm{bk}-{\mathrm{t}}^{2})}$ |

${\mathsf{\pi}}_{\mathrm{M}}^{*}$ | $\frac{{(\mathrm{A}-\mathrm{bc})}^{2}}{8\mathrm{b}}$ | $\frac{\mathrm{k}{(\mathrm{A}-\mathrm{bc}+\mathrm{b}\mathsf{\lambda})}^{2}}{8\mathrm{bk}-{\mathrm{t}}^{2}}$ | $\frac{{(\mathrm{A}-\mathrm{bc})}^{2}}{16\mathrm{b}}$ | $\frac{\mathrm{k}{(\mathrm{A}-\mathrm{bc}+\mathrm{b}\mathsf{\lambda})}^{2}}{16\mathrm{bk}-4{\mathrm{t}}^{2}}$ |

${\mathsf{\pi}}_{\mathrm{R}}^{*}$ | $\frac{{(\mathrm{A}-\mathrm{bc})}^{2}}{16\mathrm{b}}$ | $\frac{4{\mathrm{bk}}^{2}{(\mathrm{A}-\mathrm{bc}+\mathrm{b}\mathsf{\lambda})}^{2}}{{(8\mathrm{bk}-{\mathrm{t}}^{2})}^{2}}$ | $\frac{{(\mathrm{A}-\mathrm{bc})}^{2}}{8\mathrm{b}}$ | $\frac{\mathrm{k}{(\mathrm{A}-\mathrm{bc}+\mathrm{b}\mathsf{\lambda})}^{2}}{8\mathrm{bk}-2{\mathrm{t}}^{2}}$ |

${\mathsf{\pi}}^{*}$ | $\frac{3{(\mathrm{A}-\mathrm{bc})}^{2}}{16\mathrm{b}}$ | $\frac{\mathrm{k}(12\mathrm{bk}-{\mathrm{t}}^{2}){(\mathrm{A}-\mathrm{bc}+\mathrm{b}\mathsf{\lambda})}^{2}}{{(8\mathrm{bk}-{\mathrm{t}}^{2})}^{2}}$ | $\frac{3{(\mathrm{A}-\mathrm{bc})}^{2}}{16\mathrm{b}}$ | $\frac{3\mathrm{k}{(\mathrm{A}-\mathrm{bc}+\mathrm{b}\mathsf{\lambda})}^{2}}{16\mathrm{bk}-4{\mathrm{t}}^{2}}$ |

Equilibrium | MMN | MMC |
---|---|---|

${\mathrm{w}}_{\mathrm{i}}^{*}$ | $\frac{(8-9{\mathsf{\theta}}^{2}+2{\mathsf{\theta}}^{4}){\mathrm{A}}_{\mathrm{i}}-\mathsf{\theta}(2-{\mathsf{\theta}}^{2}){\mathrm{A}}_{3-\mathrm{i}}}{16-17{\mathsf{\theta}}^{2}+4{\mathsf{\theta}}^{4}}$ | $\frac{{\mathrm{B}}_{1}{\mathrm{A}}_{\mathrm{i}}-({\mathrm{B}}_{2}+{\mathrm{B}}_{3})\mathsf{\lambda}-{\mathrm{B}}_{4}{\mathrm{A}}_{3-\mathrm{i}}}{{\mathrm{O}}_{1}+{\mathrm{O}}_{2}}$ |

${\mathrm{p}}_{\mathrm{i}}^{*}$ | $\frac{2(3-{\mathsf{\theta}}^{2})((8-9{\mathsf{\theta}}^{2}+2{\mathsf{\theta}}^{4}){\mathrm{A}}_{\mathrm{i}}-\mathsf{\theta}(2-{\mathsf{\theta}}^{2}){\mathrm{A}}_{3-\mathrm{i}})}{(4-{\mathsf{\theta}}^{2})(16-17{\mathsf{\theta}}^{2}+4{\mathsf{\theta}}^{4})}$ | $\frac{{\mathrm{E}}_{1}{\mathrm{A}}_{\mathrm{i}}-({\mathrm{E}}_{2}+{\mathrm{E}}_{3})\mathsf{\lambda}-{\mathrm{E}}_{4}{\mathrm{A}}_{3-\mathrm{i}}}{{\mathrm{O}}_{1}+{\mathrm{O}}_{2}}$ |

${{\mathrm{e}}_{\mathrm{i}}}^{*}$ | — | $\frac{{\mathrm{F}}_{1}\mathsf{\lambda}+{\mathrm{F}}_{2}{\mathrm{A}}_{\mathrm{i}}+{\mathrm{F}}_{3}{\mathrm{A}}_{3-\mathrm{i}}}{{\mathrm{O}}_{1}+{\mathrm{O}}_{2}}$ |

${\mathsf{\pi}}_{\mathrm{Mi}}^{*}$ | $\frac{(2-{\mathsf{\theta}}^{2}){((8-9{\mathsf{\theta}}^{2}+2{\mathsf{\theta}}^{4}){\mathrm{A}}_{\mathrm{i}}-\mathsf{\theta}(2-{\mathsf{\theta}}^{2}){\mathrm{A}}_{3-\mathrm{i}})}^{2}}{(4-{\mathsf{\theta}}^{2})(1-{\mathsf{\theta}}^{2}){(16-17{\mathsf{\theta}}^{2}+4{\mathsf{\theta}}^{4})}^{2}}$ | $\frac{{\mathrm{G}}_{1}{({\mathrm{G}}_{2}\mathsf{\lambda}+{\mathrm{G}}_{3}{\mathrm{A}}_{\mathrm{i}}+{\mathrm{G}}_{4}{\mathrm{A}}_{{\mathrm{A}}_{3-\mathrm{i}}})}^{2}}{{({\mathrm{O}}_{1}+{\mathrm{O}}_{2})}^{2}}$ |

${\mathsf{\pi}}_{\mathrm{Ri}}^{*}$ | $\frac{{(2-{\mathsf{\theta}}^{2})}^{2}{((8-9{\mathsf{\theta}}^{2}+2{\mathsf{\theta}}^{4}){\mathrm{A}}_{\mathrm{i}}-\mathsf{\theta}(2-{\mathsf{\theta}}^{2}){\mathrm{A}}_{3-\mathrm{i}})}^{2}}{{(4-{\mathsf{\theta}}^{2})}^{2}(1-{\mathsf{\theta}}^{2}){(16-17{\mathsf{\theta}}^{2}+4{\mathsf{\theta}}^{4})}^{2}}$ | $\frac{{\mathrm{H}}_{1}{({\mathrm{H}}_{2}\mathsf{\lambda}+{\mathrm{H}}_{3}{\mathrm{A}}_{1}+{\mathrm{H}}_{4}{\mathrm{A}}_{2})}^{2}}{{({\mathrm{O}}_{1}+{\mathrm{O}}_{2})}^{2}}$ |

${\mathsf{\pi}}_{\mathrm{i}}^{*}$ | $\frac{2(2-{\mathsf{\theta}}^{2})(3-{\mathsf{\theta}}^{2}){((8-9{\mathsf{\theta}}^{2}+2{\mathsf{\theta}}^{4}){\mathrm{A}}_{\mathrm{i}}-\mathsf{\theta}(2-{\mathsf{\theta}}^{2}){\mathrm{A}}_{3-\mathrm{i}})}^{2}}{(1-{\mathsf{\theta}}^{2}){(64-84{\mathsf{\theta}}^{2}+33{\mathsf{\theta}}^{4}-4{\mathsf{\theta}}^{6})}^{2}}$ | ${\mathsf{\pi}}_{\mathrm{Ri}}^{*}+{\mathsf{\pi}}_{\mathrm{Mi}}^{*}$ |

Equilibrium | RRN | RRC |
---|---|---|

${\mathrm{w}}_{\mathrm{i}}^{*}$ | $\frac{(2-{\mathsf{\theta}}^{2})((8-9{\mathsf{\theta}}^{2}+2{\mathsf{\theta}}^{4}){\mathrm{A}}_{\mathrm{i}}-\mathsf{\theta}(2-{\mathsf{\theta}}^{2}){\mathrm{A}}_{3-\mathrm{i}})}{(4-{\mathsf{\theta}}^{2})(16-17{\mathsf{\theta}}^{2}+4{\mathsf{\theta}}^{4})}$ | $\frac{-(({\mathrm{L}}_{1}+{\mathrm{L}}_{2})\mathsf{\lambda}+{\mathrm{L}}_{3}{\mathrm{A}}_{\mathrm{i}}+{\mathrm{L}}_{4}{\mathrm{A}}_{3-\mathrm{i}})}{{\mathrm{T}}_{1}+{\mathrm{T}}_{2}}$ |

${\mathrm{p}}_{\mathrm{i}}^{*}$ | $\frac{2(3-{\mathsf{\theta}}^{2})((8-9{\mathsf{\theta}}^{2}+2{\mathsf{\theta}}^{4}){\mathrm{A}}_{\mathrm{i}}-\mathsf{\theta}(2-{\mathsf{\theta}}^{2}){\mathrm{A}}_{3-\mathrm{i}})}{(4-{\mathsf{\theta}}^{2})(16-17{\mathsf{\theta}}^{2}+4{\mathsf{\theta}}^{4})}$ | $\frac{({\mathrm{J}}_{1}+{\mathrm{J}}_{2}){\mathrm{A}}_{\mathrm{i}}-({\mathrm{J}}_{3}+{\mathrm{J}}_{4})\mathsf{\lambda}+{\mathrm{J}}_{5}{\mathrm{A}}_{3-\mathrm{i}}}{2({\mathrm{T}}_{1}+{\mathrm{T}}_{2})}$ |

${{\mathrm{e}}_{\mathrm{i}}}^{*}$ | — | $\frac{{\mathrm{S}}_{1}\mathsf{\lambda}-{\mathrm{S}}_{2}{\mathrm{A}}_{\mathrm{i}}-{\mathrm{S}}_{3}{\mathrm{A}}_{3-\mathrm{i}}}{2({\mathrm{T}}_{1}+{\mathrm{T}}_{2})}$ |

${\mathsf{\pi}}_{\mathrm{mi}}^{*}$ | $\frac{{(2-{\mathsf{\theta}}^{2})}^{2}{((8-9{\mathsf{\theta}}^{2}+2{\mathsf{\theta}}^{4}){\mathrm{A}}_{\mathrm{i}}-\mathsf{\theta}(2-{\mathsf{\theta}}^{2}){\mathrm{A}}_{3-\mathrm{i}})}^{2}}{{(4-{\mathsf{\theta}}^{2})}^{2}(1-{\mathsf{\theta}}^{2}){(16-17{\mathsf{\theta}}^{2}+4{\mathsf{\theta}}^{4})}^{2}}$ | $\frac{{\mathrm{V}}_{1}{({\mathrm{V}}_{2}\mathsf{\lambda}+{\mathrm{V}}_{3}{\mathrm{A}}_{\mathrm{i}}+{\mathrm{V}}_{4}{\mathrm{A}}_{3-\mathrm{i}})}^{2}}{4{({\mathrm{T}}_{1}+{\mathrm{T}}_{2})}^{2}}$ |

${\mathsf{\pi}}_{\mathrm{ri}}^{*}$ | $\frac{(2-{\mathsf{\theta}}^{2}){((8-9{\mathsf{\theta}}^{2}+2{\mathsf{\theta}}^{4}){\mathrm{A}}_{\mathrm{i}}-\mathsf{\theta}(2-{\mathsf{\theta}}^{2}){\mathrm{A}}_{3-\mathrm{i}})}^{2}}{(4-5{\mathsf{\theta}}^{2}+{\mathsf{\theta}}^{4}){(16-17{\mathsf{\theta}}^{2}+4{\mathsf{\theta}}^{4})}^{2}}$ | $\frac{{\mathrm{Y}}_{1}{({\mathrm{Y}}_{2}\mathsf{\lambda}+{\mathrm{Y}}_{3}{\mathrm{A}}_{\mathrm{i}}+{\mathrm{Y}}_{4}{\mathrm{A}}_{3-\mathrm{i}})}^{2}}{2{({\mathrm{T}}_{1}+{\mathrm{T}}_{2})}^{2}}$ |

${\mathsf{\pi}}_{\mathrm{i}}^{*}$ | $\frac{2(6-5{\mathsf{\theta}}^{2}+{\mathsf{\theta}}^{4}){((8-9{\mathsf{\theta}}^{2}+2{\mathsf{\theta}}^{4}){\mathrm{A}}_{\mathrm{i}}-\mathsf{\theta}(2-{\mathsf{\theta}}^{2}){\mathrm{A}}_{3-\mathrm{i}})}^{2}}{(1-{\mathsf{\theta}}^{2}){(64-84{\mathsf{\theta}}^{2}+33{\mathsf{\theta}}^{4}-4{\mathsf{\theta}}^{6})}^{2}}$ | ${\mathsf{\pi}}_{\mathrm{ri}}^{*}+{\mathsf{\pi}}_{\mathrm{mi}}^{*}$ |

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Liu, B.; Li, T.; Tsai, S.-B.
Low Carbon Strategy Analysis of Competing Supply Chains with Different Power Structures. *Sustainability* **2017**, *9*, 835.
https://doi.org/10.3390/su9050835

**AMA Style**

Liu B, Li T, Tsai S-B.
Low Carbon Strategy Analysis of Competing Supply Chains with Different Power Structures. *Sustainability*. 2017; 9(5):835.
https://doi.org/10.3390/su9050835

**Chicago/Turabian Style**

Liu, Bin, Tao Li, and Sang-Bing Tsai.
2017. "Low Carbon Strategy Analysis of Competing Supply Chains with Different Power Structures" *Sustainability* 9, no. 5: 835.
https://doi.org/10.3390/su9050835