China’s Water Utilization Efficiency: An Analysis with Environmental Considerations
Abstract
:1. Introduction
2. Literature Review
2.1. Studies of Utilization Efficiency of Water Resources: Industrial, Agricultural, and Urban
2.2. Studies of Data Envelopment Analysis in Environmental Research
2.3. Studies of Factors Influencing the Utilization Efficiency of Water Resources
2.3.1. Agricultural Water
2.3.2. Industrial Water
3. Methodology and Data
3.1. Directional Distance Function
3.2. Spatial Correlation Coefficient
3.3. Spatial Panel Data Models: the Spatial Auto-Correlation Model (SAR) and the Spatial Error Model (SEM)
3.4. Data
3.4.1. Data for Directional Distance Function
- (1)
- (2)
- Sewage discharges. There are several methods of processing undesirable output: the negative output method, the linear conversion method, and the nonlinear conversion method. Of these three, the linear conversion method maintains the convexity and linear relationship because it is based on the classification invariance principle of the BCC model, commonly used by the DEA (Seiford [16]). Therefore, we adopt the linear data conversion method to convert sewage discharges data. We use a linear data conversion function, f(b) = v − b, to convert sewage discharges into output. Specifically, v is a large enough vector which ensures all converted desirable output is positive, b is the total amount of each province’s industrial and domestic wastewater discharges. Wastewater data is from various years of the China Statistical Yearbook [43].
- (3)
- Capital stock. Researchers generally use the “perpetual inventory method” to estimate the capital stock. The capital stock is estimated by: , where Ki,t is the capital stock of region i in year t; Ii,t is the investment of region i in year t, and δi,t, is the capital depreciation rate for region i in year t. We use the China’s estimated national and provincial capital stock data for the period from 1999 to 2006 in Shan [46]. The real capital stock data at the 1995 dollar after 2006 is calculated using the perpetual inventory method.
- (4)
- Labor. The provincial labor force is calculated as the average rate of employment at the end of the year and employment at the end of previous corresponding year. Because the average education level of each province is not available, differences in labor quality are not included. Employment data is from various years’ China Statistical Yearbook [43].
- (5)
- Water resources. Provincial water consumption is used as the water resource input. This is aggregated from industrial, agricultural, ecological water, and household water supplies. Data is collected from various years of the China Statistical Yearbook [43] and the China Water Resources Bulletin [45].
3.4.2. Variables Influencing Utilization Efficiency of Inter-Provincial Water Resources
4. Results and Discussion
4.1. Analysis of the Inter-Provincial and Regional Differences in Water Utilization Efficiency
4.2. Spatial Correlation Analysis of Regional Water Utilization Efficiency
4.3. Analysis of Factors Influencing Water Utilization Efficiency
4.3.1. Selection of Spatial Panel Data Models
4.3.2. Results of Spatial Panel Data Models
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
DEA | Data envelopment analysis |
C-D | Cobb-Douglas |
SAR | Spatial auto-regressive model |
SEM | Spatial error model |
LM | Lagrange multiplier |
References
- Bosseboeuf, D.; Chateau, B.; Lapillonne, B. Cross-Country Comparison on Energy Efficiency Indicators: The on-Going European Effort towards a Common Methodology. Energy Policy 1997, 25, 673–682. [Google Scholar] [CrossRef]
- Mei, K.; Liao, L.; Zhu, Y.; Lu, P.; Wang, Z.; Dahlgren, R.A.; Zhang, M. Evaluation of Spatial-Temporal Variations and Trends in Surface Water Quality across a Rural-Suburban-Urban Interface. Environ. Sci. Pollut. Res. 2014, 21, 8036–8051. [Google Scholar] [CrossRef] [PubMed]
- Allan, T. Productive Efficiency and Allocative Efficiency: Why Better Water Management May Not Solve the Problem. Agric. Water Manag. 1999, 40, 71–75. [Google Scholar] [CrossRef]
- Zoebl, D. Is Water Productivity a Useful Concept in Agricultural Water Management? Agric. Water Manag. 2006, 84, 265–273. [Google Scholar] [CrossRef]
- Berger, M.; Pfister, S.; Bach, V.; Finkbeiner, M. Saving the Planet’s Climate or Water Resources? The Trade-off between Carbon and Water Footprints of European Biofuels. Sustainability 2015, 7, 6665–6683. [Google Scholar] [CrossRef]
- Barker. Global Water Shortages, Alternatives for Increasing Water Productivity and Implications for China; IWMI: Columbia, Sri Lanka, 2000. [Google Scholar]
- Lilienfeld, A.; Asmild, M. Estimation of Excess Water Use in Irrigated Agriculture: A Data Envelopment Analysis Approach. Agric. Water Manag. 2007, 94, 73–82. [Google Scholar] [CrossRef]
- Dhehibl, B.; Elloumi, L.; Mohammed, L. Measuring Irrigation Water Use Efficiency Using Stochastic Production Frontier: An Application on Citrus Producing Farms in Tunisia. Afr. J. Agric. Resour. Econ. 2007, 1, 1–15. [Google Scholar]
- Walsh, C.J. Urban Impacts on the Ecology of Receiving Waters: A Framework for Assessment, Conservation and Restoration. Hydroblologia 2000, 431, 107–114. [Google Scholar] [CrossRef]
- Mortier, R.; Block, C.; Vandecasteele, C. Water Management in the Flemish Steel Industry: The Arcelor Gent Case. Clean Technol. Environ. Policy 2007, 9, 257–263. [Google Scholar] [CrossRef]
- Novotny, V.; Ahern, J.; Brown, P. Water Centric Sustainable Communities: Planning, Retrofitting and Building the Next Urban Environment; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Capello, R.; Faggian, A. An Economic-Ecological Model of Urban Growth and Urban Externalities: Empirical Evidence from Italy. Ecol. Econ. 2002, 40, 181–198. [Google Scholar] [CrossRef]
- Oh, K.; Jeong, Y.; Lee, D.; Lee, W.; Choi, J. Determining Development Density Using the Urban Carrying Capacity Assessment System. Landsc. Urban Plan. 2005, 73, 1–15. [Google Scholar] [CrossRef]
- Ma, H.L.; Huang, D.C.; Zhang, J.G. Consider Water Use Efficiency of Non-Consensual Output and Its Impact Factors. Chin. Pop. Resour. Environ. 2012, 10, 35–42. [Google Scholar]
- Gollop, F.M.; Swinand, G.P. From Total Factor to Total Resource Productivity: An Application to Agriculture. Am. J. Agric. Econ. 1998, 80, 577–583. [Google Scholar] [CrossRef]
- Seiford, L.M.; Zhu, J. Modeling Undesirable Factors in Efficiency Evaluation. Eur. J. Oper. Res. 2002, 142, 16–20. [Google Scholar] [CrossRef]
- Chung, Y.H.; Fare, R.; Grosskopf, S. Productivity and Undesirable Outputs: A Directional Distance Function Approach. J. Environ. Manag. 1997, 51, 229–240. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W.; Poh, K.L. Measuring Environmental Performance under Different Environmental Dea Technologies. Energy Econ. 2008, 30, 1–14. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.; Han, J. Total Factor Carbon Emission Performance: A Malmquist Index Analysis. Energy Econ. 2010, 32, 194–201. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Hernandez-Sancho, F. Environmental Performance: An Index Number Approach. Resour. Energy Econ. 2004, 26, 343–352. [Google Scholar] [CrossRef]
- Wu, F.; Fan, L.; Zhou, P.; Zhou, D. Industrial Energy Efficiency with CO2 Emissions in China: A Nonparametric Analysis. Energy Policy 2012, 49, 164–172. [Google Scholar] [CrossRef]
- Valadkhani, A.; Roshdi, I.; Smyth, R. How Successful Was Kyoto? A Multiplicative Environmental Dea Approach to Measure Efficiency Changes in the World’s Major Polluters. Energy Econ. 2016, 54, 363–375. [Google Scholar] [CrossRef]
- Shi, G.-M.; Bi, J.; Wang, J.-N. Chinese Regional Industrial Energy Efficiency Evaluation Based on a Dea Model of Fixing Non-Energy Inputs. Energy Policy 2010, 38, 6172–6179. [Google Scholar] [CrossRef]
- Mcguckin, J.T.; Gollehon, N.; Ghosh, S. Water Conservation in Irrigated Agriculture—A Stochastic Production Frontier Model. Water Resour. Res. 1992, 28, 305–312. [Google Scholar] [CrossRef]
- Omezzine, A.; Zaibet, L. Management of Modern Irrigation Systems in Oman: Allocative vs. Irrigation Efficiency. Agric. Water Manag. 1998, 37, 99–107. [Google Scholar] [CrossRef]
- Karagiannis, G.; Tzouvelekas, V.; Xepapadeas, A. Measuring Irrigation Water Efficiency with a Stochastic Production Frontier—An Application to Greek out-of-Season Vegetable Cultivation. Environ. Resour. Econ. 2003, 26, 57–72. [Google Scholar] [CrossRef]
- Blanke, A.; Rozelle, S.; Lohmar, B.; Wang, J.; Huang, J. Water Saving Technology and Saving Water in China. Agric. Water Manag. 2007, 87, 139–150. [Google Scholar] [CrossRef]
- Kaneko, S.; Tanaka, K.; Toyota, T.; Managi, S. Water Efficiency of Agricultural Production in China: Regional Comparison from 1999 to 2002. Int. J. Agric. Resour. Gov. Ecol. 2004, 3, 231–251. [Google Scholar] [CrossRef]
- Li, G.; Wen, Z.; Du, B.; Zhang, C.; Chen, J. An Analysis of Industrial Water Conservation Potential and Selection of Key Technologies Based on the Iwcpa Model. Resour. Conserv. Recycl. 2008, 52, 1141–1152. [Google Scholar]
- Rogers, P.; De Silva, R.; Bhatia, R. Water Is an Economic Good: How to Use Prices to Promote Equity, Efficiency, and Sustainability. Water Policy 2002, 4, 1–17. [Google Scholar] [CrossRef]
- Bolong, N.; Ismail, A.F.; Salim, M.R.; Matsuura, T. A Review of the Effects of Emerging Contaminants in Wastewater and Options for Their Removal. Desalination 2009, 239, 229–246. [Google Scholar] [CrossRef]
- Sojamo, S. Unlocking the “Prisoner’s Dilemma” of Corporate Water Stewardship in South Africa-Exploring Corporate Power and Legitimacy of Engagement in Water Management and Governance. Sustainability 2015, 7, 6893–6918. [Google Scholar] [CrossRef]
- Sun, C.Z.; Zhao, L.S.; Zhou, W. The Inter-Provincial Water Resources Global Environmental Technology Efficiency Measurement in China and Its Spatial Effect. Nat. Resour. J. 2014, 29, 553–563. [Google Scholar]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the Efficiency of Decision Making Units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Noh, D.-W.; Weber, W. Characteristics of a Polluting Technology: Theory and Practice. J. Econ. 2005, 126, 469–492. [Google Scholar] [CrossRef]
- Luenberger, D.G. Microeconomic Theory; McGraw Hill: New York, NY, USA, 1995. [Google Scholar]
- Wang, B.; Wu, Y.R.; Yan, P.F. China Regional Environmental Efficiency and Environmental Tfp Growth. Econ. Res. 2010, 5, 95–110. [Google Scholar]
- Kumar, S. Environmentally Sensitive Productivity Growth: A Global Analysis Using Malmquist-Luenberger Index. Ecol. Econ. 2006, 56, 280–293. [Google Scholar] [CrossRef]
- Tobler, W.R. A Transformational View of Cartography. Am. Cart. 1979, 6, 101–106. [Google Scholar] [CrossRef]
- Moran, P.A.P. Notes on Continuous Stochastic Phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Anselin, L. Spatial Econometrics: Methods and Models; Springer Science & Business Media: Berlin, Germany, 2013; Volume 4. [Google Scholar]
- Haining, R. Spatial Data Analysis in the Social and Environmental Sciences; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Bureau, C.S. China Statistical Yearbook; China Statistics Press: Beijing, 1999–2014. [Google Scholar]
- Bureau, C.S. Compilation of Statistics of 60 Years in New China; China Statistics Press: Beijing, China, 2009. [Google Scholar]
- Ministry, C.W.R. China Water Resources Bulletin; China Water Conservancy Press: Beijing, 1999–2014. [Google Scholar]
- Shan, H.J. Re-Estimating China’s Capital Stock K 1952–2006. Numb. Technol. Econ. 2008, 10, 23–35. [Google Scholar]
- Dong, H.; Geng, Y.; Fujita, T.; Fujii, M.; Hao, D.; Yu, X. Uncovering Regional Disparity of China’s Water Footprint and Inter-Provincial Virtual Water Flows. Sci. Total Environ. 2014, 500, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Roson, R.; Sartori, M. A Decomposition and Comparison Analysis of International Water Footprint Time Series. Sustainability 2015, 7, 5304–5320. [Google Scholar] [CrossRef] [Green Version]
- Denison, E.F. Why Growth Rates Differ: Postwar Experience in Nine Western Countries; Brookings: Washington, DC, USA, 1967. [Google Scholar]
- Jefferson, G.H.; Huamao, B.; Xiaojing, G.; Xiaoyun, Y. R & D Performance in Chinese Industry. Econ. Innov. New Technol. 2006, 15, 345–366. [Google Scholar]
- Barbier, E.B. Water and Economic Growth. Econ. Rec. 2004, 80, 1–16. [Google Scholar] [CrossRef]
- Maddison, A. Growth and Slowdown in Advanced Capitalist Economies: Techniques of Quantitative Assessment. J. Econ. Lit. 1987, 25, 649–698. [Google Scholar]
- Anderson, D. Energy Efficiency and the Economists: The Case for a Policy Based on Economic Principles. Ann. Rev. Energy Environ. 1995, 20, 495–511. [Google Scholar] [CrossRef]
- Wang, Y.H. Pay Attention to How to Build a Water-Saving Society in Underdeveloped Areas. Chin. Water Conserv. 2005, 13, 175–179. [Google Scholar]
- Cazcarro, I.; Duarte, R.; Martin-Retortillo, M.; Pinilla, V.; Serrano, A. How Sustainable Is the Increase in the Water Footprint of the Spanish Agricultural Sector? A Provincial Analysis between 1955 and 2005–2010. Sustainability 2015, 7, 5094–5119. [Google Scholar] [CrossRef]
- Shi, M.J.; Wang, X.J.; Yang, H.; Wang, T. Pricing or Quota? A Solution to Water Scarcity in Oasis Regions in China: A Case Study in the Heihe River Basin. Sustainability 2014, 6, 7601–7620. [Google Scholar] [CrossRef]
- Chen, Z.M.; Chen, G.Q. Virtual Water Accounting for the Globalized World Economy: National Water Footprint and International Virtual Water Trade. Ecol. Indic. 2013, 28, 142–149. [Google Scholar] [CrossRef]
- Clark, S.; Sarlin, P.; Sharma, A.; Sisson, S.A. Increasing Dependence on Foreign Water Resources? An Assessment of Trends in Global Virtual Water Flows Using a Self-Organizing Time Map. Ecol. Inform. 2015, 26, 192–202. [Google Scholar] [CrossRef]
Variable Name | Variable Definition | Units | Date Sources |
---|---|---|---|
Economic Growth (EG) | Ln (real GDP per capita) | Yuan/Person | China Statistical Yearbook , Compilation of Statistics of 60 Years in New China, China Water Resources Bulletin [43,44,45]. |
Industrial Structure (IS) | value-added of the primary industry/total GDP | % | |
Technological Progress (TP) | R and D value/total GDP | % | |
Government Influence (GI) | agricultural and forestry water expenditure/general budget expenditure | % | |
Economic Openness (EO) | total volume of imports and exports/total GDP | % | |
Water Endowment (WE) | Ln (water resources per capita) | m3/Person | |
Water Price (WP) | Annual household expenditure on water/annual household total consumption expenditure | % |
Year | 1999 | 2001 | 2003 | 2005 | 2007 | 2009 | 2011 | 2013 | Average |
---|---|---|---|---|---|---|---|---|---|
Beijing | 0.994 | 0.976 | 0.978 | 0.899 | 1.000 | 1.000 | 1.000 | 1.000 | 0.985 |
Tianjin | 1.000 | 0.998 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Hebei | 0.576 | 0.562 | 0.554 | 0.537 | 0.527 | 0.516 | 0.532 | 0.511 | 0.542 |
Shanxi | 0.786 | 0.706 | 0.754 | 0.733 | 0.742 | 0.735 | 0.756 | 0.743 | 0.748 |
Inner Mongolia | 0.274 | 0.325 | 0.259 | 0.276 | 0.261 | 0.202 | 0.213 | 0.203 | 0.248 |
Liaoning | 0.873 | 0.876 | 0.889 | 0.901 | 0.903 | 0.913 | 0.926 | 0.937 | 0.902 |
Jilin | 0.577 | 0.502 | 0.513 | 0.487 | 0.489 | 0.506 | 0.512 | 0.505 | 0.514 |
Heilongjiang | 0.378 | 0.382 | 0.288 | 0.434 | 0.456 | 0.479 | 0.468 | 0.477 | 0.426 |
Shanghai | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Jiangsu | 0.489 | 0.417 | 0.435 | 0.420 | 0.439 | 0.468 | 0.539 | 0.556 | 0.471 |
Zhejiang | 0.718 | 0.692 | 0.664 | 0.624 | 0.611 | 0.621 | 0.612 | 0.624 | 0.645 |
Anhui | 0.695 | 0.700 | 0.688 | 0.659 | 0.632 | 0.584 | 0.599 | 0.604 | 0.649 |
Fujian | 0.629 | 0.596 | 0.527 | 0.532 | 0.543 | 0.512 | 0.508 | 0.521 | 0.551 |
Jiangxi | 0.543 | 0.515 | 0.523 | 0.534 | 0.587 | 0.554 | 0.565 | 0.623 | 0.561 |
Shandong | 0.714 | 0.715 | 0.699 | 0.678 | 0.688 | 0.662 | 0.669 | 0.645 | 0.688 |
Henan | 0.588 | 0.592 | 0.577 | 0.556 | 0.579 | 0.533 | 0.547 | 0.516 | 0.563 |
Hubei | 0.414 | 0.336 | 0.378 | 0.355 | 0.378 | 0.362 | 0.357 | 0.379 | 0.376 |
Hunan | 0.452 | 0.399 | 0.435 | 0.487 | 0.498 | 0.477 | 0.457 | 0.487 | 0.469 |
Guangdong | 0.498 | 0.484 | 0.465 | 0.477 | 0.488 | 0.474 | 0.472 | 0.497 | 0.487 |
Guangxi | 0.349 | 0.336 | 0.357 | 0.487 | 0.468 | 0.456 | 0.445 | 0.476 | 0.448 |
Hainan | 0.727 | 0.881 | 0.906 | 0.926 | 0.981 | 0.973 | 0.927 | 0.931 | 0.913 |
Sichuan | 0.655 | 0.616 | 0.594 | 0.585 | 0.572 | 0.567 | 0.559 | 0.567 | 0.562 |
Guizhou | 0.512 | 0.528 | 0.495 | 0.496 | 0.526 | 0.475 | 0.469 | 0.488 | 0.506 |
Yunnan | 1.000 | 0.998 | 1.000 | 0.996 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Tibet | 0.772 | 0.734 | 0.803 | 0.834 | 0.902 | 0.913 | 0.924 | 0.931 | 0.852 |
Shaanxi | 0.479 | 0.507 | 0.523 | 0.576 | 0.566 | 0.542 | 0.498 | 0.548 | 0.554 |
Gansu | 0.332 | 0.312 | 0.342 | 0.346 | 0.359 | 0.344 | 0.352 | 0.366 | 0.351 |
Qinghai | 0.744 | 0.957 | 0.948 | 1.000 | 0.894 | 0.898 | 1.000 | 1.000 | 0.93 |
Ningxia | 0.372 | 0.378 | 0.388 | 0.423 | 0.431 | 0.402 | 0.369 | 0.488 | 0.418 |
Xinjiang | 0.076 | 0.074 | 0.087 | 0.110 | 0.098 | 0.087 | 0.095 | 0.116 | 0.011 |
East China | 0.779 | 0.745 | 0.738 | 0.727 | 0.744 | 0.740 | 0.744 | 0.747 | 0.744 |
Central China | 0.579 | 0.517 | 0.520 | 0.518 | 0.533 | 0.504 | 0.508 | 0.517 | 0.525 |
West China | 0.506 | 0.524 | 0.527 | 0.557 | 0.552 | 0.535 | 0.539 | 0.562 | 0.535 |
Total | 0.616 | 0.603 | 0.602 | 0.609 | 0.617 | 0.602 | 0.606 | 0.618 | 0.609 |
Year | Moran’s I | Z(I) | p | Year | Moran’s I | Z(I) | p |
---|---|---|---|---|---|---|---|
1999 | 0.0673 | 2.8988 | 0.0000 | 2007 | 0.0712 | 3.0251 | 0.0002 |
2000 | 0.0677 | 2.9211 | 0.0001 | 2008 | 0.0736 | 3.0986 | 0.0001 |
2001 | 0.0732 | 3.0899 | 0.0000 | 2009 | 0.0823 | 3.2973 | 0.0000 |
2002 | 0.0623 | 2.7466 | 0.0001 | 2010 | 0.0845 | 3.3216 | 0.0000 |
2003 | 0.0645 | 2.7588 | 0.0000 | 2011 | 0.0773 | 3.1084 | 0.0000 |
2004 | 0.0652 | 2.8581 | 0.0000 | 2012 | 0.0992 | 3.7238 | 0.0000 |
2005 | 0.0661 | 2.8784 | 0.0000 | 2013 | 0.1052 | 3.8807 | 0.0000 |
2006 | 0.0659 | 2.8702 | 0.0000 | 2014 | 0.1068 | 3.9211 | 0.0001 |
Variable | Mixture | Spatial Fixed Effects | Time Fixed Effects | Two-Way Fixed Effects |
---|---|---|---|---|
Economic Growth (EG) | 0.0362 *** | 0.1301 ** | 0.0916 *** | 0.2058 *** |
(2.7375) | (2.0639) | (3.5218) | (2.6472) | |
Industrial Structure (IS) | −0.0657 *** | −0.0539 ** | −0.0327 *** | −0.1112 *** |
(5.0422) | (2.3118) | (2.7278) | (3.3104) | |
Technological Progress (TP) | 0.2173 * | 0.1266 ** | 0.2574 ** | 0.1489 *** |
(1.8718) | (2.2801) | (2.3176) | (2.6129) | |
Government Influence (GI) | −0.0028 ** | −0.0175 ** | −0.0077 *** | −0.0198 *** |
(−2.0298) | (−2.1106) | (−2.8967) | (−2.8847) | |
Economic Openness (EO) | 0.0634 *** | 0.1152 *** | 0.1074 *** | 0.1413 *** |
(2.7662) | (2.8139) | (2.6458) | (3.0536) | |
Water Endowment (WE) | −0.1015 ** | −0.1206 *** | −0.1153 ** | −0.1056 ** |
(−2.0093) | (−2.8677) | (−2.1248) | (2.1142) | |
Water Price (WP) | −0.0085 | 0.1076 | 0.0133 * | −0.1109 |
(−1.0109) | (0.9692) | (1.7244) | (1.1536) | |
R-squared | 0.5812 | 0.6339 | 0.6192 | 0.8914 |
Log-Likelihood | 260.9263 | 536.4437 | 276.0603 | 738.7802 |
D.W. | 2.0031 | 1.7614 | 1.5968 | 2.1043 |
LM-lag | 2.1536 * | 30.3249 *** | 3.9876 * | 15.6729 ** |
Robust LM-lag | 18.4276 *** | 2.5672 * | 26.7633 *** | 0.3203 |
LM-err | 12.3628 ** | 28.1371 *** | 16.6047 *** | 18.1928 *** |
Robust LM-err | 28.6368*** | 0.3794 | 39.3894 *** | 2.8402 ** |
Variable | SAR | SEM |
---|---|---|
Economic Growth (EG) | 0.2162 *** | 0.2319 *** |
(3.1317) | (3.4363) | |
Industrial Structure (IS) | −0.1215 *** | −0.0893 *** |
(4.0462) | (5.1361) | |
Technological Progress (TP) | 0.1673 *** | 0.1716 *** |
(2.8971) | (3.1285) | |
Government Influence (GI) | −0.0162 *** | −0.0205 *** |
(−3.0219) | (−3.8826) | |
Economic Openness (EO) | 0.1263 *** | 0.1425 *** |
(3.7166) | (4.4172) | |
Water Endowment (WE) | −0.0981 ** | −0.1107 *** |
(−2.1409) | (−2.8767) | |
Water Price (WP) | −0.0908 | −0.1627 |
(−1.2109) | (−1.4019) | |
W* dep. var | 0.2748 *** | |
(4.2186) | ||
Spat error | 0.3174 *** | |
(5.9178) | ||
R-squared | 0.9012 | 0.9244 |
Log-L | 741.5254 | 748.8528 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, H.; Shi, C.; Chou, N.-T. China’s Water Utilization Efficiency: An Analysis with Environmental Considerations. Sustainability 2016, 8, 516. https://doi.org/10.3390/su8060516
Ma H, Shi C, Chou N-T. China’s Water Utilization Efficiency: An Analysis with Environmental Considerations. Sustainability. 2016; 8(6):516. https://doi.org/10.3390/su8060516
Chicago/Turabian StyleMa, Hailiang, Chenling Shi, and Nan-Ting Chou. 2016. "China’s Water Utilization Efficiency: An Analysis with Environmental Considerations" Sustainability 8, no. 6: 516. https://doi.org/10.3390/su8060516
APA StyleMa, H., Shi, C., & Chou, N.-T. (2016). China’s Water Utilization Efficiency: An Analysis with Environmental Considerations. Sustainability, 8(6), 516. https://doi.org/10.3390/su8060516