Expounding the Value of Grain Legumes in the Semi- and Arid Tropics
Abstract
:1. Introduction
2. Setting the Scene–South Asia and Sub-Saharan Africa
2.1. Water Scarcity
2.2. Food and Nutritional Insecurity in Semi- and Arid Tropics
3. Grain Legumes
3.1. Taxonomy
3.2. Ecology
3.3. Major vs. Minor Grain Legumes
4. Legume Value Chain
4.1. Breeding and Crop Improvement
Seed Systems
4.2. Production
4.2.1. Agronomy
4.2.2. Water Use and Water Use Efficiency
4.3. Post-Harvest Handling, Storage and Value Addition
4.3.1. Post-Harvest Handling and Storage
4.3.2. Nutritional Quality
Anti-Nutrient Factors
4.3.3. Processing and Utilization
Animal Feed
Agro-Processing
4.4. Marketing
4.5. Grain Legumes: Opportunities and Constraints
5. Recommendations
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Conway, D.; Persechino, A.; Ardoin-Bardin, S.; Hamandawana, H.; Dieulin, C.; Mahé, G. Rainfall and water resources variability in sub-Saharan Africa during the twentieth century. J. Hydrometeorol. 2009, 10, 41–59. [Google Scholar] [CrossRef]
- Alliance for a Green Revolution in Africa (AGRA). Africa Agriculture Status Report: Focus on Staple Crops; AGRA: Nairobi, Kenya, 2013. [Google Scholar]
- Graeub, B.; Chappell, M.; Wittman, H.; Ledermann, S.; Kerr, R.; Gemmill-Herre, B. The State of Family Farms in the World. World Dev. 2016, 87, 1–15. [Google Scholar] [CrossRef]
- Food and Agriculture Organization; International Fund for Agricultural Development; World Food Programme. The State of Food Insecurity in the World: Meeting the 2015 International Hunger Targets: Taking Stock of Uneven Progress; FAO: Rome, Italy, 2015. [Google Scholar]
- United Nations Children’s Fund (UNICEF). A Wake-up Call: El Niño’s Impact on Children. Briefing Note; UNICEF: New York, NY, USA, 2015. [Google Scholar]
- Mabhaudhi, T.; Chibarabada, T.; Modi, A. Water-Food-Nutrition-Health Nexus: Linking Water to Improving Food, Nutrition and Health in Sub-Saharan Africa. Int. J. Environ. Res. Public Health 2016, 13, 107. [Google Scholar] [CrossRef] [PubMed]
- Organisation for Economic Co-operation and Development (OECD); Food and Agriculture Organization (FAO). OECD-FAO Agricultural Outlook 2015; OECD: Paris, France, 2015. [Google Scholar]
- Kearney, J. Food consumption trends and drivers. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 2793–2807. [Google Scholar] [CrossRef] [PubMed]
- Faber, M.; Venter, S.L.; Benadé, A.J.S. Increased vitamin A intake in children aged 2–5 years through targeted home-gardens in a rural South African community. Public Health Nutr. 2002, 5, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, A.; Khalil, I.A.; Ateeq, N.; Khan, M.S. Nutritional quality of important food legumes. Food Chem. 2006, 97, 331–335. [Google Scholar] [CrossRef]
- Seena, S.; Sridhar, K.R. Physicochemical, functional and cooking properties of under explored legumes, Canavalia of the southwest coast of India. Food Res. Int. 2005, 38, 803–814. [Google Scholar] [CrossRef]
- Boschin, G.; Arnoldi, A. Legumes are valuable sources of tocopherols. Food Chem. 2011, 127, 1199–1203. [Google Scholar] [CrossRef] [PubMed]
- Akinyele, I.O.; Shokunbi, O.S. Concentrations of Mn, Fe, Cu, Zn, Cr, Cd, Pb, Ni in selected Nigerian tubers, legumes and cereals and estimates of the adult daily intakes. Food Chem. 2015, 173, 702–708. [Google Scholar] [CrossRef] [PubMed]
- Mooney, H.; Drake, J. Ecology of Biological Invasions of North America and Hawaii; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Pingali, P.L. Green revolution: Impacts, limits, and the path ahead. Proc. Natl. Acad. Sci. USA 2012, 109, 12302–12308. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Pala, M.; Oweis, T.; Harris, H. Water use and water-use efficiency of chickpea and lentil in a Mediterranean environment. Aust. J. Agric. Res. 2000, 51, 295–304. [Google Scholar] [CrossRef]
- Siddique, K.H.M.; Regan, K.L.; Tennant, D.; Thomson, B.D. Water use and water use efficiency of cool season grain legumes in low rainfall Mediterranean-type environments. Eur. J. Agron. 2001, 15, 267–280. [Google Scholar] [CrossRef]
- Muñoz-Perea, C.G.; Allen, R.G.; Westermann, D.T.; Wright, J.L.; Singh, S.P. Water use efficiency among dry bean landraces and cultivars in drought-stressed and non-stressed environments. Euphytica 2007, 155, 393–402. [Google Scholar] [CrossRef]
- Patel, G.N.; Patel, P.T.; Patel, P.H. Yield, Water Use Efficiency and Moisture Extraction Pattern of Summe. Available online: http://ejournal.icrisat.org/Volume6/Groundnut/GN_Patel.pdf (accessed on 22 December 2016).
- Obalum, S.E.; Igwe, C.A.; Obi, M.E.; Wakatsuki, T. Water use and grain yield response of rainfed soybean to tillage-mulch practices in southeastern Nigeria. Sci. Agric. 2011, 68, 554–561. [Google Scholar]
- Mabhaudhi, T.; Modi, A.; Beletse, Y. Growth, phenological and yield responses of a bambara groundnut (Vigna subterránea L. Verdc) landrace to imposed water stress: II. Rain shelter conditions. Water SA 2013, 39, 191–198. [Google Scholar] [CrossRef]
- Chibarabada, T.P.; Modi, A.T.; Mabhaudhi, T. Water use characteristics of a bambara groundnut (Vigna subterranea L. Verdc) landrace during seedling establishment. Water SA 2015, 41, 472–482. [Google Scholar] [CrossRef]
- Chivenge, P.; Mabhaudhi, T.; Modi, A.T.; Mafongoya, P. The Potential Role of Neglected and Underutilised Crop Species as Future Crops under Water Scarce Conditions in Sub-Saharan Africa. Int. J. Environ. Res. Public Health 2015, 12, 5685–5711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. Discuss. 2007, 4, 439–473. [Google Scholar] [CrossRef]
- Wojcicki, J.M. The double burden household in sub-Saharan Africa: Maternal overweight and obesity and childhood undernutrition from the year 2000: Results from World Health Organization Data (WHO) and Demographic Health Surveys (DHS). BMC Public Health 2014, 14, 1124. [Google Scholar] [CrossRef] [PubMed]
- World Bank Open Data. Available online: http://data.worldbank.org (accessed on 10 July 2015).
- Rockström, J.; Karlberg, L.; Wani, S.P.; Barron, J.; Hatibu, N.; Oweis, T.; Bruggeman, A.; Farahani, J.; Qiang, Z. Managing water in rainfed agriculture—The need for a paradigm shift. Agric. Water Manag. 2010, 97, 543–550. [Google Scholar] [CrossRef]
- Rockström, J. Water for food and nature in drought–prone tropics: Vapour shift in rain–fed agriculture. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2003, 358, 1997–2009. [Google Scholar] [CrossRef] [PubMed]
- Molden, D. Water for Food, Water for Life—A Comprehensive Assessment of Water Management in Agriculture. Available online: http://link.springer.com/article/10.1007%2Fs10795-008-9044-8?LI=true (accessed on 22 December 2016).
- International Food Policy Research Institute (IFPRI). Global Nutrition Report 2014: Actions and Accountability to Accelerate the World’s Progress on Nutrition; IFPRI: Washington, DC, USA, 2014. [Google Scholar]
- United Nations Children’s Fund (UNICEF); World Health Organization (WHO); World Bank. Child Malnutrition Indicators (Stunting, Wasting, Severe Wasting, Overweight and Underweight) and New Global & Regional Estimates for 2013. Available online: http://www.who.int/nutgrowthdb/jme_2012_summary_note_v2.pdf (accessed on 22 December 2016).
- Food and Agriculture Organisation (FAO). The Rome declaration on world food security. Popul. Dev. Rev. 1996, 22, 14–17. [Google Scholar]
- Thompson, B.; Amoroso, L.; Meerman, J. Promoting the Expression “Food and Nutrition Security (FNS)”; A Strategy Note from the Nutrition and Consumer Protection Division—AGN. Available online: http://www.fao.org/ag/agn/nutrition/docs/Food_and_Nutrition_Security-Strategy_Note.pdf (accessed on 22 December 2016).
- Shetty, P. From food security to food and nutrition security: Role of agriculture and farming systems for nutrition. Curr. Sci. 2015, 109, 456–461. [Google Scholar]
- McDermott, J.; Johnson, N.; Kadiyala, S.; Kennedy, G.; Wyatt, A.J. Agricultural research for nutrition outcomes–rethinking the agenda. Food Secur. 2015, 7, 593–607. [Google Scholar] [CrossRef]
- Alleyne, G.A.O.; Hay, R.W.; Picou, D.I.; Stanfield, J.P.; Whitehead, R.G. Protein-Energy Malnutrition; Edward Arnold (Publishers): London, UK, 1977. [Google Scholar]
- Abberton, M. Enhancing the role of legumes: Potential and obstacles. Grassl. Carbon Seq. Manag. Policy Econ. 2010, 11, 177. [Google Scholar]
- Khan, M.A. Nutritional attributes of food legumes. Progress. Farming 1987, 7, 36–40. [Google Scholar]
- Singh, U.; Singh, B. Tropical grain legumes as important human foods. Econ. Bot. 1992, 46, 310–321. [Google Scholar] [CrossRef]
- Hatcher, P.; Battey, N. Biological Diversity: Exploiters and Exploited; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Allen, O.N.; Allen, E.K. The Leguminosae. A Source Book of Characteristics, Uses and Nodulation; University of Wisconsin Press, Madison & Macmillan Publishers: London, UK, 1981. [Google Scholar]
- Smartt, J. Grain Legumes: Evolution and Genetic Resources; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Smartt, J. Tropical Pulses; Longman: London, UK, 1976; p. 348. [Google Scholar]
- Sur, S.; Bothra, A.K.; Sen, A. Symbiotic Nitrogen Fixation-A Bioinformatics Perspective. Biotechnology 2010, 9, 257–273. [Google Scholar] [CrossRef]
- Zahran, H.H. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev. 1999, 63, 968–989. [Google Scholar] [PubMed]
- Crews, T.E.; Peoples, M.B. Legume versus fertilizer sources of nitrogen: Ecological tradeoffs and human needs. Agric. Ecosyst. Environ. 2004, 102, 279–297. [Google Scholar] [CrossRef]
- Hutchinson, J. Evolution and Phylogeny of Flowering Plants; Academic Press: London, UK; New York, NY, USA, 1969. [Google Scholar]
- Dry Beans Production Guideline. Available online: http://www.nda.agric.za/docs/Brochures/Dry-beans.pdf (accessed on 10 May 2015).
- Smartt, J. The Groundnut Crop: A Scientific Basis for Improvement; Smartt, J., Ed.; Chapman and Hall: London, UK, 1994. [Google Scholar]
- Chickpea. Available online: http://www.nda.agric.za/docs/Brochures/Chickpea.pdf (accessed on 10 May 2015).
- Dugje, I.Y.; Omoigui, L.O.; Ekeleme, F.; Bandyopadhyay, R.; Kumar, P.L.; Kamara, A.Y. Farmers’ Guide to Soybean Production in Northern Nigeria; IITA: Ibadan, Nigeria, 2009. [Google Scholar]
- Valenzuela, H.; Smith, J. Lablab. Available online: http://www.ctahr.hawaii.edu/oc/freepubs/pdf/GreenManureCrops/lablab.pdf (accessed on 22 December 2016).
- Swanevelder, C.J. Bambara Groundnuts—Food for Africa. Available online: http://www.nda.agric.za/docs/brochures/bambara.pdf (accessed on 22 December 2016).
- Odeny, D.A.; Jayashree, B.; Ferguson, M.; Hoisington, D.; Crouch, J.; Gebhardt, C. Development, characterization and utilization of microsatellite markers in pigeonpea. Plant Breed. 2007, 126, 130–136. [Google Scholar] [CrossRef]
- Hamama, A.A.; Bhardwaj, H.L. Tepary bean: A short duration summer crop in Virginia. In Trends New Crop. New Uses; ASHS Press: Alexandria, VA, USA, 2002; pp. 429–431. [Google Scholar]
- Boswell, V.G. The influence of temperature upon the growth and yield of garden peas. Proc. Am. Soc. Hort. Sci. 1926, 23, 162–168. [Google Scholar]
- Faba Bean. Available online: http://www.dpi.nsw.gov.au/__data/assets/pdf_file/0004/157729/faba-bean-pt1.pdf (accessed on 22 December 2016).
- White Lupine, Lupinus albus L. (USDA NRCS Big Flats Plant Materials Center). Available online: https://plants.usda.gov/plantguide/pdf/pg_lual22.pdf (accessed on 29 October 2016).
- Abate, T.; Alene, A.D.; Bergvinson, D.; Shiferaw, B.; Silim, S.; Orr, A.; Asfaw, S. Tropical Grain Legumes in Africa and South Asia: Knowledge and Opportunities; International Crops Research Institute for the Semi-Arid Tropics: Patancheru, India, 2012. [Google Scholar]
- Singh, K.M.; Singh, A.K. Lentil in India: An Overview; Available SSRN 2510906; Military Police Regimental Association: Fort Leonard Wood, MO, USA, 2014. [Google Scholar]
- Oweis, T. Supplemental Irrigation: A Highly Efficient Water-Use Practice; ICARDA: Aleppo, Syria, 1997. [Google Scholar]
- Nedumaran, S.; Abinaya, P.; Jyosthnaa, P.; Shraavya, B.; Rao, P.; Bantilan, C. Grain Legumes Production, Consumption and Trade Trends in Developing Countries. Available online: http://oar.icrisat.org/6428/ (accessed on 22 December 2016).
- Von Oppen, M. Prospects for Grain Legume Production in Asia; International Crops Research Institute for the Semi-Arid Tropics (ICRISAT): Kurnool, India, 1981. [Google Scholar]
- Sharma, S.; Upadhyaya, H.D.; Varshney, R.K.; Gowda, C.L.L. Pre-breeding for diversification of primary gene pool and genetic enhancement of grain legumes. Front. Plant Sci. 2013, 4, 309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duc, G.; Agrama, H.; Bao, S.; Berger, J.; Bourion, V.; De Ron, A.M.; Gowda, C.L.L.; Mikic, A.; Millot, D.; Singh, K.B. Breeding annual grain legumes for sustainable agriculture: New methods to approach complex traits and target new cultivar ideotypes. CRC. Crit. Rev. Plant Sci. 2015, 34, 381–411. [Google Scholar] [CrossRef]
- Germplasm resources. Available online: http://exploreit.icrisat.org/page/projects/708 (accessed on 10 July 2015).
- Genetic Resources Center. Available online: http://www.iita.org/geneticresources;jsessionid=DACC1285D353484D2DA69BA9F2CEB4DB (accessed on 14 September 2015).
- Foyer, C.H.; Lam, H.-M.; Nguyen, H.T.; Siddique, K.H.M.; Varshney, R.K.; Colmer, T.D.; Cowling, W.; Bramley, H.; Mori, T.A.; Hodgson, J.M. Neglecting legumes has compromised human health and sustainable food production. Nat. Plants 2016, 2, 16112. [Google Scholar] [CrossRef]
- Almekinders, C.J.M.; Louwaars, N.P.; de Bruijn, G.H. Local seed systems and their importance for an improved seed supply in developing countries. Euphytica 1994, 78, 207–216. [Google Scholar] [CrossRef]
- Coomes, O.T.; McGuire, S.J.; Garine, E.; Caillon, S.; McKey, D.; Demeulenaere, E.; Jarvis, D.; Aistara, G.; Barnaud, A.; Clouvel, P. Farmer seed networks make a limited contribution to agriculture? Four common misconceptions. Food Policy 2015, 56, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Almekinders, C.J.M.; Louwaars, N.P. The Importance of the Farmers’ Seed Systems in a Functional National Seed Sector. J. New Seeds 2002, 4, 15–33. [Google Scholar] [CrossRef]
- Jones, R.B.; Audi, P.A.; Tripp, R. The Role of Informal Seed Systems in Disseminating Modern Varieties. The Example of Pigeonpea From a Semi-Arid Area of Kenya. Exp. Agric. 2001, 37, 539–548. [Google Scholar] [CrossRef]
- Reddy, R.; Nigam, S.N.; Parthasarthy, R.; Ahmed, S.; Ratnakar, R.; Alur, S.; Ashok, K.A. Village Seed Banks: An Integrated Seed System for Improved Seed Production and Supply—A Case Study; International Crops Research Institute for the Semi-Arid Tropics: Patancheru, India, 2010. [Google Scholar]
- United States Agency for International Development (USAID). Burundi Legume/Bean Value Chain Rapid Analysis; USAID: Washington, DC, USA, 2012. [Google Scholar]
- Wekundah, J.M. Why Informal Seed Sector Is Important in Food Security; African Technology Policy Studies Network: Nairobi, Kenya, 2012; Volume 43, pp. 1–20. [Google Scholar]
- Bèye, A.M.; Wopereis, M.C.S. Cultivating knowledge on seed systems and seed strategies: Case of the rice crop. Net J. Agric. Sci. 2014, 2, 11–29. [Google Scholar]
- Zeven, A.C. Landraces: A review of definitions and classifications. Euphytica 1998, 104, 127–139. [Google Scholar] [CrossRef]
- Saxena, K.B.; Kumar, R.V.; Tikle, A.N.; Saxena, M.K.; Gautam, V.S.; Rao, S.K.; Khare, D.K.; Chauhan, Y.S.; Saxena, R.K.; Reddy, B.V.S.; et al. ICPH 2671—The world’s first commercial food legume hybrid. Plant Breed. 2013, 132, 479–485. [Google Scholar] [CrossRef] [Green Version]
- Bezner Kerr, R. Seed struggles and food sovereignty in northern Malawi. J. Peasant Stud. 2013, 40, 867–897. [Google Scholar] [CrossRef]
- Kerr, R.B. Lessons from the old Green Revolution for the new: Social, environmental and nutritional issues for agricultural change in Africa. Prog. Dev. Stud. 2012, 12, 213–229. [Google Scholar] [CrossRef]
- Muigai, C.; Ogana, F.; Shiferaw, B.; Simtowe, F.; Asfaw, S. Integrated Innovations for Improving Legume Productivity, Market Linkages and Risk Management in Eastern and Southern Africa. Seed Production and Marketing: A Handbook for Farmer Organizations and Agro-Enterprises. Available online: http://ongoing-research.cgiar.org/factsheets/integrated-innovations-for-improving-legume-productivity-market-linkages-and-risk-management-in-eastern-and-southern-africa (accessed on 22 December 2016).
- Karpenstein-Machan, M.; Stuelpnagel, R. Biomass yield and nitrogen fixation of legumes monocropped and intercropped with rye and rotation effects on a subsequent maize crop. Plant Soil 2000, 218, 215–232. [Google Scholar] [CrossRef]
- Smith, A.; Snapp, S.; Dimes, J.; Gwenambira, C.; Chikowo, R. Doubled-up legume rotations improve soil fertility and maintain productivity under variable conditions in maize-based cropping systems in Malawi. Agric. Syst. 2016, 145, 139–149. [Google Scholar] [CrossRef]
- Reckling, M.; Hecker, J.-M.; Bergkvist, G.; Watson, C.A.; Zander, P.; Schläfke, N.; Stoddard, F.L.; Eory, V.; Topp, C.F.E.; Maire, J. A cropping system assessment framework—evaluating effects of introducing legumes into crop rotations. Eur. J. Agron. 2015, 76, 186–197. [Google Scholar] [CrossRef]
- Blevins, R.L.; Herbek, J.H.; Frye, W.W. Legume cover crops as a nitrogen source for no-till corn and grain sorghum. Agron. J. 1990, 82, 769–772. [Google Scholar] [CrossRef]
- Chabi-Olaye, A.; Nolte, C.; Schulthess, F.; Borgemeister, C. Effects of grain legumes and cover crops on maize yield and plant damage by Busseola fusca (Fuller)(Lepidoptera: Noctuidae) in the humid forest of southern Cameroon. Agric. Ecosyst. Environ. 2005, 108, 17–28. [Google Scholar] [CrossRef]
- Rühlemann, L.; Schmidtke, K. Evaluation of monocropped and intercropped grain legumes for cover cropping in no-tillage and reduced tillage organic agriculture. Eur. J. Agron. 2015, 65, 83–94. [Google Scholar] [CrossRef]
- Divito, G.A.; Sadras, V.O. How do phosphorus, potassium and sulphur affect plant growth and biological nitrogen fixation in crop and pasture legumes? A meta-analysis. Field Crop Res. 2014, 156, 161–171. [Google Scholar] [CrossRef]
- Cheruiyot, R.C.; Gicharu, G.K.; Gitonga, N.M.; Boga, H.; Maingi, J.M. Effect of Inoculating Selected Climbing Bean Cultivars with Different Rhizobia Strains on Nitrogen Fixation. Available online: http://etd-library.ku.ac.ke/handle/123456789/7861 (accessed on 22 December 2016).
- Mweetwa, A.M.; Mulenga, M.; Mulilo, X.; Ngulube, M.; Banda, J.S.K.; Kapulu, N.; N’gandu, S.H. Response of Cowpea, Soya Beans and Groundnuts to Non-Indigenous Legume Inoculants. Sustain. Agric. Res. 2014, 3, 84. [Google Scholar] [CrossRef]
- Avola, G.; Cavallaro, V.; Patanè, C.; Riggi, E. Gas exchange and photosynthetic water use efficiency in response to light, CO 2 concentration and temperature in Vicia faba. J. Plant Physiol. 2008, 165, 796–804. [Google Scholar] [CrossRef] [PubMed]
- Olorunmaiye, P.M. Weed control potential of five legume cover crops in maize/cassava intercrop in a Southern Guinea savanna ecosystem of Nigeria. Aust. J. Crop Sci. 2010, 4, 324. [Google Scholar]
- Rubiales, D.; Fernández-Aparicio, M. Innovations in parasitic weeds management in legume crops. A review. Agron. Sustain. Dev. 2011, 32, 433–449. [Google Scholar] [CrossRef]
- Martin, S.G.; Van Acker, R.C.; Friesen, L.F. Critical period of weed control in spring canola. Weed Sci. 2009, 49, 326–333. [Google Scholar] [CrossRef]
- Abdelhamid, M.T.; El-Metwally, I.M. Growth, nodulation, and yield of soybean and associated weeds as affected by weed management. Planta Daninha 2008, 26, 855–863. [Google Scholar] [CrossRef]
- Bhale, V.M.; Karmore, J.V.; Patil, Y.R.; Krishi, P.D. Integrated weed management in groundnut (Arachis hypogea). Pakistan J. Weed Sci. Res. 2012, 18, 733–739. [Google Scholar]
- Mhango, W.G.; Snapp, S.S.; Phiri, G.Y.K. Opportunities and constraints to legume diversification for sustainable maize production on smallholder farms in Malawi. Renew. Agric. Food Syst. 2013, 28, 234–244. [Google Scholar] [CrossRef]
- Luchese, R.H.; Harrigan, W.F. Biosynthesis of aflatoxin—the role of nutritional factors. J. Appl. Bacteriol. 1993, 74, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Heathcote, J.G.; Hibbert, J.R. Aflatoxins: Chemical and Biological Aspects; Elsevier Scientific Pub. Co.: Amsterdam, The Netherlands, 1978. [Google Scholar]
- Chala, A.; Mohammed, A.; Ayalew, A.; Skinnes, H. Natural occurrence of aflatoxins in groundnut (Arachis hypogaea L.) from eastern Ethiopia. Food Control. 2013, 30, 602–605. [Google Scholar] [CrossRef]
- Exporting Groundnuts. Available online: http://www.tradeforum.org/exporting-groundnuts (accessed on 20 September 2015).
- Diaz Rios, L. Barrier, Catalyst, or Distraction? Standards, Competitiveness, and Africa’s Groundnut Exports to Europe; Agriculture and Rural Development Discussion Paper 39; World Bank: Washington, DC, USA, 2008. [Google Scholar]
- Igbadun, H.E.; Mahoo, H.F.; Tarimo, A.K.P.R.; Salim, B.A. Crop water productivity of an irrigated maize crop in Mkoji sub-catchment of the Great Ruaha River Basin, Tanzania. Agric. Water Manag. 2006, 85, 141–150. [Google Scholar] [CrossRef]
- Saeed, I.A.M.; El-Nadi, A.H. Forage sorghum yield and water use efficiency under variable irrigation. Irrig. Sci. 1998, 18, 67–71. [Google Scholar] [CrossRef]
- Tijani, F.O.; Oyedele, D.J.; Aina, P.O. Soil moisture storage and water-use efficiency of maize planted in succession to different fallow treatments. Int. Agrophys. 2008, 22, 81. [Google Scholar]
- Badr, M.A.; El-Tohamy, W.A.; Zaghloul, A.M. Yield and water use efficiency of potato grown under different irrigation and nitrogen levels in an arid region. Agric. Water Manag. 2012, 110, 9–15. [Google Scholar] [CrossRef]
- Van Halsema, G.E.; Vincent, L. Efficiency and productivity terms for water management: A matter of contextual relativism versus general absolutism. Agric. Water Manag. 2012, 108, 9–15. [Google Scholar] [CrossRef]
- Molden, D.; Murray-Rust, H.; Sakthivadivel, R.; Makin, I. A water-productivity framework for understanding and action. In Water Productivity in Agriculture: Limits and Opportunities for Improvement; Kijne, J.W., Barker, R., Molden, D., Eds.; CAB International: Oxfordshire, UK, 2003. [Google Scholar]
- Abayomi, Y.A.; Ajibade, T.V.; Sammuel, O.F.; Saadudeen, B.F. Growth and yield responses of cowpea (Vigna unguiculata (L.) Walp) genotypes to nitrogen fertilizer (NPK) application in the Southern Guinea Savanna zone of Nigeria. Asian J. Plant Sci. 2008, 7, 170–176. [Google Scholar] [CrossRef]
- Vimalendran, L.; Latha, K.R. Yield, water use and water use efficiency of pigeonpea [Cajanus cajan (L.) Millsp.] under drip fertigation system. J. Appl. Nat. Sci. 2014, 6, 457–462. [Google Scholar]
- Anderson, D.P.; Hanselka, D. Adding Value to Agricultural Products. Available online: http://agecoext.tamu.edu/files/2013/10/rm1-8.pdf (accessed on 22 December 2016).
- Boland, M.A. Leadership Development in Agricultural Economics: Challenges for Academic Units. J. Agric. Resour. Econ. 2009, 34, 367–382. [Google Scholar]
- Food and Agriculture Organization. The State of Food and Agriculture; FAO: Rome, Italy, 1997. [Google Scholar]
- Williams, B. Grain Legume Harvesting File. Available online: http://C:/Users/212512302/Downloads/grain_legume_harvesting_1994.pdf (accessed on 5 August 2015).
- Mothander, B.; Kjærby, F.; Havnevik, K.J. Farm Implements for Small-Scale Farmers in Tanzania; Nordic Africa Institute: Uppsala, Sweden, 1989. [Google Scholar]
- Kat, J.; Diop, A.; Gergeley, N. Guidelines for the Establishment, Operation, and Management of Cereal Banks; Issues 83-88; FAO: Rome, Italy, 1992. [Google Scholar]
- USA Dry Pea, Lentil & Chickpea Production. Available online: http://www.pea-lentil.com/core/files/pealentil/uploads/files/Chapter3.pdf (accessed on 15 October 2015).
- Summerfield, J. World Crops: Cool Season Food Legumes: A Global Perspective of the Problems and Prospects for Crop Improvement in Pea, Lentil, Faba Bean and Chickpea; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- McCormack, J.H. Seed Processing and Storage Principles and Practices of Seed Harvesting, Processing, and Storage: An Organic Seed Production Manual for Seed Growers in the Mid-Atlantic and Southern US; Carolina Farm Stewardship Association: Pittsboro, NC, USA; Garden Medicinals and Culinaries: Earlysville, VA, USA, 2004. [Google Scholar]
- Večerek, V.; Suchý, P.; Straková, E.; Macháček, M.; Palta, J.A.; Berger, J.D. Nutritive composition of seeds of the lupin varieties registered in the Czech Republic. In Lupins for Health and Wealth, Proceedings of the 12th International Lupin Conference, Fremantle, Australia, 14–18 September 2008; International Lupin Association: Canterberry, New Zealand, 2008; pp. 14–18. [Google Scholar]
- Messina, M.J. Legumes and soybeans: Overview of their nutritional profiles and health effects. Am. J. Clin. Nutr. 1999, 70, 439–450. [Google Scholar]
- Smith, T.M.; Kolars, J.C.; Savaiano, D.A.; Levitt, M.D. Absorption of calcium from milk and yogurt. Am. J. Clin. Nutr. 1985, 42, 1197–1200. [Google Scholar] [PubMed]
- McKevith, B. Nutritional aspects of cereals. Nutr. Bull. 2004, 29, 111–142. [Google Scholar] [CrossRef]
- Food and Agricultural Organization; World Health Organization. Vitamin and Mineral Requirements in Human Nutrition. Available online: http://apps.who.int/iris/bitstream/10665/42716/1/9241546123.pdf (accessed on 22 December 2016).
- Geil, P.B.; Anderson, J.W. Nutrition and health implications of dry beans: A review. J. Am. Coll. Nutr. 1994, 13, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Atasie, V.N.; Akinhanmi, T.F.; Ojiodu, C.C. Proximate analysis and physico-chemical properties of groundnut (Arachis hypogaea L.). Pak. J. Nutr. 2009, 8, 194–197. [Google Scholar] [CrossRef]
- Liu, K. Chemistry and nutritional value of soybean components. In Soybeans; Springer: Berlin, Germany, 1997; pp. 25–113. [Google Scholar]
- Deka, R.K.; Sarkar, C.R. Nutrient composition and antinutritional factors of Dolichos lablab L. seeds. Food Chem. 1990, 38, 239–246. [Google Scholar] [CrossRef]
- Yao, D.N.; Kouassi, K.N.; Erba, D.; Scazzina, F.; Pellegrini, N.; Casiraghi, M.C. Nutritive Evaluation of the Bambara Groundnut Ci12 Landrace [Vigna subterranea (L.) Verdc.(Fabaceae)] Produced in Côte d’Ivoire. Int. J. Mol. Sci. 2015, 16, 21428–21441. [Google Scholar] [CrossRef] [PubMed]
- Singh, U.; Jain, K.C.; Jambunathan, R.; Faris, D.G. Nutritional quality of vegetable pigeonpeas [Cajanus cajan (L.) Mill sp.]: Mineral and trace elements. J. Food Sci. 1984, 49, 645–646. [Google Scholar] [CrossRef]
- Sheerens, J.C.; Tinsley, A.M.; Abbas, I.R.; Weber, C.W.; Berry, J.W. The nutritional significance of tepary bean consumption. Desert Plants 1983, 5, 11–56. [Google Scholar]
- Crépon, K.; Marget, P.; Peyronnet, C.; Carrouée, B.; Arese, P.; Duc, G. Nutritional value of faba bean (Vicia faba L.) seeds for feed and food. Field Crops Res. 2010, 115, 329–339. [Google Scholar] [CrossRef]
- Gemede, H.F.; Ratta, N. Antinutritional factors in plant foods: Potential health benefits and adverse effects. Glob. Adv. Res. J. Food Sci. Technol. 2014, 3, 103–117. [Google Scholar]
- Gilani, G.S.; Xiao, C.W.; Cockell, K.A. Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality. Br. J. Nutr. 2012, 108, 315–332. [Google Scholar] [CrossRef] [PubMed]
- Bennink, M.R. Consumption of black beans and navy beans (Phaseolus vulgaris) reduced azoxymethane-induced colon cancer in rats. Nutr. Cancer 2002, 44, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Ezumah, N.N.; Di Domenico, C.M. Enhancing the role of women in crop production: A case study of Igbo women in Nigeria. World Dev. 1995, 23, 1731–1744. [Google Scholar] [CrossRef]
- Modi, M.; Modi, A.; Hendriks, S. Potential role for wild vegetables in household food security: A preliminary case study in Kwazulu-Natal, South Africa. Afr. J. Food Agric. Nutr. Dev. 2006, 6, 1–13. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). Social Protection and Agriculture: Breaking the Cycle of Rural Poverty. In The State of Food and Agriculture 2015; FAO: Rome, Italy, 2015; p. 151. [Google Scholar]
- Subuola, F.; Widodo, Y.; Kehinde, T. Processing and Utilization of Legumes in the Tropics. Available online: http://cdn.intechopen.com/pdfs/35126/intech-processing_and_utilization_of_legumes_in_the_tropics.pdf (accessed on 22 December 2016).
- De Haan, A. Rural-Urban Migration and Poverty: The Case of India. IDS Bull. 1997, 28, 35–47. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, S.S. Fermented Grain Legumes, Seeds and Nuts: A Global Perspective; Issue 142; Food and Agriculture Organization: Rome, Italy, 2000. [Google Scholar]
- Güzel, D.; Sayar, S. Effect of cooking methods on selected physicochemical and nutritional properties of barlotto bean, chickpea, faba bean, and white kidney bean. J. Food Sci. Technol. 2012, 49, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Meiners, C.R.; Derise, N.L.; Lau, H.C.; Crews, M.G.; Ritchey, S.J.; Murphy, E.W. The content of nine mineral elements in raw and cooked mature dry legumes. J. Agric. Food Chem. 1976, 24, 1126–1130. [Google Scholar] [CrossRef] [PubMed]
- Mahadevamma, S.; Tharanathan, R.N. Processing of Legumes: Resistant Starch And Dietary Fiber Contents. J. Food Qual. 2004, 27, 289–303. [Google Scholar] [CrossRef]
- Siddhuraju, P.; Becker, K.; Makkar, H.P.S. Studies on the nutritional composition and antinutritional factors of three different germplasm seed materials of an under-utilized tropical legume, Mucuna pruriens var. Utilis. J. Agric. Food Chem. 2000, 48, 6048–6060. [Google Scholar] [CrossRef] [PubMed]
- Manay, N.; Swamy, S. Food: Facts and Principles, 2nd ed.; New Age International: New Delhi, India, 2001. [Google Scholar]
- Toensmeier, E. Perennial Vegetables: From Artichokes to Zuiki Taro, A Gardener’s Guide to over 100 Delicious and Easy to Grow Edibles; Chelsea Green Publishing: White River Junction, VT, USA, 2007. [Google Scholar]
- Sumberg, J. The logic of fodder legumes in Africa. Food Policy 2002, 27, 285–300. [Google Scholar] [CrossRef]
- Dixon, R.M.; Hosking, B.J. Nutritional value of grain legumes for ruminants. Nutr. Res. Rev. 1992, 5, 19–43. [Google Scholar] [CrossRef] [PubMed]
- Huisman, J.; Van der Poel, A.F.B. Aspects of the nutritional quality and use of cool season food legumes in animal feed. In Expanding the Production and Use of Cool Season Food Legumes; Springer: Berlin, Germany, 1994; pp. 53–76. [Google Scholar]
- Jezierny, D.; Mosenthin, R.; Bauer, E. The use of grain legumes as a protein source in pig nutrition: A review. Anim. Feed Sci. Technol. 2010, 157, 111–128. [Google Scholar] [CrossRef]
- Nji, F.F.; Niess, E.; Pfeffer, E. Nutrient content of Bambara groundnut (Vigna subterranea) and the effects of its inclusion on the performance of growing broiler chickens and on egg production and quality. J. Anim. Feed Sci. 2004, 13, 497–507. [Google Scholar]
- Timmer, C.P. Getting agriculture moving: Do markets provide the right signals? Food Policy 1995, 20, 455–472. [Google Scholar] [CrossRef]
- International Monetary Fund. The Gambia: Poverty Reduction Strategy Paper—Progress Report; International Monetary Fund: Washington, DC, USA, 2014. [Google Scholar]
- Brough, S.H.; Azam-Ali, S.N.; Taylor, A.J. The potential of bambara groundnut (Vigna subterranea) in vegetable milk production and basic protein functionality systems. Food Chem. 1993, 47, 277–283. [Google Scholar] [CrossRef]
- Agunbiade, S.O.; Amosu, A.M.; Degun, A.M.; Omeonu, P.E. The physio-chemical and organoleptic properties of milk fabricated from Glycine max, Vigna subterranea and Sphenostylis stenocarpa. J. Chem. Pharm. Res. 2011, 3, 918–924. [Google Scholar]
- Watanabe, M.; Jinji, N.; Kurihara, M. Is the development of the agro-processing industry pro-poor? The case of Thailand. J. Asian Econ. 2009, 20, 443–455. [Google Scholar] [CrossRef]
- Chengappa, P.G. Emerging trends in agro-processing in India. Indian J. Agric. Econ. 2004, 59, 55–74. [Google Scholar]
- Singh, K.P.; Srivastva, A.K.; Srinivas, K.; Singh, S.R.K.; Gupta, H.S. Entrepreneurship Development in Agriculture through Agro Processing Centre: A Case Study of Almora District in NW Himalaya; International Commission of Agricultural Engineering: Liège, Belgium, 2007; Volume 4, pp. 1–14. [Google Scholar]
- Giller, K.E.; Murwira, M.S.; Dhliwayo, D.K.C.; Mafongoya, P.L.; Mpepereki, S. Soyabeans and sustainable agriculture in southern Africa. Int. J. Agric. Sustain. 2011, 9, 50–58. [Google Scholar] [CrossRef]
- Kachru, R.P. Agro-processing industries in India—Growth, status and prospects. J. Indones. Agroind. 2010, 13, 114–126. [Google Scholar]
- Gepts, P.; Beavis, W.D.; Brummer, E.C.; Shoemaker, R.C.; Stalker, H.T.; Weeden, N.F.; Young, N.D. Legumes as a model plant family. Genomics for food and feed report of the Cross-Legume Advances Through Genomics Conference. Plant Physiol. 2005, 137, 1228–1235. [Google Scholar] [CrossRef] [PubMed]
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT); International Center for Tropical Agriculture (CIAT); International Center for Agricultural Research in the Dry Areas (ICARDA); International Institute of Tropical Agriculture (IITA). Grain Legumes: Leveraging Legumes to Combat Poverty, Hunger, Malnutrition and Environmental Degradation. Available online: http://legumelab.msu.edu/uploads/files/BeebeS_CRP_5-14.pdf (accessed on 22 December 2016).
- Sanchez, P.A. Soil fertility and hunger in Africa. Science 2002, 295, 2019–2020. [Google Scholar] [CrossRef] [PubMed]
- Carranca, C.; De Varennes, A.; Rolston, D. Biological nitrogen fixation by fababean, pea and chickpea, under field conditions, estimated by the 15N isotope dilution technique. Eur. J. Agron. 1999, 10, 49–56. [Google Scholar] [CrossRef]
Tribe | Sub-Tribe | Species | Common Name |
---|---|---|---|
Dalbergieae | Arachis hypogaea L. | groundnut | |
Cicerea | Cicer arietum L. | chickpea | |
Viciaea | Lens culinaris Med | lentil | |
Pisum sativum L. | common pea | ||
Vicia faba L. | fababean | ||
Lathyrus sativus L. | grass pea | ||
Genisteae | Lupininae | Lupinus albus L. | white lupine |
L lueus L. | yellow lupine | ||
L angustifolius L. | blue lupine | ||
L. mutabilis Sweet. | tarwi, chocho, | ||
Phaseoleae | Erythrininae | Mucana spp. (velvet beans) | velvet beans |
Diocleinae | Canavalia ensiformis (L.) DC. | jackbean | |
C. gladiata (Jacq.) DC. | swordbean | ||
Pachyrrhizus erosus (L.) Urban | yam bean | ||
P. tuberosis (Lam.) Spreng. | yam bean | ||
Calopogonium mucuniodes Desv | wild groundnut | ||
Glycininae | Pueraria phaseoloides (Roxb.) Benth. | puero, tropical kudzu | |
Glycine max (L.) Merr. | soybean | ||
Clitoriinae | Centrosema pubescens Benth. | butterfly pea | |
Clitoria ternatea L. | butterfly pea | ||
Phaseolinae | Psophocarpus tetragonolobus (L.) DC. | winged bean | |
Lablab purpureus (L.) Sweet | lablab | ||
M. uniflorum (Lamb.) Verdc | horse gram, kulthi bean, hurali, | ||
Vigna aconitifolia (Jacq.) Marechal | moth bean | ||
V. angularis (Willd.) | azuki bean | ||
V. mungo (L.) Hepper | mung bean | ||
V. radiate (L.) Wilczek | mung bean | ||
V. subterranea (L.) Verdc. | bambara groundnut | ||
V. umbellate (Thunb.) | rice bean | ||
V. unguiculata (L.) Walp | cowpea | ||
Phaseolus acutifolus A.Gray | tepary bean | ||
P. coccineus L. | runner bean | ||
P. lunatis L. | lima bean | ||
P. polyanthus Greenm. | polyanthus bean | ||
P. vulgaris L. | common bean | ||
Cajaninae | Cajanus cajan (L.) Millsp. | pigeon pea | |
Indigoferae | Cyamopsis tetragonoloba (L.) Taubert | cluster-bean, siam-bean | |
Crotalariaea | Crotalaria juncea L. | indian hemp, sun hemp |
Species | Min, Max Temp | Annual Rainfall | Growth Cycle | *Photoperiod | Soil Type | Grain Yield | Source |
---|---|---|---|---|---|---|---|
(°C) | (mm) | (Days) | (kg/ha) | ||||
Dry bean | 10, 30 | 600–650 | 70–200 | Short day | Sandy loam to heavy clays | 500–2500 | [48] |
Groundnut | 10, 30 | 500–600 | 125–150 | Short day | Sandy loam | 800–3500 | [49] |
Chickpea | 5, 25 | 400–600 | 84–125 | Long day | Sandy to silt loam | 630–850 | [50] |
Soybean | 10, 25 | 500–900 | 120–130 | Short day | Clay loam | 2000–4000 | [51] |
Lablab | 10, 35 | 700–1500 | 60–120 | Short day | Deep sands to heavy clays | 1000–2500 | [52] |
Cowpea | 8, 35 | 400–700 | 70–150 | Short day | Sandy | 1000–2000 | [51] |
Bambara groundnut | 10, 35 | 400–600 | 90–180 | Short day | Sandy loam | 300–3000 | [53] |
Pigeon pea | – | – | 100–200 | Short day | Sandy to silt loam | 718–1080 | [54] |
Tepary bean | 20, 48 | 200–600 | 60–120 | Short day | Sandy loam | 1410–2239 | [55] |
Common Pea | 5, 22 | 350–500 | 55–75 | Day neutral | Sandy loam | 1500–3120 | [56] |
Faba bean | −2, 25 | 700–1200 | 110–130 | Short day | Clay loam | 2000–14,000 | [57] |
White lupine | −7, 15 | 381–990 | 116–130 | Long day | Sandy to silt loam | 1570 | [58] |
Area (1000 ha) | Yield (kg·ha−1) | Production (1000 Metric Ton) | % of World Production | |
---|---|---|---|---|
World | ||||
Chickpea | 10,914 | 818 | 8929 | - |
Dry bean | 27,232 | 723 | 19,705 | - |
Cowpea | 14,500 | 454 | 6155 | - |
Groundnut | 22,633 | 1607 | 36,379 | - |
Pigeon Pea | 4655 | 885 | 3463 | - |
Soybean | 92,622 | 2348 | 217,397 | - |
Lentil | 3571 | 1904 | 2900 | - |
Sub-Saharan Africa | ||||
Chickpea | 398 | 769 | 315 | 3.5 |
Dry bean | 5190 | 596 | 3045 | 16 |
Cowpea | 11,440 | 450 | 5145 | 84 |
Groundnut | 9057 | 1007 | 8942 | 40 |
Pigeon Pea | 499 | 729 | 363 | 10 |
Soybean | 1228 | 1060 | 1279 | 1.3 |
Lentil | 100 | 1094 | 90 | 2 |
South Asia | ||||
Chickpea | 8334 | 855 | 6792 | 76 |
Dry bean | 11,532 | 985 | 5908 | 30 |
Cowpea | 159 | 975 | 154 | 3 |
Groundnut | 7038 | 1122 | 8457 | 31 |
Pigeon Pea | 4118 | 840 | 3068 | 88 |
Soybean | 8490 | 1275 | 5735 | 9.2 |
Lentil | 1700 | 633 | 1088 | 33 |
Species | Water Use | Yield | WUE | Climate | Source |
---|---|---|---|---|---|
mm | kg·ha−1 | kg Dry Matter ha−1 mm−1 | |||
Dry bean | 318–463 | 1407–4031 | 1.7–10.9 | Mediterranean | [18] |
Groundnut | 697–809 | 2080–4240 | 3.96–5.25 | Semi-arid | [19] |
Chickpea | 150–340 | 358–1357 | 1.9–3.6 | Mediterranean | [16] |
Soybean | 598–690 | 710–1910 | 1.16–2.80 | Semi-arid | [20] |
Cowpea | 78–258 | 1020–1340 | 0.11–0.2 | Semi-arid | [109] |
Bambara groundnut | 300–638 | 500–2400 | 0.1–0.12 | Semi-arid | [21] |
Pigeon pea | 331–551 | 1816–2643 | 3.38–6.97 | Semi-arid | [110] |
Common pea | 177–266 | 1040–2240 | 6–15.9 | Mediterranean | [17] |
Fababean | 101–261 | 420–1920 | 1.7–12.5 | Mediterranean | [17] |
Lentil | 160–308 | 339–1657 | 2.3–4.5 | Mediterranean | [16] |
White lupine | 178–272 | 1570 | 2.1–8.5 | Mediterranean | [17] |
Species | Energy | Protein | Carbohydrates | Fat | Vit A | Iron | Zinc | Calcium | Source |
---|---|---|---|---|---|---|---|---|---|
Kcal | g | µg | mg | ||||||
*RDA | 56.0; 46.0 | 130.0 | 20.0–35.0 | 900.0; 700.0 | 8.0; 18.0 | 11; 8 | 1000.0 | [124] | |
Dry bean | 333.0 | 21.8 | 2.5 | 2.5 | – | 4.7 | – | 183.0 | [125] |
Groundnut | 570.0 | 25.0 | 21.0 | 48.0 | – | 2.0 | 3.3 | 62.0 | [126] |
Chickpea | 164.0 | 8.9 | 27.0 | 2.6 | 1.0 | 2.89 | 1.5 | 49.0 | [10] |
Soybean | 446.0 | 36.5 | 30.2 | 19.9 | 1.0 | 15.7 | 4.9 | 277.0 | [127] |
Lablab | 50.0 | 2.9 | 9.2 | 0.3 | – | 0.76 | 0.4 | 41.0 | [128] |
Cowpea | 116.0 | 7.8 | 20.8 | 0.5 | – | 2.51 | 1.3 | 24.0 | [10] |
Bambara groundnut | 367.0 | 20.6 | 56.0 | 6.6 | – | 5.96 | 7.9 | 219.0 | [129] |
Pigeon pea | 136.0 | 7.2 | 28.9 | 1.6 | – | 1.6 | 1.0 | 42.0 | [130] |
Tepary bean | – | – | – | – | – | 12.6 | 5.0 | 165.0 | [131] |
Common pea | 81.0 | 5.4 | 14.0 | 0.4 | 38.0 | 1.47 | 1.2 | 25.0 | [10] |
Fababean | 341.0 | 8.0 | 18.0 | 0.7 | – | 6.7 | 3.1 | 103.0 | [132] |
Lentil | 353.0 | 26.0 | 60.0 | 1.0 | – | 7.54 | 4.8 | 56.0 | [10] |
White lupine | 1741.0 | 39 | 11.5 | 5.8 | – | 3.1 | 4.5 | 0.68 | [120] |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chibarabada, T.P.; Modi, A.T.; Mabhaudhi, T. Expounding the Value of Grain Legumes in the Semi- and Arid Tropics. Sustainability 2017, 9, 60. https://doi.org/10.3390/su9010060
Chibarabada TP, Modi AT, Mabhaudhi T. Expounding the Value of Grain Legumes in the Semi- and Arid Tropics. Sustainability. 2017; 9(1):60. https://doi.org/10.3390/su9010060
Chicago/Turabian StyleChibarabada, Tendai P., Albert T. Modi, and Tafadzwanashe Mabhaudhi. 2017. "Expounding the Value of Grain Legumes in the Semi- and Arid Tropics" Sustainability 9, no. 1: 60. https://doi.org/10.3390/su9010060