Urban Growth and Flood Disasters in the Coastal River Basin of South-Central Chile (1943–2011)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area of Study (CMA)
2.2. Methodology
2.2.1. Analysis of Landform Transformations and their Relationship to Urban Sprawl
2.2.2. Analysis of River Disasters
3. Results
3.1. Analysis of Physical Transformations and their Relationship to Urban Growth
3.2. Analysis of River Disasters
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lytle, D.A.; Poff, N.L. Adaptation to natural flow regimes. Trends Ecol. Evol. 2004, 19, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Tockner, K.; Lorang, M.; Stanford, J.A. River flood plains are model ecosystems to test general hydrogeomorphic and ecological concepts. River Res. Appl. 2010, 86, 76–86. [Google Scholar] [CrossRef]
- Miguez, M.G.; Veról, A.P.; de Sousa, M.M.; Rezende, O.M. Urban Floods in Lowlands—Levee Systems, Unplanned Urban Growth and River Restoration Alternative: A Case Study in Brazil. Sustainability 2015, 7, 11068–11097. [Google Scholar] [CrossRef]
- Tingsanchali, T. Urban flood disaster management. Procedia Eng. 2012, 32, 25–37. [Google Scholar] [CrossRef]
- Walsh, R.; Davies, H.; Musa, S. Flood frequency and impacts at Khartoum since the early nineteenth century. Geogr. J. 1994, 160, 266–279. [Google Scholar] [CrossRef]
- Zevenbergen, C.; Veerbeek, W.; Gersonius, B.; van Herk, S. Challenges in urban flood management: Travelling across spatial and temporal scales. J. Flood Risk Manag. 2008, 1, 81–88. [Google Scholar] [CrossRef]
- Liao, K.; Le, T.A.; van Nguyen, K. Urban design principles for flood resilience: Learning from the ecological wisdom of living with floods in the Vietnamese Mekong Delta. Landsc. Urban Plan. 2016, 155, 69–78. [Google Scholar] [CrossRef]
- Adhikari, P.; Hong, Y.; Douglas, K.R.; Kirschbaum, D.B.; Gourley, J.; Adler, R.; Robert Brakenridge, G. A digitized global flood inventory (1998–2008): Compilation and preliminary results. Nat. Hazards 2010, 55, 405–422. [Google Scholar] [CrossRef]
- Güneralp, B.; Güneralp, I.; Liu, Y. Changing global patterns of urban exposure to flood and drought hazards. Glob. Environ. Chang. 2015, 31, 217–225. [Google Scholar] [CrossRef]
- Eissa, A.E.; Zaki, M.M. The impact of global climatic changes on the aquatic environment. Procedia Environ. Sci. 2011, 4, 251–259. [Google Scholar] [CrossRef]
- Broekx, S.; Smets, S.; Liekens, I.; Bulckaen, D.; de Nocker, L. Designing a long-term flood risk management plan for the Scheldt estuary using a risk-based approach. Nat. Hazards 2011, 57, 245–266. [Google Scholar] [CrossRef]
- Yin, J.; Ye, M.; Yin, Z.; Xu, S. A review of advances in urban flood risk analysis over China. Stoch. Environ. Res. Risk Assess. 2015, 29, 1063–1070. [Google Scholar] [CrossRef]
- Zope, P.E.; Eldho, T.I.; Jothiprakash, V. Impacts of urbanization on flooding of a coastal urban catchment: A case study of Mumbai City, India. Nat. Hazards 2014, 75, 887–908. [Google Scholar] [CrossRef]
- Garcia, E.; Loáiciga, H. Sea-level rise and flooding in coastal riverine flood plains. Hydrol. Sci. J. 2014, 37–41. [Google Scholar] [CrossRef]
- Singh, R.B.; Singh, S. Rapid urbanization and induced flood risk in Noida, India. Asian Geogr. 2011, 28, 147–169. [Google Scholar] [CrossRef]
- Miller, J.D.; Kim, H.; Kjeldsen, T.R.; Packman, J.; Grebby, S.; Dearden, R. Assessing the impact of urbanization on storm runoff in a peri-urban catchment using historical change in impervious cover. J. Hydrol. 2014, 515, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Gomes, M.; Borba, F.; Canedo, L.; Vellozo, C. Planning and Design of Urban Flood Control Measures: Assessing Effects Combination. J. Urban Plan. Dev. 2009, 135, 100–109. [Google Scholar]
- Suriya, S.; Mudgal, B.V. Impact of urbanization on flooding: The Thirusoolam sub watershed—A case study. J. Hydrol. 2012, 412–413, 210–219. [Google Scholar] [CrossRef]
- Wheater, H.; Evans, E. Land use, water management and future flood risk. Land Use Policy 2009, 26 (Suppl. 1), S251–S264. [Google Scholar] [CrossRef]
- Beighley, R.E.; Melack, J.M.; Dunne, T. Impacts of California’s climatic regimens and coastal land use change on streamflow characteristics. J. Am. Water Resour. Assoc. 2003, 39, 1419–1433. [Google Scholar] [CrossRef]
- Baba, A. Impact of Urbanization on Channel Morphology: Some Comments. J. Environ. Sci. Toxicol. Food Technol. 2014, 8, 40–45. [Google Scholar]
- Chin, A. Urban transformation of river landscapes in a global context. Geomorphology 2006, 79, 460–487. [Google Scholar] [CrossRef]
- Nirupama, N.; Simonovic, S.P. Increase of Flood Risk due to Urbanisation: A Canadian Example. Nat. Hazards 2007, 40, 25–41. [Google Scholar] [CrossRef]
- Maaskant, B.; Jonkman, S.N.; Bouwer, L.M. Future risk of flooding: An analysis of changes in potential loss of life in South Holland (The Netherlands). Environ. Sci. Policy 2009, 12, 157–169. [Google Scholar] [CrossRef]
- Ntelekos, A.A.; Oppenheimer, M.; Smith, J.A.; Miller, A.J. Urbanization, climate change and flood policy in the United States. Clim. Chang. 2010, 103, 597–616. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, W.; Wang, X. Rapid Urbanization and Implications for Flood Risk Management in Hinterland of the Pearl River Delta, China: The Foshan Study. Sensors 2008, 8, 2223–2239. [Google Scholar] [CrossRef] [PubMed]
- Morelli, S.; Segoni, S.; Manzo, G.; Ermini, L.; Catani, F. Urban planning, flood risk and public policy: The case of the Arno River, Firenze, Italy. Appl. Geogr. 2012, 34, 205–218. [Google Scholar] [CrossRef]
- Faccini, F.; Paliaga, G.; Piana, P.; Sacchini, A.; Watkins, C. Geomorphology The Bisagno stream catchment (Genoa, Italy) and its major floods: Geomorphic and land use variations in the last three centuries. Geomorphology 2016, 273, 14–27. [Google Scholar] [CrossRef]
- Sowmya, K.; John, C.M.; Shrivasthava, N.K. Urban flood vulnerability zoning of Cochin City, southwest coast of India, using remote sensing and GIS. Nat. Hazards 2014, 75, 1271–1286. [Google Scholar] [CrossRef]
- Serre, D.; Barroca, B.; Diab, Y. Urban flood mitigation: Sustainable options. WIT Trans. Ecol. Environ. 2010, 129, 299–309. [Google Scholar]
- Hansson, K.; Larsson, A.; Danielson, M.; Ekenberg, L. Coping with Complex Environmental and Societal Flood Risk Management Decisions: An Integrated Multi-criteria Framework. Sustainability 2011, 3, 1357–1380. [Google Scholar] [CrossRef]
- Su, W.; Ye, G.; Yao, S.; Yang, G. Urban Land Pattern Impacts on Floods in a New District of China. Sustainability 2014, 6, 6488–6508. [Google Scholar] [CrossRef]
- Gaume, E.; Bain, V.; Bernardara, P.; Newinger, O.; Barbuc, M.; Bateman, A.; Blaškovičová, L.; Blöschl, G.; Borga, M.; Dumitrescu, A.; et al. A compilation of data on European flash floods. J. Hydrol. 2009, 367, 70–78. [Google Scholar] [CrossRef]
- Arman, H.; Yuksel, I.; Saltabas, L.; Goktepe, F.; Sandalci, M. Overview of flooding damages and its destructions: A case study of Zonguldak-Bartin basin in Turkey. Nat. Sci. 2010, 2, 409–417. [Google Scholar] [CrossRef]
- Djordjević, S.; Butler, D.; Gourbesville, P.; Mark, O.; Pasche, E. New policies to deal with climate change and other drivers impacting on resilience to flooding in urban areas: The CORFU approach. Environ. Sci. Policy 2011, 14, 864–873. [Google Scholar] [CrossRef] [Green Version]
- Rahman, A.; Nawaz, A. Analysis of flood causes and associated socio-economic damages in the Hindukush region. Nat. Hazards 2011, 59, 1239–1260. [Google Scholar] [CrossRef]
- Romero-Lankao, P.; Hughes, S.; Qin, H.; Hardoy, J.; Rosas-Huerta, A.; Borquez, R.; Lampis, A. Scale, urban risk and adaptation capacity in neighborhoods of Latin American cities. Habitat Int. 2014, 42, 224–235. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Schellnhuber, H. Floods in the IPCC TAR perspective. Nat. Hazards 2004, 31, 111–128. [Google Scholar] [CrossRef]
- Rojas, O.; Mardones, M.; Arumí, J.; Aguayo, M. Una revisión de inundaciones fluviales en Chile, período 1574–2012: Causas, recurrencia y efectos geográficos. Rev. Geogr. Norte Gd. 2014, 57, 177–192. [Google Scholar] [CrossRef]
- Romero, H.; Vásquez, A. Evaluación ambiental del proceso de urbanización de las cuencas del piedemonte andino de Santiago de Chile. EURE 2005, 31, 97–118. [Google Scholar] [CrossRef]
- Müller, A. Flood risks in a dynamic urban agglomeration: A conceptual and methodological assessment framework. Nat. Hazards 2013, 65, 1931–1950. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadistica (INE). Censo de Población y Vivienda; INE: Lisbon, Portugal, 2002. [Google Scholar]
- Mardones, M.; Vidal, C. La zonificación y evaluación de los riesgos naturales de tipo geomorfológico: Un instrumento para la planificación urbana en la ciudad de Concepción. EURE 2001, 27, 97–122. [Google Scholar] [CrossRef]
- Vidal, C.; Aravena, H.R. Efectos ambientales de la urbanización de las cuencas de los ríos Bíobío y Andalién sobre los riesgos de inundación y anegamiento de la ciudad de Concepción. In Concepción Metropolitano (AMC). Planes, Procesos y Proyectos; Pérez, L., Hidalgo, R., Eds.; Instituto de Geografía, Pontificia Universidad Católica de Chile: Santiago, Chile, 2010. [Google Scholar]
- Ministerio de Planificación y Cooperación Nacional (MIDEPLAN). Estrategia Para el Desarrollo Regional. La Región del Biobío al Encuentro del Siglo XXI; SERPLAC: Concepción, Chile, 1991. [Google Scholar]
- Mardones, M.; Hernanández, H.; Pacheco, A.; Millán, J. Geografía de la Región del Biobío. VIII Región, Colección de Geografía de Chile; Instituto Geográfico Militar: Santiago, Chile, 2001. [Google Scholar]
- Rojas, C.; Salado, M.; Pino, J.; Martori, J. Medidas para la valoración de la sostenibilidad de los territorios metropolitanos: Aplicación al área metropolitana de Concepción (Chile). Boletín Geógrafos Españoles (AGE) 2011, 55, 81–99. [Google Scholar]
- Pauchard, A.; Aguayo, M.; Peña, E.; Urrutia, R. Multiple effects of urbanization on the biodiversity of developing countries: The case of a fast-growing metropolitan area (Concepcion, Chile). Biol. Conserv. 2006, 127, 272–281. [Google Scholar] [CrossRef]
- Smith, P.; Romero, H. Efectos del crecimiento urbano del Área Metropolitana de Concepcion sobre los humedales de Rocuant-Andalien, Los Batros y Lenga. Rev. Geogr. Norte Gd. 2009, 43, 81–93. [Google Scholar]
- Rojas, Q.; Plata, W. Área Metropolitana de Concepción: Factores espaciales explicativos de su crecimiento urbano reciente (2001–2009) por medio de un Modelo de Regresión Logística Espacial. In Actas I Congreso Internacional de Ordenamiento Territorial y Tecnologías de la Información Geográfica; Pineda, M.C., Bosque, J., Eds.; Universidad de Alcalá: Tegucigalpa, Honduras, 2010. [Google Scholar]
- Salinas, E.; Pérez, L. Procesos urbanos recientes en el Área Metropolitana de Concepcion: Transformaciones morfológicas y tipologías de ocupación. Rev. Geogr. Norte Gd. 2011, 49, 79–97. [Google Scholar] [CrossRef]
- Rojas, C.; Pino, J.; Basnou, C.; Vivanco, M. Assessing land-use and -cover changes in relation to geographic factors and urban planning in the metropolitan area of Concepcion (Chile). Implications for biodiversity conservation. Appl. Geogr. 2013, 39, 93–103. [Google Scholar] [CrossRef]
- Rojas, O.; Mardones, M. Inundaciones Fluviales en una cuenca costera del centro sur de Chile (1960–2010). Tendencias, recurrencia y relación con el fenómeno ENSO. In XXXIV Congreso Nacional y XIX Internacional de Geografía; Universidad del Biobío: Concepción, Chile, 2013. [Google Scholar]
- Mardones, M.; Echeverría, F.; Jara, C. Una contribución al estudio de los desastres naturales en Chile Centro Sur: Efectos ambientales de las precipitaciones del 26 de junio del 2005 en el área Metropolitana de Concepcion. Investigaciones Geográficas Chile 2004, 38, 1–25. [Google Scholar] [CrossRef]
- Jaque, E. Análisis Integrado de los Sistemas Naturales del Río Andalien. Ph.D. Thesis, Centro EULA, Universidad de Concepcion, Concepcion, Chile, 1996. [Google Scholar]
- Hernández, T. Caracterización Hidrológica y Geomorfológica del río Andalien; Memoria para optar al Título de Ingeniero Civil; Universidad de Concepcion: Concepcion, Chile, 1999. [Google Scholar]
- Devynck, J. Contribución al Conocimiento de la Circulación Atmosférica en Chile y al Clima de la Región del Biobío; Universidad de Concepción: Concepcion, Chile, 1970. [Google Scholar]
- Arrau Ingeniería. Estudio de Factibilidad y Diseño Definitivo de las Obras de Regulación y Retención de Sedimentos en Río Andalién, Región del Bío–Bío; Dirección de Obras Hidráulicas Gobierno de Chile: Santiago, Chile, 2012. [Google Scholar]
- CONAMA (Comisión Nacional de Medio Ambiente). Diseño de Obras Fluviales Río Andalién, Esteros Nonguén y Palomares, VIII Región del Bío Bío OBRAS RIO ANDALIÉN; Resolución Exenta N° 267; CONAMA: Concepción, Chile, 2008. [Google Scholar]
- Araujo, R.; Silva, G.; Freitas, D.; Klein, A. Georreferenciamiento de fotografías aéreas e análise da variação da linha de costa. In Métodos en Teledetección Aplicada a la Prevención de Riesgos Naturales en el Litoral; Alcántara-Carrió, J., Correa, I., Isla, F., Alvarado, M., Klein, A., Cabrera, J., Barlow, R., Eds.; CYTED: Madrid, Spain, 2009; pp. 123–138. [Google Scholar]
- Ilabaca, P. Evolución de la costa de Concepción: El caso de las bahías de Concepción y San Vicente. Biol. Pesq. 1989, 18, 29–35. [Google Scholar]
- CIER-SERPLAC (Centro de Estudios Regionales-Secretarías Regionales de Planificación y Coordinación). Carta Geológica Concepción Metropolitano. Escala 1:50.000; CIER-SERPLAC: Concepción, Chile, 1977. [Google Scholar]
- Schumm, S. The Fluvial System; John Wiley & Sons: New York, NY, USA, 1977. [Google Scholar]
- Mann, H.B. Non-parametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Rojas, O.; Martínez, C. Riesgos naturales: Evolución y modelos conceptuales. Rev. Univ. Geogr. 2011, 20, 83–116. [Google Scholar]
- Kumar, R. Flood hazard assessment of 2014 floods in Sonawari sub-district of Bandipore district (Jammu & Kashmir): An application of geoinformatics. Remote Sens. Appl. Soc. Environ. 2016, 4, 188–203. [Google Scholar]
- Defra Environment Agency. Flood and Coastal Defence R&D Programme, Flood Risks to People Phase 2. Project Record; Environment Agency: London, UK, 2006.
- Brunner, G.W. HEC-RAS, River Analysis System Hydraulic Reference Manual; US Army Corps of Engineers Hydrologic Engineering Center: Davis, CA, USA, 2010. [Google Scholar]
- ESRI (Environmental Systems Research Institute). ArcGIS 9.3; ESRI: Redlands, CA, USA, 2009. [Google Scholar]
- Barnes, H. Roughness Characteristics of Natural Channels; USGS: Washington, DC, USA, 1967. [Google Scholar]
- Inostroza, A. Crecidas en el Andalien Bajo: Análisis Hidráulico de las Intervenciones en su Planicie de Inundación; Memoria para optar al titulo de Ingeniero Civil; Universidad de Concepcion: Concepcion, Chile, 2005. [Google Scholar]
- GESITRAN (Plataforma Tecnológica para la Gestión Integral del Sistema de Transporte de la Región del Biobío). Usos de suelo Comuna de Concepción Año 2014; Formato Digital SHP; Universidad de Concepción: Concepción, Chile, 2014. [Google Scholar]
- CONAF (Comisión Nacional Forestal). Usos de Suelo Región del Bío-Bío Año 2008 (Formato Digital SHP); CONAF: Santiago, Chile, 2008. [Google Scholar]
- Rojas, O. Evaluación del Riesgo de Inundación Fluvial en el Curso Inferior de la Cuenca del río Carampangue. Bachlor’s Tesis, Universidad de Concepcion, Concepcion, Chile, 2010. [Google Scholar]
- Tanavud, C.; Yongchalermchai, C.; Bennui, A.; Densreeserekul, O. Assessment of flood risk in Hat Yai municipality, Southern Thailand, using GIS. J. Nat. Disaster Sci. 2004, 26, 1–14. [Google Scholar] [CrossRef]
- Mardones, M. El Sitio Geomorfológico de las Ciudades de Concepción y Talcahuano; Instituto de Antropología, Historia y Geografía, Universidad de Concepción: Concepción, Chile, 1978. [Google Scholar]
- Rojas, O. Cambios Ambientales y Dinámica de Inundaciones Fluviales en una Cuenca Costera del Centro sur de Chile. Ph.D. Thesis, Centro EULA, Universidad de Concepción, Concepción, Chile, 2015. [Google Scholar]
- Bárcena, J.F.; García, A.; Gómez, A.G.; Álvarez, C.; Juanes, J.A.; Revilla, J.A. Estuarine, Coastal and Shelf Science Spatial and temporal flushing time approach in estuaries influenced by river and tide. An application in Suances Estuary (Northern Spain). Estuar. Coast. Shelf Sci. 2012, 112, 40–51. [Google Scholar] [CrossRef]
- Jha, A.; Lamond, J.; Bloch, R.; Bhattacharya, N.; Lopez, A.; Papachristodoulou, N.; Bird, A.; Proverbs, D.; Davies, J.; Barker, R. Five Feet High & Rising: Cities & Flooding in the 21st Century; Policy Research Working Paper 5648; The World Bank, East Asia & Pacific Region, Transport, Energy & Urban Sustainable Development Unit: Washington, DC, USA, 2011. [Google Scholar]
- Berz, G. Flood disasters: Lessons from the past—Worries for the future. Proc. Inst. Civ. Eng. Water Marit. Eng. 2000, 142, 3–8. [Google Scholar] [CrossRef]
- Barredo, J.I. Major flood disasters in Europe: 1950–2005. Nat. Hazards 2006, 42, 125–148. [Google Scholar] [CrossRef]
- Ghani, A.A.; Chang, C.K.; Leow, C.S.; Zakaria, N.A. Sungai Pahang digital flood mapping: 2007 flood. Int. J. River Basin Manag. 2012, 10, 139–148. [Google Scholar] [CrossRef]
- Wei, Y.D.; Ye, X. Urbanization, urban land expansion and environmental change in China. Stoch. Environ. Res. Risk Assess. 2014, 28, 757–765. [Google Scholar] [CrossRef]
- White, G.; Calef, W.; Hudson, J.; Mayer, H.; Sheaffer, J.; Volk, D. Changes in Urban Occupance of Flood Plains in the United States; University of Chigago: Chicago, IL, USA, 1958. [Google Scholar]
- Hattermann, F.F.; Kundzewicz, Z.W.; Huang, S.; Vetter, T.; Gerstengarbe, F.-W.; Werner, P. Climatological drivers of changes in flood hazard in Germany. Acta Geophys. 2013, 61, 463–477. [Google Scholar] [CrossRef]
- Aneas, S. Riesgos y Peligros: Una Visión Desde la Geografía. Available online: http://www.ub.edu/geocrit/sn-60.htm (accessed on 25 January 2017).
- Merz, B.; Hall, J.; Disse, M.; Schumann, A. Fluvial flood risk management in a changing world. Nat. Hazards Earth Syst. Sci. 2010, 10, 509–527. [Google Scholar] [CrossRef]
- Masood, M.; Takeuchi, K. Assessment of flood hazard, vulnerability and risk of mid-eastern Dhaka using DEM and 1D hydrodynamic model. Nat. Hazards 2012, 61, 757–770. [Google Scholar] [CrossRef]
- Kadam, P.; Sen, D. Flood inundation simulation in Ajoy River using MIKE-FLOOD. ISH J. Hydraul. Eng. 2012, 18, 129–141. [Google Scholar] [CrossRef]
- Morelli, S.; Battistini, A.; Catani, F. Rapid assessment of flood susceptibility in urbanized rivers using digital terrain data: Application to the Arno river case study (Firenze, northern Italy). Appl. Geogr. 2014, 54, 35–53. [Google Scholar] [CrossRef]
Year | Scale | Control Points (GCPs) | DPI | PR (m) | RMSE |
---|---|---|---|---|---|
1943 | 40,000 | 14 | 1200 | 0.85 | 1.57 |
1955 | 70,000 | 20 | 1200 | 1.48 | 2.26 |
1961 | 20,000 | 17 | 1200 | 0.42 | 1.50 |
1978 | 30,000 | 15 | 1200 | 0.64 | 1.60 |
1992 | 20,000 | 16 | 1200 | 0.42 | 2.16 |
1998 | 70,000 | 12 | 2400 | 0.74 | 0.24 |
2011 | 30,000 | 26 | 1200 | 0.64 | 1.31 |
Factor | Thematic Layers | Weight (%) | Individual Classes | Score |
---|---|---|---|---|
Exposure | Number of habitants/block | 0.23 | 0–221 | 0–2 |
222–525 | 3–4 | |||
526–718 | 5–6 | |||
719–975 | 7–8 | |||
976–2184 | 9–10 | |||
Exposure | Number of households/block | 0.14 | 0–119 | 0–2 |
118–217 | 3–4 | |||
218–314 | 5–6 | |||
315–412 | 7–8 | |||
412–489 | 9–10 | |||
Vulnerability | Population > than 65 years/block | 0.17 | 0–31 | 0–2 |
32–57 | 3–4 | |||
58–82 | 5–6 | |||
83–107 | 7–8 | |||
108–127 | 9–10 | |||
Vulnerability | Disabled population/block | 0.11 | 0–16 | 0–2 |
17–30 | 3–4 | |||
31–44 | 5–6 | |||
45–57 | 7–8 | |||
58–68 | 9–10 | |||
Vulnerability | Predominant construction material | 0.18 | Concrete, Steel | 2 |
Masonry | 4 | |||
Mixed | 6 | |||
Wood, Partitions | 8 | |||
Waste | 10 | |||
Vulnerability | Predominant use of land | 0.17 | Bodies of water | 0 |
Swamps and shrubs | 2 | |||
Agriculture | 4 | |||
Public service areas and facilities | 6 | |||
Institutional and governmental | 8 | |||
Residential, commercial, industrial | 10 |
Vulnerability | Hazard | |||
---|---|---|---|---|
Low (1) | Moderate (2) | High (3) | Extreme (4) | |
Very low (1) | 1 | 2 | 3 | 4 |
Low (2) | 2 | 4 | 6 | 8 |
Moderate (3) | 3 | 6 | 9 | 12 |
High (4) | 4 | 8 | 12 | 16 |
Extreme (5) | 5 | 10 | 15 | 20 |
Units | 1943 | 2011 | Variation (ha) | R2 | Slope | p-Value |
---|---|---|---|---|---|---|
Built-up areas | 408 | 1865.8 | 1457.6 | 0.970 | 22.549 | 0.0001 |
Artificial fill soils | 74 | 115.8 | 41.5 | 0.004 | −0.093 | 0.8931 |
Salt marshes | 548 | 576.6 | 28.3 | 0.848 | 0.334 | 0.0032 |
Estuary bar | 65 | 83.7 | 18.5 | 0.508 | 0.260 | 0.0723 |
Marsh | 7 | 9.0 | 1.8 | 0.366 | 0.017 | 0.1503 |
Dunes | 117 | 118.6 | 0.9 | 0.024 | 0.029 | 0.7425 |
Sandy Beach | 28 | 28.3 | −0.2 | 0.139 | −0.039 | 0.4095 |
Biobio Paleochannel | 25 | 24.4 | −0.6 | 0.366 | −0.006 | 0.1503 |
Lakes | 13 | 12.4 | −0.8 | 0.360 | −0.008 | 0.1544 |
Sand spit | 9.5 | 6.0 | −3.6 | 0.378 | −0.090 | 0.1419 |
Vegetated island | 64.3 | 56.9 | −7.4 | 0.765 | −0.154 | 0.0100 |
Inselberg | 34.2 | 4.1 | −30.1 | 0.828 | −0.502 | 0.0044 |
Biobio River Sand Plain | 364.2 | 309.9 | −54.4 | 0.802 | −0.972 | 0.0064 |
Wave-cut Platform | 882.3 | 686.0 | −196.3 | 0.867 | −2.814 | 0.0023 |
Ridges of Water Erosion | 8528.7 | 8189.6 | −339.1 | 0.914 | −4.890 | 0.0008 |
Sand Dune Plain | 547.7 | 196.9 | −350.8 | 0.978 | −5.357 | <0.0001 |
Andalien River Sand Plain | 1696.6 | 1157.8 | −538.8 | 0.946 | −8.174 | 0.0002 |
Year | Reach-1 | Reach-2 | Total Reach 1+2 | Reach-3 | Total Andalien River |
---|---|---|---|---|---|
1943 | 106.9 | 57.3 | 164.2 | 18.3 | 182.5 |
1955 | 112.1 | 53.2 | 165.3 | 13.5 | 178.8 |
1961 | 101.5 | 41.3 | 142.8 | 13.5 | 156.3 |
1978 | 91.7 | 60.3 | 152.0 | 10.9 | 162.9 |
1992 | 99.7 | 59.8 | 159.6 | 10.9 | 170.4 |
1998 | 86.8 | 68.6 | 155.4 | 15.6 | 171.0 |
2011 | 56.6 | 77.5 | 134.0 | 17.1 | 151.1 |
Parameter | p-Value | Trend | Parameter | p-Value | Trend | ||
---|---|---|---|---|---|---|---|
Total Length reach (1 + 2 + 3) | * | −0.134 | ↓ | Bankfull area Reach-1 | * | −6.324 | ↓ |
Length Reach-1 | * | 0.152 | ↑ | Bankfull area Reach-2 | + | 3.864 | ↑ |
Length Reach-2 | ** | −0.294 | ↓ | Total bankfull Reach-3 | 0.000 | ||
Total Length Reach-3 | + | −0.036 | ↓ | Total bankfull area (1 + 2 + 3) | −3.008 | ↓ |
Return Period | Number of Habitants | Number of Households | Population >65 Years | Disabled Population |
---|---|---|---|---|
T2 | 1903 | 901 | 91 | 25 |
T5 | 3687 | 1412 | 240 | 49 |
T10 | 5505 | 1883 | 312 | 68 |
T25 | 9722 | 2997 | 442 | 119 |
T50 | 15,780 | 4658 | 838 | 192 |
T100 | 23,240 | 6306 | 1343 | 363 |
T200 | 24,898 | 7101 | 1425 | 393 |
T500 | 39,283 | 10,570 | 2469 | 717 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas, O.; Mardones, M.; Rojas, C.; Martínez, C.; Flores, L. Urban Growth and Flood Disasters in the Coastal River Basin of South-Central Chile (1943–2011). Sustainability 2017, 9, 195. https://doi.org/10.3390/su9020195
Rojas O, Mardones M, Rojas C, Martínez C, Flores L. Urban Growth and Flood Disasters in the Coastal River Basin of South-Central Chile (1943–2011). Sustainability. 2017; 9(2):195. https://doi.org/10.3390/su9020195
Chicago/Turabian StyleRojas, Octavio, María Mardones, Carolina Rojas, Carolina Martínez, and Luis Flores. 2017. "Urban Growth and Flood Disasters in the Coastal River Basin of South-Central Chile (1943–2011)" Sustainability 9, no. 2: 195. https://doi.org/10.3390/su9020195
APA StyleRojas, O., Mardones, M., Rojas, C., Martínez, C., & Flores, L. (2017). Urban Growth and Flood Disasters in the Coastal River Basin of South-Central Chile (1943–2011). Sustainability, 9(2), 195. https://doi.org/10.3390/su9020195