The Challenges of Applying Planetary Boundaries as a Basis for Strategic Decision-Making in Companies with Global Supply Chains
Abstract
:1. Introduction: Sustainability—Recognising Constraints
2. The Planetary Boundaries Framework
2.1. Challenges in Operationalising the Planetary Boundaries Framework
- (1)
- The high-level, global PB parameters must be translated into practical metrics that may require definition at a regional or local scale. This is recognised in Steffen et al.’s [2] revision of the PB framework. Approaches have been suggested for national, regional and local planning, for example for Sweden [19], Switzerland [20], Canada and Spain [17]. However, if the metrics are to be used by industry, they will require a common framework even when they refer to local or regional scale, and such a framework has yet to emerge [7]. There is the further difficulty that (un)sustainability is an emergent property of a complex system and is multi-scale: exceeding local-scale boundaries in several locations can lead to cumulative global impacts that exceed the sum of the local effects.
- (2)
- Even if the ‘safe operating space’ within each PB can be defined and quantified at an appropriate scale, a basis is needed for allocating ‘fair shares’ of the space to individual activities and enterprises. This challenge is related to that of negotiating a consensual ethical and political basis for allocating the ‘safe operating space’ between nations, producers and individuals, introduced in Section 1. It requires an extensive and inclusive deliberative approach as illustrated by institutional approaches on climate change and the Global Goals for Sustainable Development (SDGs) [21]. Any such framework must also be capable of providing a basis for strategic company planning. The Science-Based Targets initiative [22] for climate change, discussed further in Section 3, provides one example of how the ‘safe operating space’ might be defined and allocated for a global boundary.
- (3)
- Implementation of measures to respect the Planetary Boundaries depends on bodies which may currently exist at national or regional scales but not yet at the global scale. Of the four PBs explored here, climate change and biodiversity have international bodies setting targets and attempting to promote actions, but even here the history of implementation to remain within boundaries is not encouraging. The global coordination of progress towards the SDGs and more generally the 2015–2030 Development Agenda [23] offers an opportunity to bring together such implementation beyond the national level, encompassing contributions by the private sector. Common metrics linking specific SDGs to the Planetary Boundaries would facilitate global coordination and alignment of commitments and actions.
2.2. Planetary Boundaries for Business Application
2.3. Cross-Disciplinary Perspectives
3. Climate Change
3.1. Defining and Measuring the Safe Operating Space
3.2. Practicality of Applying Indicators for Climate Change
3.3. Further Research
4. Freshwater use
4.1. Defining and Measuring the Safe Operating Space
4.2. Practicality of Applying Indicators of Water Use
4.3. Further Research
5. Biosphere Integrity
5.1. Defining and Measuring the Safe Operating Space
5.2. Practicality of Applying Indicators of Biosphere Integrity
5.3. Further Research
6. Chemical Pollution and Other Novel Entities
6.1. Defining and Measuring the Safe Operating Space
6.2. Practicality of Applying Indicators for Chemical Pollution
6.3. Further Research
7. Allocation and Governance of the Spaces
8. The Way Forward
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Rockström, J.; Steffen, W.; Noone, K.; Persson, A.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary Boundaries: Guiding human development on a changing planet. Science 2015, 347. [Google Scholar] [CrossRef] [PubMed]
- Bjørn, A.; Diamond, M.; Owsianiak, M.; Verzat, B.; Hauschild, M.Z. Strengthening the Link between Life Cycle Assessment and Indicators for Absolute Sustainability to Support development within Planetary Boundaries. Environ. Sci. Technol. 2015, 49, 6370–6371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hellweg, S.; Milà i Canals, L. Emerging approaches, challenges and opportunities in life cycle assessment. Science 2014, 344, 1109–1113. [Google Scholar] [CrossRef] [PubMed]
- Raworth, K. A Safe and Just Space for Humanity. Can We Live within the Doughnut? Oxfam Discussion Paper. 2012. Available online: https://www.oxfam.org/sites/www.oxfam.org/files/dp-a-safe-and-just-space-for-humanity-130212-en.pdf (accessed on 14 December 2016).
- Dearing, J.A.; Wang, R.; Zhang, K.; Dyke, J.G.; Haberl, H.; Hossain, M.S.; Langdon, P.G.; Lenton, T.M.; Raworth, K.; Brown, S.; et al. Safe and just operating spaces for regional social-ecological systems. Glob. Environ. Chang. 2014, 28, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Häyhä, T.; Lucas, P.L.; van Vuuren, D.P.; Cornell, S.E.; Hoff, H. From Planetary Boundaries to national fair shares of the global safe operating space—How can scales be bridged? Glob. Environ. Chang. 2016, 40, 60–72. [Google Scholar] [CrossRef]
- Vanderheiden, S. Allocating Ecological Space. J. Soc. Philos. 2009, 40, 257–275. [Google Scholar] [CrossRef]
- Kim, R.E.; Bosselmann, K. Operationalizing Sustainable Development: Ecological Integrity as a Grundnorm of International Law. Rev. Eur. Comp. Int. Environ. Law 2015, 24, 194–208. [Google Scholar] [CrossRef]
- Greaker, M.; Stoknes, P.E.; Alfsen, K.H.; Erikson, T. A Kantian approach to sustainable development indicators for climate change. Ecol. Econ. 2013, 91, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Grasso, M. A normative ethical framework in climate change. Clim. Chang. 2007, 81, 223–246. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Mitigation of Climate Change (WGIII); Fifth Assessment Report; United Nations Environment Programme: Nairobi, Kenya, 2014. [Google Scholar]
- Whiteman, G.; Walker, B.; Perego, P. Planetary boundaries: Ecological foundations for corporate sustainability. J. Manag. Stud. 2013, 50, 307–336. [Google Scholar] [CrossRef]
- Van den Bergh, J.; Grazi, F. On the Policy Relevance of Ecological Footprints. Environ. Sci. Technol. 2010, 44, 4843–4844. [Google Scholar] [CrossRef] [PubMed]
- Blomqvist, L.; Brook, B.W.; Ellis, E.C.; Kareiva, P.M.; Nordhaus, T.; Shellenberger, M. Does the Shoe Fit? Real versus Imagined Ecological Footprints. PLoS Biol. 2013, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galli, A.; Giampietro, M.; Goldfinger, S.; Lazarus, E.; Lin, D.; Saltelli, A.; Wackernagel, M.; Müller, F. Questioning the Ecological Footprint. Ecol. Indic. 2016, 69, 224–232. [Google Scholar] [CrossRef]
- Fanning, A.L.; O’Neill, D.W. Tracking resource use relative to planetary boundaries in a steady-state framework: A case study of Canada and Spain. Ecol. Indic. 2016, 69, 836–849. [Google Scholar] [CrossRef]
- Planetary Boundaries and Social Thresholds—How Do Companies Measure up? A Practitioner’s Perspective. Executive Summary, December 2016, Produced by Article 13. Available online: http://www.article13.com/research (accessed on 25 January 2017).
- Nykvist, B.; Persson, A.; Moberg, F.; Persson, L.; Cornell, S.; Rockström, J. National Environmental Performance on Planetary Boundaries, a Study for the Swedish Environmental Protection Agency; Report 6576; Naturvårdsverket: Stockholm, Sweden, 2013. [Google Scholar]
- Dao, H.; Friot, D.; Peduzzi, P.; Chatenoux, B.; de Bono, A.; Schwarzer, S. Environmental Limits and Swiss Footprints Based on Planetary Boundaries; UNEP/GRID-Geneva & University of Geneva: Geneva, Switzerland, 2015. [Google Scholar]
- Griggs, D.; Stafford Smith, M.; Rockström, J.; Öhman, M.C.; Gaffney, O.; Glaser, G.; Kanie, N.; Noble, I.; Steffen, W.; Shyamsundar, P. An integrated framework for sustainable development goals. Ecol. Soc. 2014, 19, 49. [Google Scholar] [CrossRef]
- Science-Based Targets Website. Available online: http://sciencebasedtargets.org/ (accessed on 14 December 2016).
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. A/RES/70/1. 2015. Available online: https://sustainabledevelopment.un.org/post2015/transformingourworld (accessed on 14 December 2016).
- Baumann, H.; Tillman, A.M. The Hitch Hiker's Guide to LCA-An Orientation in Life Cycle Assessment Methodology and Application; Studentlitteratur AB: Lund, Sweden, 2004. [Google Scholar]
- Sim, S.; King, H.; Price, E. The Role of Science in Shaping Sustainable Business: Unilever Case Study. In Taking Stock of Industrial Ecology; Clift, R., Druckman, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 291–302. [Google Scholar]
- Bjørn, A.; Hauschild, M.Z. Introducing carrying capacity-based normalisation in LCA: Framework and development of references at midpoint level. Int. J. Life Cycle Assess. 2015, 20, 1005–1018. [Google Scholar] [CrossRef] [Green Version]
- Murphy, R.J.; King, H.; Sim, S.; Chenoweth, J.; Christie, I.; Clavreul, J.; Lee, J.; Clift, R. Towards Operationalizing the Planetary Boundaries Concept in LCA for Products. In Proceedings of the SETAC Europe 25th Annual Meeting, Barcelona, Spain, 3–7 May 2016; Abstract TU 299. Available online: https://c.ymcdn.com/sites/www.setac.org/resource/resmgr/Abstract_Books/SETAC-Barcelona-abstracts.pdf (accessed on 14 December 2016).
- Bjørn, A.; Margni, M.; Roy, P.O.; Bulle, C.; Hauschild, M.Z. A proposal to measure absolute environmental sustainability in life cycle assessment. Ecol. Indic. 2016, 63, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Bjørn, A.; Bey, N.; Georg, S.; Røpke, I.; Hauschild, M.Z. Is Earth recognised as a finite system in corporate responsibility reporting? J. Clean. Prod. 2016. [Google Scholar] [CrossRef]
- Ryberg, M.W.; Owsianiak, M.; Richardson, K.; Hauschild, M.Z. Challenges in implementing a Planetary Boundaries based Life-Cycle Impact Assessment methodology. J. Clean. Prod. 2016, 139, 450–459. [Google Scholar] [CrossRef]
- Biggs, R.; Carpenter, S.R.; Brock, W.A. Turning back from the brink: Detecting an impending regime shift in time to avert it. Proc. Natl. Acad. Sci. USA 2009, 106, 826–831. [Google Scholar] [CrossRef] [PubMed]
- Scheffer, M.; Bascompte, J.; Brock, W.A.; Brovkin, V.; Carpenter, S.R.; Dakos, V.; Held, H.; van Nes, E.H.; Rietkerk, M.; Sugihara, G. Early-warning signals for critical transitions. Nature 2009, 461, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Scheffer, M.; Hirota, M.; Holmgren, M.; van Nes, E.H.; Chapin, F.S., III. Thresholds for boreal biome transitions. Proc. Natl. Acad. Sci. USA 2012, 109, 21384–21389. [Google Scholar] [CrossRef] [PubMed]
- Barnosky, A.D.; Hadly, E.A.; Bascompte, J.; Berlow, E.L.; Brown, J.H.; Fortelius, M.; Getz, W.M.; Harte, J.; Hastings, A.; Marquet, P.A.; et al. Approaching a state shift in Earth’s biosphere. Nature 2012, 486, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Dearing, J.A.; Langdon, P.G.; Zhang, E.; Yang, X.; Dakos, V.; Scheffer, M. Flickering gives early warning signals of a critical transition to a eutrophic lake state. Nature 2012, 492, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis (WGI); Fifth Assessment Report; United Nations Environment Programme: Nairobi, Kenya, 2013. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Synthesis Report; Fifth Assessment Report; United Nations Environment Programme: Nairobi, Kenya, 2014. [Google Scholar]
- Funtowicz, S.O.; Ravetz, J.R. Science for the post-normal age. Futures 1993, 25, 739–755. [Google Scholar] [CrossRef]
- Rogelj, J.; Schaeffer, M.; Friedlingstein, P.; Gillett, N.P.; van Vuuren, D.P.; Riahi, K.; Allen, M.; Knutti, R. Differences between carbon budget estimates unravelled. Nat. Clim. Chang. 2016, 6, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Royal Commission on Environmental Pollution (RCEP). Energy: The Changing Climate; The Stationery Office: London, UK, 2000. [Google Scholar]
- Garnaut, R. The Garnaut Review: Australia in the Global Response to Climate Change; Cambridge University Press: Port Melbourne, Australia, 2011. [Google Scholar]
- Hertwich, E.G.; Peters, G.P. CO2 embodied in international trade with implications for global climate policy. Environ. Sci. Technol. 2009, 43, 6414–6420. [Google Scholar] [CrossRef] [PubMed]
- ISO 14046: Water Footprint—Principles, Requirements and Guidelines. 2014. Available online: http://www.iso.org/iso/catalogue_detail?csnumber=43263 (accessed on 14 December 2016).
- Postel, S.L.; Daily, G.C.; Ehrlich, P.R. Human appropriation of renewable fresh water. Science 1996, 271, 785–788. [Google Scholar] [CrossRef]
- Gerten, D.; Rockström, J.; Heinke, J.; Steffen, W.; Richardson, K.; Cornell, S. Response to Comment on “Planetary boundaries: Guiding human development on a changing planet”. Science 2015, 348, 1217. [Google Scholar] [CrossRef] [PubMed]
- Pastor, A.V.; Ludwig, F.; Biemans, H.; Hoff, H.; Kabat, P. Accounting for environmental flow requirements in global water assessments. Hydrol. Earth Syst. Sci. 2014, 18, 5041–5059. [Google Scholar] [CrossRef]
- Poff, N.L.; Richter, B.D.; Arthington, A.H.; Bunn, S.E.; Naiman, R.J.; Kendy, E.; Acreman, M.; Apse, C.; Bledsoe, B.P.; Freeman, M.C.; et al. The ecological limits of hydrologic alteration (ELOHA): A new framework for developing regional environmental flow standards. Freshw. Biol. 2010, 55, 147–170. [Google Scholar] [CrossRef]
- Berger, M.; van der Ent, R.; Eisner, S.; Bach, V.; Finkbeiner, M. Water Accounting and Vulnerability Evaluation (WAVE): Considering Atmospheric Evaporation Recycling and the Risk of Freshwater Depletion in Water Footprinting. Environ. Sci. Technol. 2014, 48, 4521–4528. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, A.Y.; Mekonnen, M.M.; Chapagain, E.K.; Mathews, R.E.; Richter, B.D. Global monthly water scarcity: Blue water footprints versus blue water availability. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed]
- Byers, E.A.; Hall, J.W.; Amezaga, J.M. Electricity generation and cooling water use: UK pathways to 2050. Glob. Environ. Chang. 2014, 25, 16–30. [Google Scholar] [CrossRef]
- Gerten, D.; Hoff, H.; Rockström, J.; Jägermeyr, J.; Kummu, M.; Pastor, A.V. Towards a revised planetary boundary for consumptive freshwater use: Role of environmental flow requirements. Curr. Opin. Environ. Sustain. 2013, 5, 551–558. [Google Scholar] [CrossRef]
- Boulay, A.M.; Bare, J.; Benini, L.; Berger, M.; Lathuilliere, M.; Manzardo, A.; Margni, M.; Motoshita, M.; Nunez, M.; Oki, T.; et al. The WULCA consensus characterization model for water scarcity footprints: Assessing impacts of water consumption based on available water remaining (AWARE). Int. J. Life Cycle Assess. 2017. under review. [Google Scholar]
- Milà i Canals, L.; Chenoweth, J.; Chapagain, A.; Orr, S.; Antón, A.; Clift, R. Assessing freshwater use impacts in LCA: Part I—Inventory modelling and characterisation factors for the main impact pathways. Int. J. Life Cycle Assess. 2009, 14, 28–42. [Google Scholar] [CrossRef]
- Núnez, M.; Pfister, S.; Roux, P.; Anton, A. Estimating water consumption of potential natural vegetation on global dry lands: Building an LCA framework for green water flows. Environ. Sci. Technol. 2013, 47, 12258–12265. [Google Scholar] [CrossRef] [PubMed]
- Quinteiro, P.; Dias, A.C.; Silva, M.; Ridoutt, B.G.; Arroja, L. A contribution to the environmental impact assessment of green water flows. J. Clean. Prod. 2015, 93, 318–329. [Google Scholar] [CrossRef]
- Döll, P. Impact of climate change and variability on irrigation requirements: A global perspective. Clim. Chang. 2002, 54, 269–293. [Google Scholar] [CrossRef]
- Menzel, L.; Flörke, M.; Matovelle, A.; Alcamo, J. Impacts of socio-economic development and climate change on water re-sources and water stress. In Proceedings of the 1st International Conference on Adaptative and Integrative Water Management (CAIWA 2007), Basel, Switzerland, 12–15 November 2007.
- Brook, B.W.; Ellis, E.C.; Perring, M.P.; Mackay, A.W.; Blomqvist, L. Does the terrestrial biosphere have planetary tipping points? Trends Ecol. Evol. 2014, 28, 396–401. [Google Scholar] [CrossRef] [PubMed]
- Isbell, F.; Calcagno, V.; Hector, A.; Connolly, J.; Harpole, W.S.; Reich, P.B.; Scherer-Lorenzen, M.; Schmid, B.; Tilman, D.; van Ruijven, J.; et al. High plant diversity is needed to maintain ecosystem services. Nature 2011, 477, 199–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tilman, D.; Downing, J.A. Biodiversity and Stability in Grasslands. Nature 1994, 367, 363–365. [Google Scholar] [CrossRef]
- Kiaer, L.P.; Skovgaard, I.M.; Ostergard, H. Grain yield increase in cereal variety mixtures: A meta-analysis of field trials. Field Crops Res. 2009, 114, 361–373. [Google Scholar] [CrossRef]
- Hoehn, P.; Tscharntke, T.; Tylianakis, J.M.; Steffan-Dewenter, I. Functional group diversity of bee pollinators increases crop yield. Proc. R. Soc. Lond. Biol. Sci. 2008, 275, 2283–2291. [Google Scholar] [CrossRef] [PubMed]
- Letourneau, D.K.; Jedlicka, J.A.; Bothwell, S.G.; Moreno, C.R. Effects of natural enemy biodiversity on the suppression of arthropod herbivores in terrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 573–592. [Google Scholar] [CrossRef]
- Levine, J.M.; Adler, P.B.; HilleRisLambers, J. On testing the role of niche differences in stabilizing coexistence. Funct. Ecol. 2008, 22, 934–936. [Google Scholar] [CrossRef]
- Quijas, S.; Schmidt, B.; Balvanera, P. Plant diversity enhances provision of ecosystem services: A new synthesis. Basic Appl. Ecol. 2010, 11, 582–593. [Google Scholar] [CrossRef] [Green Version]
- Scholes, R.J.; Biggs, R. A biodiversity intactness index. Nature 2005, 434, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Röös, E.; Patel, M.; Spångberg, J.; Carlsson, G.; Rydhmer, L. Limiting livestock production to pasture and by-products in a search for sustainable diets. Food Policy 2016, 58, 1–13. [Google Scholar] [CrossRef]
- Chaudhary, A.; Verones, F.; de Baan, L.; Hellweg, S. Quantifying Land Use Impacts on Biodiversity: Combining Species–Area Models and Vulnerability Indicators. Environ. Sci. Technol. 2015, 49, 9987–9995. [Google Scholar] [CrossRef] [PubMed]
- Frischknecht, R.; Fantke, P.; Tschümperlin, L.; Niero, M.; Antón, A.; Bare, J.; Boulay, A.-M.; Cherubini, F.; Hauschild, M.Z.; Henderson, A.; et al. Global guidance on environmental life cycle impact assessment indicators: Progress and case study. Int. J. Life Cycle Assess. 2016, 21, 429–442. [Google Scholar] [CrossRef] [Green Version]
- Jolliet, O.; Antón, A.; Boulay, A.M.; Cherubini, F.; Fantke, P.; Levasseur, A.; McKone, T.E.; Michelsen, O.; Milà i Canals, L.; Motoshita, M.; et al. Global guidance on environmental life cycle impact assessment indicators: Recommendation set 1. Int. J. Life Cycle Assess. 2017. under review. [Google Scholar]
- Newbold, T.; Hudson, L.N.; Arnell, A.P.; Contu, S.; de Palma, A.; Ferrier, S.; Hill, S.L.L.; Hoskins, A.J.; Lysenko, I.; Phillips, H.R.P.; et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 2016, 353, 288–291. [Google Scholar] [CrossRef] [PubMed]
- PREDICTS Project Website. Available online: www.predicts.org.uk (accessed on 14 December 2016).
- Alkemade, R.; van Oorschot, M.; Miles, L.; Nellemann, C.; Bakkenes, M.; ten Brink, B. GLOBIO3: A Framework to Investigate Options for Reducing Global Terrestrial Biodiversity Loss. Ecosystems 2009, 12, 374–390. [Google Scholar] [CrossRef]
- Mace, G.M.; Reyers, B.; Alkemade, R.; Biggs, R.; Chapin, S.; Cornell, S.E.; Dıaz, S.; Jennings, S.; Leadley, P.; Mumbyl, P.J.; et al. Approaches to defining a planetary boundary for biodiversity. Glob. Environ. Chang. 2014, 28, 289–297. [Google Scholar] [CrossRef]
- LinkedIn Post by Sarah Cornell. 2016. Available online: https://www.linkedin.com/pulse/some-thoughts-going-beyond-global-biodiversity-boundary-sarah-cornell?trk=prof-post (accessed on 14 December 2016).
- Harfoot, M.B.J.; Newbold, T.; Tittensor, D.P.; Emmott, S.; Hutton, J.; Lyutsarev, V.; Smith, M.J.; Scharlemann, J.P.W.; Purves, D.W. Emergent Global Patterns of Ecosystem Structure and Function from a Mechanistic General Ecosystem Model. PLoS Biol. 2014, 12. [Google Scholar] [CrossRef] [PubMed]
- Hudson, L.N.; Newbold, T.; Contu, S.; Hill, S.L.; Lysenko, I.; de Palma, A.; Phillips, H.R.; Senior, R.A.; Bennett, D.J.; Booth, H.; et al. The PREDICTS database: A global database of how local terrestrial biodiversity responds to human impacts. Ecol. Evol. 2014, 4, 4701–4735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curran, M.P.; de Souza, D.M.; Antón, A.; Teixeira, R.F.M.; Michelsen, O.; Vidal-Legaz, B.; Sala, S.; Milà i Canals, L. How well does LCA model land use impacts on biodiversity? A comparison with approaches from ecology and conservation. Environ. Sci. Technol. 2016, 50, 2782–2795. [Google Scholar] [CrossRef] [PubMed]
- National Academy of Science (NAS). Advancing Land Change Modelling: Opportunities and Research Requirements; National Academy of Science: Washington, DC, USA, 2013. [Google Scholar]
- Chaplin-Kramer, R.; Sharp, R.P.; Mandle, L.; Sim, S.; Johnson, J.; Butnar, I.; Milà i Canals, L.; Eichelberger, B.A.; Ramler, I.; Mueller, C.; et al. Spatial patterns of agricultural expansion determine impacts on biodiversity and carbon storage. Proc. Natl. Acad. Sci. USA 2015, 112, 7402–7407. [Google Scholar] [CrossRef] [PubMed]
- Chaplin-Kramer, R.; Sim, S.; Hamel, P.; Bryant, B.; Noe, R.; Mueller, C.; Rigarlsford, G.; Kulak, M.; Kowal, V.; Sharp, R.; et al. Life Cycle Assessment Needs Predictive Spatial Modelling for Biodiversity and Ecosystem Services. Nat. Comm. 2017, accepted. [Google Scholar]
- Geiser, K. Chemicals without Harm. Policies for a Sustainable World; MIT Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Persson, L.M.; Breitholtz, M.; Cousins, I.T.; de Wit, C.A.; MacLeod, M.; McLachlan, M.S. Confronting unknown planetary boundary threats from chemical pollution. Environ. Sci. Technol. 2013, 47, 12619–12622. [Google Scholar] [CrossRef] [PubMed]
- Zijp, M.C.; Posthuma, L. Towards a Boundary or Footprint for Chemical Pollution; Society of Environmental Toxicology and Chemistry: Berlin, German, 2012. [Google Scholar]
- Posthuma, L.; Bjørn, A.; Zijp, M.C.; Birkved, M.; Diamond, M.L.; Hauschild, M.Z.; Huijbregts, M.A.J.; Mulder, C.; van de Meent, D. Chemical footprints—Thin boundaries support environmental quality management. Environ. Sci. Technol. 2014, 48, 13025–13026. [Google Scholar] [CrossRef] [PubMed]
- U.S. NRC. Risk Assessment in the Federal Government: Managing the Process; The National Academies Press: Washington, DC, USA, 1983. [Google Scholar]
- Stephan, C.E.; Mount, D.I.; Hansen, D.J.; Gentile, J.H.; Chapman, G.A.; Brungs, W.A. Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses; United States Environmental Protection Agency: Duluth MN, USA, 1985. [Google Scholar]
- Van Straalen, N.M.; Denneman, C.A.J. Ecotoxicological evaluation of soil quality criteria. Ecotoxicol. Environ. Saf. 1989, 18, 241–251. [Google Scholar] [CrossRef]
- Posthuma, L.; Suter, G.W.I.; Traas, T.P. Species Sensitivity Distributions in Ecotoxicology; CRC-Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- European Commission (EC). Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH); European Commission: Brussels, Belgium, 2006. [Google Scholar]
- De Zwart, D.; Posthuma, L. Complex mixture toxicity for single and multiple species: Proposed methodologies. Environ. Toxicol. Chem. 2005, 24, 2665–2676. [Google Scholar] [CrossRef] [PubMed]
- Scientific Committee on Health and Environmental Risks; Scientific Committee on Emerging and Newly Identified Health Risks; Scientific Committee on Consumer Safety. Opinion on the Toxicity and Assessment of Chemical Mixtures; European Commission: Brussels, Belgium, 2012; Available online: http://ec.europa.eu/health//sites/health/files/scientific_committees/environmental_risks/docs/scher_o_155.pdf (accessed on 14 December 2016).
- MacLeod, M.; Breitholtz, M.; Cousins, I.T.; deWit, C.A.; Persson, L.M.; Rudén, C.; McLachlan, M.S. Identifying chemicals that are planetary boundary threats. Environ. Sci. Technol. 2014, 48, 11057–11063. [Google Scholar] [CrossRef] [PubMed]
- Diamond, M.; de Wit, C.A.; Molander, S.; Scheringer, M.; Backhaus, T.; Arvidsson, R.; Bergman, Å.; Hauschild, M.; Holoubek, I.; Lohmann, R.; et al. Exploring the planetary boundary for chemical pollution. Environ. Int. 2015, 78, 8–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GreenScreen Chemicals Website. The GreenScreen Method. Available online: http://www.greenscreenchemicals.org/method (accessed on 14 December 2016).
- Zijp, M.C.; Posthuma, L.; van de Meent, D. Definition and applications of a versatile chemical pollution footprint methodology. Environ. Sci. Technol. 2014, 48, 10588–10597. [Google Scholar] [CrossRef] [PubMed]
- Bjørn, A.; Diamond, M.; Birkved, M.; Hauschild, M.Z. Chemical footprint method for improved communication of freshwater ecotoxicity impacts in the context of ecological limits. Environ. Sci. Technol. 2014, 48, 13253–13262. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. Water Footprint Manual. State of the Art 2009; Water Footprint Network: Enschede, The Netherlands, 2009; Available online: http://waterfootprint.org/media/downloads/WaterFootprintManual2009.pdf (accessed on 14 December 2016).
- Posthuma, L.; de Zwart, D. Predicted effects of toxicant mixtures are confirmed by changes in fish species assemblages in Ohio, USA, rivers. Environ. Toxicol. Chem. 2006, 25, 1094–1105. [Google Scholar] [CrossRef] [PubMed]
- Posthuma, L.; de Zwart, D. Predicted mixture toxic pressure relates to observed fraction of benthic macrofauna species impacted by contaminant mixtures. Environ. Toxicol. Chem. 2012, 31, 2175–2188. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, R.K.; Bachmann, T.M.; Gold, L.S.; Huijbregts, M.A.J.; Jolliet, O.; Juraske, R.; Koehler, A.; Larsen, H.F.; MacLeod, M.; Margni, M.; et al. USEtox—The UNEP-SETAC toxicity model: Recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int. J. Life Cycle Assess. 2008, 13, 532–546. [Google Scholar] [CrossRef]
- USEtox 2.0 Website. Available online: http://www.usetox.org (accessed on 14 December 2016).
- Müller, N.; de Zwart, D.; Hauschild, M.; Kijko, G.; Fantke, P. Exploring REACH as a potential data source for characterizing ecotoxicity in life cycle assessment. Environ. Toxicol. Chem. 2016. [Google Scholar] [CrossRef] [PubMed]
- Posthuma, L.; de Zwart, D.; Osté, L.; van der Oost, R.; Postma, J. Water System Analysis with the Ecological Key Factor ‘Toxicity’. Part 1: System, Underpinning and Applications; STOWA Report; Stichting Toegepast Onderzoek Waterbeheer: Amersfoort, The Netherlands, 2016. [Google Scholar]
- Backhaus, T.; Karlsson, M. Screening level mixture risk assessment of pharmaceuticals in STP effluents. Water Res. 2014, 49, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Sala, S.; Goralczyk, M. Chemical footprint: A methodological framework for bridging life cycle assessment and planetary boundaries for chemical pollution. Integr. Environ. Assess. Manag. 2013, 9, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Posthuma, L.; Bjørn, A.; Zijp, M.C.; Birkved, M.; Diamond, M.L.; Hauschild, M.Z.; Huijbregts, M.A.J.; Mulder, C.; van de Meent, D. Beyond safe operating space: Finding chemical footprinting feasible. Environ. Sci. Technol. 2014, 48, 6057–6059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulder, C.; Boit, A.; Mori, S.; Vonk, J.A.; Dyer, S.D.; Faggiano, L.; Geisen, S.; González, A.L.; Kaspari, M.; Lavorel, S.; et al. Distributional (in)congruence of biodiversity-ecosystem functioning. Adv. Ecol. Res. 2012, 46, 1–88. [Google Scholar]
- Clift, R. Metrics for Supply Chain Sustainability. Clean Technol. Environ. Policy 2003, 5, 240–247. [Google Scholar] [CrossRef]
- Clift, R.; Wright, L. Relationships between Environmental Impacts and Added Value along the Supply Chain. Technol. Forecast. Soc. Chang. 2000, 65, 281–295. [Google Scholar] [CrossRef]
- United Nations Environment Programme. Guidance on Organizational Life Cycle Assessment; UNEP/SETAC Life Cycle Initiative: Paris, France, 2015. [Google Scholar]
- Carley, M.; Christie, I. Managing Sustainable Development, 2nd ed.; Earthscan: London, UK, 2000. [Google Scholar]
- Von Heland, F.; Crona, B.; Fidelman, P. Mediating science and action across multiple boundaries in the Coral Triangle. Glob. Environ. Chang. 2014, 29, 53–64. [Google Scholar] [CrossRef]
- Galaz, V.; Crona, B.; Osterblom, H.; Olsson, P.; Folke, C. Polycentric systems and interacting planetary boundaries—Emerging governance of climate change-ocean acidification-marine biodiversity. Ecol. Econ. 2012, 81, 21–32. [Google Scholar] [CrossRef]
- Giordano, M.; Drieschova, A.; Duncan, J.A.; Sayama, Y.; de Stefano, L.; Wolf, A.T. A review of the evolution and state of transboundary freshwater treaties. Int. Environ. Agreem. Politics Law Econ. 2013, 13, 245–264. [Google Scholar] [CrossRef]
- Schmeier, S.; Gerlak, A.K.; Blumstein, S. Clearing the muddy waters of shared watercourses governance: Conceptualizing international River Basin Organizations. Int. Environ. Agreem. Politics Law Econ. 2016, 16, 597–619. [Google Scholar] [CrossRef]
- Diaz, S.; Demissew, S.; Joly, C.; Lonsdale, W.M.; Larigauderie, A. A Rossetta Stone for nature’s benefits to people. PLoS Biol. 2015, 13, e1002040. [Google Scholar] [CrossRef] [PubMed]
- Turnhout, E.; Dewulf, A.; Hulme, M. What does policy-relevant global environmental knowledge do? The cases of climate and biodiversity. Curr. Opin. Environ. Sustain. 2016, 18, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Carr, G. Stakeholder and public participation in river basin management—An introduction. WIREs Water 2015, 2, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Fredericks, S.E. Measuring and Evaluating Sustainability: Ethics in Sustainability Indexes; Routledge: Abingdon, UK, 2014. [Google Scholar]
PB | Biophysical Scales: | Proposed Planetary Boundary [2] | Current Operational Boundary | Existing Governance Organisations |
---|---|---|---|---|
Climate change | Global | 350 ppm CO2-equivalents aggregated across greenhouse gases using IPCC’s GWP100 | 1.5/2 °C temperature rise, interpreted as 450 ppm CO2e [12] | Global organization: UNEP IPCC Operational: World Wildlife Fund (WWF); World Resources Institute (WRI); Science-Based Targets (SBT) |
Freshwater use | Regional/Local | 4000 km3/year | No operational global boundary: River basin and local boundaries operational in some regions | UN-Water; Global Water Partnership; World Water Council; etc. |
Biosphere integrity | Regional/Local | Genetic diversity: <10 E/MSY (10–100 E/MSY) but with an aspirational goal of ca. 1 E/MSY (E/MSY—extinctions per million species-years) Functional Diversity: Maintain Biodiversity Integrity Index (BII) at 90% (uncertainty range: 90%–30%) or above | No globally agreed boundary(ies) or indicator(s) to date | Global organization: Convention on Biological Diversity (CBD) and Aichi Biodiversity Targets; Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES); International Union for Conservation of Nature (IUCN) |
Chemical pollution/Novel entities | Local | To be defined | Single-chemical boundaries—operational per jurisdiction; Mixture-boundaries—developed, not yet implemented Mandate for reaching non-toxic environment: policy mandate in e.g., Water Framework Directive | Global organization: Strategic Approach to International Chemicals Management (SAICM) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clift, R.; Sim, S.; King, H.; Chenoweth, J.L.; Christie, I.; Clavreul, J.; Mueller, C.; Posthuma, L.; Boulay, A.-M.; Chaplin-Kramer, R.; et al. The Challenges of Applying Planetary Boundaries as a Basis for Strategic Decision-Making in Companies with Global Supply Chains. Sustainability 2017, 9, 279. https://doi.org/10.3390/su9020279
Clift R, Sim S, King H, Chenoweth JL, Christie I, Clavreul J, Mueller C, Posthuma L, Boulay A-M, Chaplin-Kramer R, et al. The Challenges of Applying Planetary Boundaries as a Basis for Strategic Decision-Making in Companies with Global Supply Chains. Sustainability. 2017; 9(2):279. https://doi.org/10.3390/su9020279
Chicago/Turabian StyleClift, Roland, Sarah Sim, Henry King, Jonathan L. Chenoweth, Ian Christie, Julie Clavreul, Carina Mueller, Leo Posthuma, Anne-Marie Boulay, Rebecca Chaplin-Kramer, and et al. 2017. "The Challenges of Applying Planetary Boundaries as a Basis for Strategic Decision-Making in Companies with Global Supply Chains" Sustainability 9, no. 2: 279. https://doi.org/10.3390/su9020279