Impact of Land Use Rights Transfer on Household Labor Productivity: A Study Applying Propensity Score Matching in Chongqing, China
Abstract
:1. Introduction
2. Research Methodology
2.1. Theoretical Analysis
2.2. The Propensity Score Matching Procedure
3. Data and Descriptive Statistics
3.1. Data and Samples
3.2. Descriptive Statistics
4. Results and Discussions
4.1. The Impact of Renting Land on Labor Productivity
4.1.1. Propensity Score for Renting Land
4.1.2. Sample Matching Results
4.1.3. The Impact of Renting Land on Labor Productivity
4.2. The Impact of Renting out Land on Labor Productivity
5. Conclusions and Policy Implications
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
GDP | Gross Domestic Product |
TLP | Total Labor Productivity |
ALP | Agricultural Labor Productivity |
NALP | Non-Agricultural Labor Productivity |
ATT | Average effect of Treatment on the Treated |
References
- Xie, Y.; Jiang, Q.B. Land arrangements for rural-urban migrant workers in china: Findings from Jiangsu province. Land Use Policy 2016, 50, 262–267. [Google Scholar] [CrossRef]
- Christiaensen, L.; Pan, L.; Wang, S.G. Pathways out of poverty in lagging regions: Evidence from rural western China. Agric. Econ. 2013, 44, 25–44. [Google Scholar] [CrossRef]
- Jin, S.Q.; Jayne, T.S. Land rental markets in kenya: Implications for efficiency, equity, household income, and poverty. Land Econ. 2013, 89, 246–271. [Google Scholar] [CrossRef]
- Deininger, K.; Jin, S.Q.; Nagarajan, H.K. Efficiency and equity impacts of rural land rental restrictions: Evidence from India. Eur. Econ. Rev. 2008, 52, 892–918. [Google Scholar] [CrossRef]
- Rahman, S. Determinants of agricultural land rental market transactions in bangladesh. Land Use Policy 2010, 27, 957–964. [Google Scholar] [CrossRef]
- Bravoureta, B.E.; Evenson, R.E. Efficiency in agricultural production—The case of peasant farmers in eastern paraguay. Agric. Econ. 1994, 10, 27–37. [Google Scholar] [CrossRef]
- Wang, J.Y.; Chen, K.Z.; das Gupta, S.; Huang, Z.H. Is small still beautiful? A comparative study of rice farm size and productivity in China and India. China Agric. Econ. Rev. 2015, 7, 484–509. [Google Scholar] [CrossRef]
- Zenka, J.; Slach, O.; Krticka, L.; Zufan, P. Determinants of microregional agricultural labour productivity—Evidence from Czechia. Appl. Geogr. 2016, 71, 83–94. [Google Scholar] [CrossRef]
- Benin, S.; Ahmed, M.; Pender, J.; Ehui, S. Development of land rental markets and agricultural productivity growth: The case of northern Ethiopia. J. Afr. Econ. 2005, 14, 21–54. [Google Scholar] [CrossRef]
- Pender, J.; Fafchamps, M. Land lease markets and agricultural efficiency in Ethiopia. J. Afr. Econ. 2006, 15, 251–284. [Google Scholar] [CrossRef]
- Holden, S.; Yohannes, H. Land redistribution, tenure insecurity, and intensity of production: A study of farm households in southern Ethiopia. Land Econ. 2002, 78, 573–590. [Google Scholar] [CrossRef]
- Deininger, K.; Jin, S.Q.; Xia, F. Moving off the farm: Land institutions to facilitate structural transformation and agricultural productivity growth in China. World Dev. 2014, 59, 505–520. [Google Scholar] [CrossRef]
- Yao, S.B.; Liu, Z. An Empirical Analysis of Agricultural Productivity in the Sloping Land Conversion Region Based on Dea Mode; Alfred University: Alfred, NY, USA, 2009; pp. 2587–2595. [Google Scholar]
- Wang, G.G.; Liu, Y.S.; Li, Y.R.; Chen, Y.F. Dynamic trends and driving forces of land use intensification of cultivated land in China. J. Geogr. Sci. 2015, 25, 45–57. [Google Scholar] [CrossRef]
- Carter, M.R.; Yao, Y. Local versus global separability in agricultural household models: The factor price equalization effect of land transfer rights. Am. J. Agric. Econ. 2002, 84, 702–715. [Google Scholar] [CrossRef]
- Conning, J.H.; Robinson, J.A. Property rights and the political organization of agriculture. J. Dev. Econ. 2007, 82, 416–447. [Google Scholar] [CrossRef]
- Dehejia, R.H.; Wahba, S. Propensity score-matching methods for nonexperimental causal studies. Rev. Econ. Stat. 2002, 84, 151–161. [Google Scholar] [CrossRef]
- Heckman, J.J.; Ichimura, H.; Todd, P.E. Matching as an econometric evaluation estimator: Evidence from evaluating a job training programme. Rev. Econ. Stud. 1997, 64, 605–654. [Google Scholar] [CrossRef]
- Haviland, A.; Rosenbaum, P.R.; Nagin, D.S.; Tremblay, R.E. Combining group-based trajectory modeling and propensity score matching for causal inferences in nonexperimental longitudinal data. Dev. Psychol. 2008, 44, 422–436. [Google Scholar] [CrossRef] [PubMed]
- Mayne, S.L.; Lee, B.K.; Auchincloss, A.H. Evaluating propensity score methods in a quasi-experimental study of the impact of menu-labeling. PLoS ONE 2015, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Makar, R.S.; Hurwitz, S.; Uhl, L.; Kaufman, R.M.; Stowell, C.P.; Dzik, W.S.; Bendapudi, P.K. Treatment with or without plasma exchange for patients with acquired thrombotic microangiopathy not associated with severe adamts13 deficiency: A propensity score-matched study. Transfusion 2016, 56, 2069–2077. [Google Scholar] [CrossRef] [PubMed]
- Li, D.Q.; Tang, X.S.; Zhou, C.B.; Phoon, K.K. Characterization of uncertainty in probabilistic model using bootstrap method and its application to reliability of piles. Appl. Math. Model. 2015, 39, 5310–5326. [Google Scholar] [CrossRef]
- Rosenbaum, P.R.; Rubin, D.B. The central role of the propensity score in observational studies for causal effects. Biometrika 1983, 70, 41–55. [Google Scholar] [CrossRef]
- Fan, X.L.; Yang, L. Method to assess the accuracy of scores in mortality prediction: More than receiver operating characteristic curve. Eur. J. Gastroenterol. Hepatol. 2016, 28, 850. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, P.R.; Rubin, D.B. Constructing a control-group using multivariate matched sampling methods that incorporate the propensity score. Am. Stat. 1985, 39, 33–38. [Google Scholar] [CrossRef]
- Chen, Y.Y.; An, X.S.; Ling, R.P. The impact of farmland transfer on farmer’s production efficiency—A case of northwestern Shanxi. J. Arid Land Resour. Environ. 2015, 29, 45–49. [Google Scholar]
- Mao, P.H.; Xu, J.; He, X.D.; Zhou, Y.H. Transfer of Land and Increasse of Farmers’ Labor Productivity: Theoretical and Empirical Analysis. Econ. Res. J. 2015, 11, 161–176. [Google Scholar]
- Rola, A.C.; Dayo, H.F.; Labios, R.V.; Garcia, A.G. Labor use and labor productivity in the upland rice based farming system: A case of Magallanes, Gavite, Philippines. Rice Farming Syst. Tech. Exch. 1992, 12, 93–108. [Google Scholar]
- Yan, J.Z.; Yang, Z.Y.; Li, Z.H.; Li, X.B.; Xing, L.J.; Sun, L.X. Drivers of cropland abandonment in mountainous areas: A household decision model on farming scale in Southwest China. Land Use Policy 2016, 57, 459–469. [Google Scholar] [CrossRef] [Green Version]
- Gan, L.; Yin, Z.C.; Tan, J.J. China Household Finance Survey Report 2014; Southwestern University of Finance and Economics Press: Chengdu, China, 2015. [Google Scholar]
- Le, V.; Lyne, M.; Ratna, N.; Nuthall, P. The Rental Market for Farmland in Vietnam’s Mountainous North Central Coast Region: Outcomes and Constraints. Mt. Res. Dev. 2013, 33, 416–423. [Google Scholar] [CrossRef]
- Macours, K. Ethnic divisions, contract choice, and search costs in the Guatemalan land rental market. J. Comp. Econ. 2014, 42, 1–18. [Google Scholar] [CrossRef]
County | The Number of the Households with Renting Land | Proportion Renting Land (%) | The Number of the Households with Renting out Land | Proportion Renting out Land (%) | Total Number |
---|---|---|---|---|---|
Wulong | 72 | 23.15 | 132 | 42.44 | 311 |
Youyang | 84 | 19.95 | 226 | 53.68 | 421 |
Wushan | 74 | 20.00 | 61 | 16.49 | 370 |
Yongchuan | 24 | 19.35 | 27 | 21.77 | 124 |
Zhongxian | 42 | 30.88 | 43 | 31.62 | 136 |
Total | 296 | 22.66 | 489 | 33.2 | 1362 |
Groups | Variables | Mean | S.D | Min. | Max. | N |
---|---|---|---|---|---|---|
Non-rent | log(TLP) | 8.81 | 0.94 | 6.48 | 10.66 | 1066 |
log(ALP) | 6.31 | 1.52 | 2.99 | 9.27 | 1066 | |
log(NALP) | 8.06 | 2.05 | 2.82 | 10.65 | 1066 | |
Rent | log(TLP) | 8.98 | 0.76 | 6.48 | 10.66 | 296 |
log(ALP) | 7.09 | 1.18 | 2.99 | 9.27 | 296 | |
log(NALP) | 7.52 | 2.20 | 2.53 | 10.34 | 296 | |
Non-rent out | log(TLP) | 8.67 | 0.89 | 6.48 | 10.66 | 873 |
log(ALP) | 6.81 | 1.36 | 2.99 | 9.27 | 873 | |
log(NALP) | 7.39 | 2.29 | 2.53 | 10.65 | 873 | |
Rent out | log(TLP) | 9.15 | 0.76 | 6.49 | 10.66 | 489 |
log(ALP) | 6.36 | 1.52 | 2.99 | 9.27 | 489 | |
log(NALP) | 8.47 | 1.71 | 2.82 | 10.65 | 489 | |
Total Sample | log(TLP) | 8.87 | 0.87 | 6.48 | 10.66 | 1362 |
log(ALP) | 6.616 | 1.446 | 2.996 | 9.273 | 1362 | |
log(NALP) | 7.851 | 2.127 | 2.526 | 10.65 | 1362 |
Variables | Mean | p50 | SD | Min. | Max. | N |
---|---|---|---|---|---|---|
AGE | 55.18 | 56.00 | 12.38 | 19.00 | 88.00 | 873 |
EDU | 2.15 | 2.00 | 0.71 | 1.00 | 5.00 | 873 |
MARR | 1.27 | 1.00 | 0.75 | 1.00 | 4.00 | 873 |
HEAL | 2.28 | 3.00 | 0.89 | 1.00 | 4.00 | 873 |
OCCUP | 0.62 | 1.00 | 0.49 | 0.00 | 1.00 | 873 |
LABOR | 2.79 | 3.00 | 1.18 | 0.50 | 7.00 | 873 |
AIR | 0.17 | 0.05 | 0.24 | 0.00 | 0.90 | 873 |
INCOMEP | 8.79 | 9.00 | 1.01 | 5.52 | 10.66 | 873 |
AREAP | 2.46 | 1.49 | 3.55 | 0.08 | 26.68 | 873 |
NOMACH | 2.49 | 2.00 | 1.81 | 0.00 | 9.00 | 873 |
HASSET | 6.70 | 6.96 | 1.07 | 3.91 | 9.95 | 873 |
INSURANCE | 0.39 | 0.00 | 0.49 | 0.00 | 1.00 | 873 |
LOCATION | 0.80 | 1.00 | 0.40 | 0.00 | 1.00 | 873 |
Logit Specification | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
EDU | −0.198 ** | −0.202 ** | −0.192 ** | −0.199 ** | −0.198 ** |
(−2.19) | (−2.12) | (−2.10) | (−2.18) | (−2.06) | |
MARR | −0.234 ** | −0.233 ** | −0.232 ** | −0.235 ** | −0.231 ** |
(−2.33) | (−2.30) | (−2.30) | (−2.33) | (−2.28) | |
OCCUP | 0.565 *** | 0.562 *** | 0.565 *** | 0.570 *** | 0.573 *** |
(3.72) | (3.66) | (3.73) | (3.53) | (3.47) | |
LABOR | 0.106 * | 0.106 * | 0.113 * | 0.106 * | 0.113 * |
(1.76) | (1.76) | (1.80) | (1.74) | (1.80) | |
AIR | 2.689 *** | 2.686 *** | 2.661 *** | 2.692 *** | 2.661 *** |
(9.13) | (9.11) | (8.78) | (9.05) | (8.74) | |
AREAP | −0.082 *** | −0.082 *** | −0.082 *** | −0.082 *** | −0.082 *** |
(−3.74) | (−3.72) | (−3.74) | (−3.70) | (−3.68) | |
NOMACH | 0.265 *** | 0.266 *** | 0.266 *** | 0.265 *** | 0.266 *** |
(6.40) | (6.39) | (6.41) | (6.40) | (6.41) | |
HASSET | 0.171 ** | 0.172 ** | 0.169 ** | 0.172 ** | 0.174 ** |
(2.55) | (2.54) | (2.53) | (2.51) | (2.51) | |
INSURANCE | 0.346 ** | 0.347 ** | 0.355 ** | 0.342 ** | 0.349 ** |
(2.42) | (2.43) | (2.45) | (2.27) | (2.30) | |
LOCATION | −0.318 ** | −0.318 ** | −0.315 ** | −0.320 ** | −0.318 ** |
(−2.04) | (−2.04) | (−2.02) | (−2.04) | (−2.03) | |
AGE | −0.001 | −0.001 | |||
(−0.15) | (−0.15) | ||||
INCOMEP | −0.028 | −0.033 | |||
(−0.39) | (−0.43) | ||||
HEAL | −0.008 | −0.021 | |||
(−0.08) | (−0.18) | ||||
Region dummies | Yes | Yes | Yes | Yes | Yes |
Constant | −2.072 *** | −2.030 *** | −1.857 ** | −2.057 *** | −1.738 * |
(−3.62) | (−3.20) | (−2.33) | (−3.40) | (−1.88) | |
Pseudo R2 | 0.149 | 0.149 | 0.149 | 0.149 | 0.159 |
AUC | 0.749 | 0.749 | 0.749 | 0.749 | 0.779 |
N | 873 | 873 | 873 | 873 | 873 |
Variable | Unmatched | Mean | Bias (%) | t-Value | p-Value | |
---|---|---|---|---|---|---|
Matched | Treated Group | Control Group | ||||
EDU | U | 2.102 | 2.159 | −8.10 | −1.14 | 0.255 |
M | 2.102 | 2.098 | 0.60 | 0.06 | 0.951 | |
MARR | U | 1.106 | 1.311 | −31.2 * | −3.91 | 0.000 |
M | 1.106 | 1.094 | 1.90 | 0.29 | 0.768 | |
OCCUP | U | 0.732 | 0.592 | 29.8 * | 4.09 | 0.000 |
M | 0.732 | 0.754 | −4.90 | −0.83 | 0.407 | |
LABOR | U | 3.012 | 2.746 | 23.6 * | 3.22 | 0.001 |
M | 3.012 | 3.013 | −0.10 | −0.01 | 0.992 | |
AIR | U | 0.294 | 0.138 | 58.6 * | 9.38 | 0.000 |
M | 0.294 | 0.287 | 2.80 | 0.27 | 0.787 | |
AREAP | U | 2.301 | 2.489 | −5.50 | −0.75 | 0.453 |
M | 2.301 | 2.218 | 3.06 | 1.58 | 0.115 | |
NOMACH | U | 3.435 | 2.279 | 61.3 * | 9.34 | 0.000 |
M | 3.435 | 3.331 | 5.00 | 0.72 | 0.472 | |
HASSET | U | 6.95 | 6.641 | 31.5 * | 4.15 | 0.000 |
M | 6.95 | 6.959 | −1.00 | −0.11 | 0.911 | |
INSURANCE | U | 0.309 | 0.409 | −20.9 * | −2.91 | 0.004 |
M | 0.309 | 0.307 | 0.40 | 0.05 | 0.961 | |
LOCATION | U | 0.739 | 0.815 | −18.2 * | −2.71 | 0.007 |
M | 0.739 | 0.764 | −5.91 | −0.63 | 0.532 |
Dep. Variable | Sample | Treated Group | Control Group | ATT | t-Value |
---|---|---|---|---|---|
log(TLP) | pre-matching | 8.811 | 8.907 | −0.096 | −1.99 |
post-matching | 8.811 | 8.673 | 0.137 ** | 2.06 | |
log(ALP) | pre-matching | 7.093 | 6.311 | 0.782 *** | 10.09 |
post-matching | 7.093 | 6.791 | 0.301 ** | 2.89 | |
log(NALP) | pre-matching | 7.522 | 8.062 | −0.541 *** | −4.61 |
post-matching | 7.522 | 7.418 | 0.104 | 0.64 |
Dep. Variables | Rent of at Least One Plot of Land | Rent of at Least Two Plots of Land | Rent of at Least Three Plots of Land |
---|---|---|---|
ATT | ATT | ATTa | |
NNM | |||
log(TLP) | 0.137 ** | 0.199 *** | 0.081 * |
(2.06) | (2.78) | (1.65) | |
log(ALP) | 0.301 ** | 0.302 *** | 0.441 *** |
(2.89) | (2.89) | (3.36) | |
log(NALP) | 0.104 | 0.015 | −0.259 |
(0.64) | (0.08) | (−1.12) | |
RBM | |||
log(TLP) | 0.117 ** | 0.171 *** | 0.109 * |
(1.99) | (2.96) | (1.67) | |
log(ALP) | 0.229 ** | 0.259 *** | 0.450 *** |
(2.31) | (2.76) | (3.88) | |
log(NALP) | 0.077 | 0.074 | −0.066 |
(0.54) | (0.43) | (−0.32) | |
KBM | |||
log(TLP) | 0.115 * | 0.183 *** | 0.093 * |
(1.92) | (3.34) | (1.65) | |
log(ALP) | 0.265 *** | 0.303 *** | 0.522 *** |
(2.75) | (3.15) | (4.91) | |
log(NALP) | 0.071 | 0.057 | −0.196 |
(0.48) | (0.34) | (−0.99) | |
Balancing Hypothesis | Yes | Yes | Yes |
Common Support | Yes | Yes | Yes |
Observations | |||
Treatment Group | 296 | 182 | 108 |
Control Group | 577 | 691 | 765 |
Dep. Variable | A: Mountainous Area | B: Plain Area |
---|---|---|
ATT | ATTa | |
NNM | ||
log(TLP) | 0.301 | 0.147 ** |
(1.14) | (2.11) | |
log(ALP) | 0.793 | 0.477 ** |
(1.56) | (1.77) | |
log(NALP) | −0.486 | 0.212 |
(−1.50) | (1.15) | |
RBM | ||
log(TLP) | 0.229 | 0.136 ** |
(1.10) | (2.34) | |
log(ALP) | 1.064 | 0.451 ** |
(1.54) | (2.78) | |
log(NALP) | −0.403 | −0.621 |
(−1.54) | (−1.53) | |
KBM | ||
log(TLP) | 0.351 | 0.136 ** |
(1.36) | (2.13) | |
log(ALP) | 1.021 | 0.493 ** |
(1.51) | (2.51) | |
log(NALP) | −0.828 * | 0.102 |
(−1.91) | (1.01) | |
Balancing Hypothesis | Yes | Yes |
Common Support | Yes | Yes |
Observations | ||
Treatment Group | 230 | 66 |
Control Group | 473 | 194 |
Dep. Variable | Sample | Treated Group | Control Group | ATT | t-Value |
---|---|---|---|---|---|
log(TLP) | Pre-matching | 9.144 | 8.669 | 0.475 *** | 10.34 |
Post-Matching | 9.144 | 9.071 | 0.171 * | 1.66 | |
log(ALP) | Pre-matching | 6.361 | 6.803 | −0.442 *** | −5.63 |
Post-Matching | 6.361 | 6.449 | −0.088 | −0.71 | |
log(NALP) | Pre-matching | 8.469 | 7.399 | 1.069 *** | 9.46 |
Post-Matching | 8.469 | 8.266 | 0.303 * | 1.77 |
Variables | Renting out at Least One Plot of Land | Renting out at Least Two Plots of Land | Renting out at Least Three Plots of Land |
---|---|---|---|
ATT | ATT | ATTa | |
NNM | |||
log(TLP) | 0.171 * | 0.103 | 0.179 * |
(1.66) | (1.56) | (1.94) | |
log(ALP) | −0.088 | −0.058 | −0.474 ** |
(−0.71) | (−0.43) | (-2.79) | |
log(NALP) | 0.303 * | 0.422 *** | 0.773 *** |
(1.77) | (3.11) | (4.43) | |
RBM | |||
log(TLP) | 0.107 * | 0.069 | 0.171 ** |
(1.70) | (1.18) | (2.23) | |
log(ALP) | −0.145 | −0.023 | −0.326 ** |
(−1.39) | (−0.21) | (−2.29) | |
log(NALP) | 0.318 ** | 0.416 *** | 0.796 *** |
(2.03) | (3.92) | (5.26) | |
KBM | |||
log(TLP) | 0.109 * | 0.070 | 0.171 ** |
(1.72) | (1.19) | (2.24) | |
log(ALP) | −0.148 | −0.031 | −0.337 |
(−1.42) | (−0.23) | (−2.36) | |
log(NALP) | 0.324 ** | 0.416 *** | 0.809 *** |
(2.07) | (3.91) | (5.31) | |
Balancing Hypothesis | Yes | Yes | Yes |
Common Support | Yes | Yes | Yes |
Observations | |||
Treatment Group | 426 | 165 | 145 |
Control Group | 640 | 901 | 921 |
Dep. Variable | C: Mountainous Area | D: Plain Area |
---|---|---|
ATT | ATTa | |
NNM | ||
log(TLP) | 0.521 | 0.409 *** |
(1.39) | (5.92) | |
log(ALP) | −0.241 | −0.008 |
(−0.42) | (−0.07) | |
log(NALP) | 0.475 | 0.942 *** |
(0.75) | (5.19) | |
RBM | ||
log(TLP) | 0.466 | 0.345 *** |
(1.37) | (6.07) | |
log(ALP) | −0.531 | 0.028 |
(−0.99) | (0.29) | |
log(NALP) | 0.428 | 0.781 *** |
(0.72) | (5.07) | |
KBM | ||
log(TLP) | 0.469 | 0.345 *** |
(1.33) | (6.04) | |
log(ALP) | −0.581 | 0.032 |
(−1.05) | (0.34) | |
log(NALP) | 0.437 | 0.787 *** |
(0.71) | (5.08) | |
Balancing Hypothesis | Yes | Yes |
Common Support | Yes | Yes |
Observations | ||
Treatment Group | 419 | 80 |
Control Group | 453 | 114 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Xin, L.; Li, X.; Yan, J. Impact of Land Use Rights Transfer on Household Labor Productivity: A Study Applying Propensity Score Matching in Chongqing, China. Sustainability 2017, 9, 4. https://doi.org/10.3390/su9010004
Wang Y, Xin L, Li X, Yan J. Impact of Land Use Rights Transfer on Household Labor Productivity: A Study Applying Propensity Score Matching in Chongqing, China. Sustainability. 2017; 9(1):4. https://doi.org/10.3390/su9010004
Chicago/Turabian StyleWang, Yahui, Liangjie Xin, Xiubin Li, and Jianzhong Yan. 2017. "Impact of Land Use Rights Transfer on Household Labor Productivity: A Study Applying Propensity Score Matching in Chongqing, China" Sustainability 9, no. 1: 4. https://doi.org/10.3390/su9010004
APA StyleWang, Y., Xin, L., Li, X., & Yan, J. (2017). Impact of Land Use Rights Transfer on Household Labor Productivity: A Study Applying Propensity Score Matching in Chongqing, China. Sustainability, 9(1), 4. https://doi.org/10.3390/su9010004