Assessment of Trace Metals Contamination of Surface Water and Sediment: A Case Study of Mvudi River, South Africa
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Area
2.2. Sample Collection
2.3. Sample Pre-Treatment
2.4. Validation of Analytical Methodology and Statistical Analyses
3. Results and Discussion
3.1. Physico-Chemical Parameters
Months | pH | Conductivity (mS/m) | Turbidity (NTU) |
---|---|---|---|
January | 7.4 ± 0.04 | 10.5 ± 0.08 | 429 ± 31 |
February | 7.3 ± 0.04 | 15.9 ± 0.66 | 20.4 ± 4.3 |
March | 7.7 ± 0.16 | 13.6 ± 1.8 | 17.6 ± 8.2 |
April | 7.2 ± 0.22 | 12.8 ± 0.62 | 8.0 ± 0.67 |
May | 7.6 ± 0.05 | 16.1 ± 2.13 | 7.8 ± 3.5 |
June | 7.6 ± 0.05 | 13.8 ± 1.67 | 1.9 ± 1.16 |
DWAF guidelines | 6–9 | <70 | <1 |
WHO guidelines | 6.5–9.5 | 600 | <1 |
3.2. Trace Metals Concentration of Mvudi River Water
Trace Metals Concentration (mg/L) | Sampling Months | |||||
---|---|---|---|---|---|---|
January | February | March | April | May | June | |
Al | 9.644 ± 4 | 1.492 ± 1.3 | 1.010 ± 0.24 | 1.566 ± 0.45 | 2.811 ± 0.78 | 2.083 ± 1.19 |
Cd | 0.0003 ± 0.003 | 0.002 ± 0.0001 | 0.001 ± 0.0001 | 0.0004 ± 0.002 | 0.0012 ± 0.003 | 0.001 ± 0.001 |
Cr | 0.357 ± 0.08 | 0.281 ± 0.05 | 0.246 ± 0.04 | 0.259 ± 0.01 | 0.344 ± 0.09 | 0.015 ± 0.02 |
Cu | 0.185 ± 0.26 | 0.068 ± 0.06 | 0.024 ± 0.01 | 0.039 ± 0.01 | 0.043 ± 0.01 | 0.0463 ± 0.03 |
Fe | 2.161 ± 0.85 | 0.807 ± 0.33 | 0.9197 ± 0.96 | 0.755 ± 0.20 | 2.645 ± 1.36 | 0.702 ± 0.23 |
Mn | 0.107 ± 0.02 | 0.081 ± 0.08 | 0.2133 ± 0.04 | 0.281 ± 0.09 | 0.5207 ± 0.12 | 0.256 ± 0.21 |
Pb | 0.014 ± 0.02 | 0.023 ± 0.05 | 0.002 ± 0 | 0.011 ± 0.01 | 0.042 ± 0.03 | 0.01 ± 0.01 |
Zn | 0.261 ± 0.21 | 0.1012 ± 0.07 | 0.052 ± 0.03 | 0.065 ± 0.02 | 0.179 ± 0.1 | 0.031 ± 0.03 |
* Cd | * 0.142 ± 0.04 | * 2.189 ± 0.89 | * 0.17 ± 0.01 | bdl | bdl | bdl |
Trace Metals (mg/L) | Dzindi River [3] | Umtata River, [49] | Plankenburg River [50] | Diep River, [50] | Mvudi River (This Study) |
---|---|---|---|---|---|
Fe | 0.80–1.70 | 0.10–4.47 | 0.3–48 | 0.2–513 | 0.425–5.07 |
Al | 0.20–0.40 | 0.22–0.36 | 0.3–13.6 | bdl–4 | 0.393–13.81 |
Mn | 0.05–0.20 | 0.16–2.04 | bdl–0.4 | bdl–1.3 | 0.029–0.675 |
Zn | 0.05–0.23 | 0.07–0.12 | bdl–1.1 | 0.1–4.4 | 0.001–0.548 |
Cr | 0.03–0.10 | na | na | na | 0.012–0.593 |
Cu | 0.03–0.07 | 0.1–0.53 | 0.3–2.2 | 0.1–0.6 | 0.011–0.567 |
Pb | 0.01–0.05 | 0.24–1.11 | na | na | bdl–0.046 |
Cd | na | 0.01–0.26 | na | na | 0.0002–0.0043 |
3.3. Trace Metals in Sediments of Mvudi River
Trace Metals (mg/kg, Dry Weight) | Long et al. [51] | CCME [52] | ||
---|---|---|---|---|
ERL | ERM | TEL | PEL | |
Al | na | na | na | na |
Cd | 1.2 | 9.6 | 0.6 | 3.5 |
Cr | 81 | 370 | 37.3 | 90 |
Cu | 34 | 270 | 35.7 | 197 |
Fe | na | na | na | na |
Mn | na | na | na | na |
Pb | 46.7 | 218 | 35 | 91.3 |
Zn | 150 | 410 | 123 | 315 |
3.4. Possible Sources of Pollution to Mvudi River
Al | Cd | Cr | Cu | Fe | Mn | Pb | Zn | |
---|---|---|---|---|---|---|---|---|
January | 5.943–13.81 | 0.0012–0.0054 | 0.175–0.593 | 0.038–0.567 | 1.281–2.740 | 0.091–0.133 | 0.002–0.046 | 0.090–0.548 |
(4860–9090) | (bdl–0.142) | (54.96–69.28) | (18.83–35.46) | (4900–5480) | (353–740) | (2.12–8.37) | (16.10–39.46) | |
February | 0.093–4.018 | 0.0014–0.0043 | 0.202–0.340 | 0.020–0.167 | 0.539–1.416 | 0.029–0.213 | bdl–0.132 | 0.037–0.230 |
(3960–4900) | (bdl–2.189) | (31.96–52.48) | (7.68–18.05) | (2900–4540) | (160–535) | (1.25–2.27) | (9.81–32.16) | |
March | 0.625–1.133 | 0.0009–0.0011 | 0.177–0.290 | 0.019–0.032 | 0.831–1.089 | 0.164–0.263 | bdl–0.009 | 0.041–0.06 |
(4080–5860) | (bdl–0.233) | (35.70–65.06) | (9.49–5690) | (2960–4740) | (166–408) | (1.17–4.16) | (9.78–1524) | |
April | 0.976–2.249 | 0.0003–0.0006 | 0.013–0.036 | 0.019–0.048 | 0.536–1.016 | 0.163–0.435 | 0.0074–0.017 | 0.017–0.086 |
(4120–5180) | (bdl) | (121–175) | (23.50–73.66) | (6200–7460) | (558–2140) | (3.83–7.24) | (19.61–50.12) | |
May | 2.105–4.134 | 0.0003–0.0019 | 0.250–0.462 | 0.027–0.057 | 1.168–5.068 | 0.391–0.675 | 0.006–0.014 | 0.108–0.375 |
(4320–4600) | (bdl) | (109–173) | (33.38–48.90) | (6000–6540) | (1352–2160) | (5.50–7.95) | (22.54–16.72) | |
June | 1.227–4.388 | 0.0002–0.0014 | 0.012–0.018 | 0.011–0.100 | 0.425–1.001 | 0.087–0.671 | 0.0012–0.018 | 0.01–0.085 |
(4120–4480) | (bdl) | (57.86–70.16) | (14.54–17.37) | (4900–5160) | (578–1300) | (1.78–2.24) | (12.17–18.34) |
3.5. Effect of Seasonal Variation on Trace Metals Level in Mvudi River
Al | Cd | Cr | Cu | Fe | Mn | Pb | Zn | |
---|---|---|---|---|---|---|---|---|
Wet | 4.049 | 0.0011 | 0.295 | 0.092 | 1.296 | 0.134 | 0.013 | 0.138 |
(4697) | (51.59) | (26.80) | (4371) | (405) | (3.87) | (24.01) | ||
Dry | 2.153 | 0.0009 | 0.206 | 0.041 | 1.367 | 0.323 | 0.022 | 0.085 |
(4533) | (144) | (33.68) | (6117) | (1369) | (4.69) | (29.11) | ||
p-value | 0.602 | 0.499 | 0.406 | 0.426 | 0.947 | 0.202 | 0.287 | 0.601 |
(0.132) | (0.115) | (0.701) | (0.036) | (0.044) | (0.757) | (0.518) |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Fobosi, S. Rural Areas in the Eastern Cape Province, South Africa: The Right to Access Safe Drinking Water and Sanitation Denied? 2013. Available online: http://www.consultancyafrica.com/index.php?option=com_content&view=article&id=1198:rural-areas-in-the-eastern-cape-province-south-africa-the-right-to-access-safe-drinking-water-and-sanitation-denied-&catid=91:rights-in-focus&Itemid=296 (accessed on 20 April 2015).
- Heleba, S. Access to sufficient water in South Africa: How far have we come? Law, Dev. Democracy 2012, 15, 244–278. [Google Scholar] [CrossRef]
- Edokpayi, J.N.; Odiyo, J.O.; Olasoji, S.O. Assessment of heavy metal contamination of Dzindi River, in Limpopo Province, South Africa. Int. J. Nat. Sci. Res. 2014, 2, 185–194. [Google Scholar]
- Mohiuddin, K.M.; Ogawa, Y.; Zakir, H.M.; Otomo, K.; Shikazono, N. Heavy metals contamination in water and sediments of an urban river in a developing country. Int. J. Environ. Sci. Technol. 2011, 4, 723–736. [Google Scholar] [CrossRef]
- Samarghandi, M.; Nouri, J.; Mesdaghinia, A.R.; Mahvi, A.H.; Nasseri, S.; Vaezi, F. Efficiency Removal of Phenol, Lead and Cadmium by Means of UV/TiO2/H2O2 Processes. Int. J. Environ. Sci. Technol. 2007, 4, 19–26. [Google Scholar] [CrossRef]
- Song, M.; Chu, S.; Letcher, R.J.; Seth, R. Fate, partitioning, and mass loading of polybrominated diphenyl ethers (PBDEs) during the treatment processing of municipal sewage. Environ. Sci. Technol. 2006, 40, 6241–6246. [Google Scholar] [CrossRef] [PubMed]
- Vergas, V.M.F.; Migliavacca, S.B.; De Melo, A.C.; Horn, R.C.; Guidobono, R.R.; De Sa Ferreira, I.C.F.; Pestana, M.H.D. Genotoxicity assessment in aquatic environments under the influence of heavy metals and organic contaminants. Mutat. Res. 2001, 490, 141–158. [Google Scholar] [CrossRef]
- Ahmad, J.U.; Goni, M.A. Heavy metal contamination in water, soil, and vegetables of the industrial areas in Dhaka, Bangladesh. Environ. Monit. Assess. 2010, 166, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Duruibe, J.O.; Ogwuegbu, M.O.C.; Egwurugwu, J.N. Heavy metal pollution and human biotoxic effects. Int. J. Phys. Sci. 2007, 2, 112–118. [Google Scholar]
- du Preez, H.H.; Steyn, G.J. A preliminary investigation of the concentration of selected metals in the tissues and organs of the tigerfish (Hydrocynus vittatus) from the Olifants River, Kruger National Park, South Africa. Water SA. 1992, 18, 131–136. [Google Scholar]
- Wepener, V.; van Vuren, J.H.J.; du Preez, H.H. Uptake and distribution of a copper, iron and zinc mixture in gill, liver and plasma of a freshwater teleost, Tilapia sparrmanii. Water SA. 2001, 27, 99–108. [Google Scholar] [CrossRef]
- Water Research Commission. Water and the environment. Water Wheel 2014, 13, 8–14. [Google Scholar]
- Jadia, C.D.; Fulekar, M.H. Phytoremediation of heavy metals: Recent techniques. Afr. J. Biotechnol. 2009, 8, 921–928. [Google Scholar]
- Sardar, K.; Ali, S.; Hameed, S.; Afzal, S.; Fatima, S.; Shakoor, M.B.; Bharwana, S.A.; Tauqeer, H.M. Heavy Metals Contamination and what are the Impacts on Living Organisms. Greener J. Environ. Manage. Public Safety 2013, 2, 172–179. [Google Scholar]
- Iqbal, M.A.; Gupta, S.G. Studies on Heavy Metal Ion Pollution of Ground Water Sources as an Effect of Municipal Solid Waste Dumping. Afr. J. Basic Appl. Sci. 2009, 1, 117–122. [Google Scholar]
- Varol, M.; Sen, B. Assessment of nutrient and heavy metal contamination in surface water and sediments of the upper Tigris River, Turkey. Catena 2012, 92, 1–12. [Google Scholar] [CrossRef]
- Jarup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 67–182. [Google Scholar] [CrossRef]
- Mzezewa, J.; Misi, T.; van Rensburg, L.D. Characterisation of rainfall at a semi-arid ecotope in the Limpopo Province (South Africa) and its implications for sustainable crop production. Water SA 2010, 36, 19–26. [Google Scholar] [CrossRef]
- Edokpayi, J.N.; Odiyo, J.O.; Msagati, T.A.; Potgieter, N. Temporal Variations in Physico-Chemical and Microbiological Characteristics of Mvudi River, South Africa. Int. J. Environ. Res. Public Health 2015, 12, 4128–4140. [Google Scholar] [CrossRef] [PubMed]
- Odiyo, J.O.; Phangisa, J.I.; Makungo, R. Rainfall–runoff modelling for estimating Latonyanda River flow contributions to Luvuvhu River downstream of Albasini Dam. Phys. Chem. Earth 2012, 50–52, 5–13. [Google Scholar] [CrossRef]
- Odiyo, J.O.; Bapela, H.M.; Mugwedi, R.; Chimuka, L. Metals in environmental media: A study of trace and platinum group metals in Thohoyandou, South Africa. Water SA 2005, 31, 581–588. [Google Scholar]
- Edokpayi, J.N.; Odiyo, J.O.; Msagati, T.A.M.; Popoola, E.O. Removal Efficiency of Faecal Indicator Organisms, Nutrients and Heavy Metals from a Peri-Urban Wastewater Treatment Plant in Thohoyandou, Limpopo Province, South Africa. Int. J. Environ. Res. Public Health 2015, 12, 7300–7320. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Acid Digestion of Sediments, Sludges, and Soils Method 3050B. Available online: http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/3050b.pdf (accessed on 21 March 2013).
- US EPA. Method 200.7. Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry Revision 4.4. Methods for the Determination of Metals in Environmental Samples Supplement 1. EPA 600-R-94-111; US Environmental Protection Agency: Cincinnati, OH, USA, 1994; pp. 1–58. [Google Scholar]
- DWAF. South African Water Quality Guidelines, vol. 7: Aquatic Ecosystems, 2nd ed.; Department of Water Affairs and Forestry: Pretoria, South Africa, 1996. [Google Scholar]
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; WHO: Geneva, Switzerland, 2011; pp. 155–202. [Google Scholar]
- DWAF. South African Water Quality Guidelines, vol. 8: Field Guide, 1st ed.; DWAF: Pretoria, South Africa, 1996. [Google Scholar]
- Gupta, V.B.; Anitha, S.; Hegde, M.L.; Zecca, L.; Garruto, R.M.; Ravid, R.; Shankar, S.K.; Stein, R.; Shanmugavelu, P.; Jagannatha Rao, K.S. Aluminium in Alzheimer’s disease: are we still at a crossroad? Cell. Mol. Life Sci. 2005, 62, 143–158. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, M.; Kato-Negishi, M. Link between Aluminum and the Pathogenesis of Alzheimer’s disease: The Integration of the Aluminum and Amyloid Cascade Hypotheses. Int. J. Alzheimers Dis. 2011. [CrossRef] [PubMed]
- Yip, R.; Dallman, P.R. Iron. In Present Knowledge in Nutrition, 7th ed.; Ziegler, E.E., Filer, L.J., Eds.; ILSI Press: Washington DC., USA, 1996; pp. 277–292. [Google Scholar]
- Brody, T. Nutritional Biochemistry, 2nd ed.; Academic Press: San Diego, CA, USA, 1999; pp. 697–730. [Google Scholar]
- Forstner, U.; Wittmann, G.T.W. Metal Pollution in the Aquatic Environment; Springer-Verlag: Berlin, Germany, 1979. [Google Scholar]
- Garvin, K.S. Health Effects of Fe in Drinking Water. Available online: http://www.livestrong.com/article/155098-health-effects-of-iron-in-drinking-water (accessed on 24 November 2015).
- American Ground Water Trust. The American Well Owner, 2002. Available online: http://www.agwt.org/content/iron-problems (accessed on 24 November 2015).
- Vuori, K.M. Direct and indirect effects of iron on river ecosystems. Ann. Zool. Fennici. 1995, 32, 317–329. [Google Scholar]
- Gerhardt, A. Subacute effects of iron (Fe) on Leptophlebia marginata (Insecta: Ephemeroptera). Freshwater Biol. 1992, 27, 79–84. [Google Scholar] [CrossRef]
- Smith, E.J.; Sykora, J.L. Early developmental effects of lime-neutralized iron-hydroxide suspensions on brook trout and coho salmon. Trans. Amer. Fish. Soc. 1976, 105, 308–312. [Google Scholar] [CrossRef]
- Crossgrove, J.; Zheng, W. Manganese toxicity upon overexposure. NMR Biomed. 2004, 17, 544–553. [Google Scholar] [CrossRef] [PubMed]
- Ljung, K.; Vahter, M. Time to Re-evaluate the Guideline Value for Manganese in Drinking Water? Environ. Health Perspect 2007, 115, 1533–1538. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Liu, D.H.; Zhang, G.Q. Effects of high-level-manganese sewage irrigation on children’s neurobehavior. Chi. J. Prev. Med. 1994, 28, 216–218. [Google Scholar]
- Wasserman, G.A.; Liu, X.; Parvez, F.; Ahsan, H.; Levy, D.; Factor-Litvak, P.; Kline, J.; van Geen, A.; Slavkovich, V.; LoIacono, N.J.; et al. Water manganese exposure and children’s intellectual function in Araihazar, Bangladesh. Environ. Health Perspect. 2006, 114, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Woolf, A.; Wright, R.; Amarasiriwardena, C.; Bellinger, D. A child with chronic manganese exposure from drinking water. Environ. Health Perspect. 2002, 110, 613–616. [Google Scholar] [CrossRef] [PubMed]
- Kondakis, X.G.; Makris, N.; Leotsinidis, M.; Prinou, M.; Papapetropoulos, T. Possible health effects of high manganese concentration in drinking water. Arch. Environ. Health 1989, 44, 75–178. [Google Scholar] [CrossRef] [PubMed]
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Manganese. 2012. Available online: http://www.atsdr.cdc.gov/toxprofiles/tp151.pdf (accessed on 15 April 2015). [Google Scholar]
- Brown, M.J.; Margolis, S. Morbidity and Mortality Weekly Report (MMWR). 2012. Available online: http://www.cdc.gov/mmwr/preview/mmwrhtml/su6104a1.htm? scid=su6104a1_x. (accessed on 15 April 2015). [Google Scholar]
- WHO. Water-Related Diseases; Lead Poisoning. Available online: http://www.who.int/water_sanitation_health/diseases/lead/en/ (accessed on 1 May 2015).
- Mayo Clinic. Lead Poisoning. 2011. Available online: http://www.mayoclinic.org/diseases-conditions/lead-poisoning/basics/definition/con-20035487 (accessed on 17 April 2015).
- Nriagu, J. Zinc Toxicity in Humans. 2007. Available online: http://www.extranet.elsevier.com/homepage_about/mrwd/nvrn/Zinc%20Toxicity%20in%20Humans.pdf (accessed on 12 April 2015).
- Fatoki, O.S.; Lujiza, N.; Ogunfowokan, A.O. Trace metal pollution in Umtata River. Water SA. 2002, 28, 183–190. [Google Scholar] [CrossRef]
- Jackson, V.A.; Paulse, A.N.; Odendaal, J.P.; Khan, W. Investigation into the metal Contamination of the Plankenburg and Diep Rivers, Western Cape, South Africa. Water SA. 2009, 35, 282–299. [Google Scholar]
- Long, E.R.; MacDonald, D.D.; Smith, L.; Calder, F.D. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ. Manage. 1995, 19, 81–97. [Google Scholar] [CrossRef]
- Canadian Council of Ministers of the Environment. Canadian Sediment Quality Guidelines for the Protection of Aquatic Life: Summary Tables; Canadian environmental guidelines; Canadian Council of Ministers of the Environment: Winnipeg, MB, Canada, 2001. [Google Scholar]
- Long, E.R.; Field, L.J.; MacDonald, D.D. Predicting toxicity in marine sediments with numerical sediment quality guidelines. Environ. Toxicol. Chem. 1998, 17, 714–727. [Google Scholar] [CrossRef]
- Makhera, M.; Gumbo, J.R.; Chigayo, K. Monitoring of microcystin-LR in Luvuvhu River catchment: Implications for human health. Afr. J. Biotechnol. 2011, 10, 405–412. [Google Scholar]
- Chimuka, L.; Nefale, F.; Masevhe, A. Determination of Phenols in Water Samples using a Supported Liquid Membrane Extraction Probe and Liquid Chromatography with Photodiode Array Detection. S. Afr. J. Chem. 2007, 60, 102–108. [Google Scholar]
- Okonkwo, J.O.; Mothiba, M. Physico-chemical characteristics and pollution levels of heavy metals in the rivers in Thohoyandou, South Africa. J. Hydrol. 2005, 308, 122–127. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Edokpayi, J.N.; Odiyo, J.O.; Popoola, O.E.; Msagati, T.A.M. Assessment of Trace Metals Contamination of Surface Water and Sediment: A Case Study of Mvudi River, South Africa. Sustainability 2016, 8, 135. https://doi.org/10.3390/su8020135
Edokpayi JN, Odiyo JO, Popoola OE, Msagati TAM. Assessment of Trace Metals Contamination of Surface Water and Sediment: A Case Study of Mvudi River, South Africa. Sustainability. 2016; 8(2):135. https://doi.org/10.3390/su8020135
Chicago/Turabian StyleEdokpayi, Joshua N., John O. Odiyo, Oluwaseun E. Popoola, and Titus A. M. Msagati. 2016. "Assessment of Trace Metals Contamination of Surface Water and Sediment: A Case Study of Mvudi River, South Africa" Sustainability 8, no. 2: 135. https://doi.org/10.3390/su8020135
APA StyleEdokpayi, J. N., Odiyo, J. O., Popoola, O. E., & Msagati, T. A. M. (2016). Assessment of Trace Metals Contamination of Surface Water and Sediment: A Case Study of Mvudi River, South Africa. Sustainability, 8(2), 135. https://doi.org/10.3390/su8020135