Life Cycle Assessment and Optimization-Based Decision Analysis of Construction Waste Recycling for a LEED-Certified University Building
Abstract
:1. Introduction
- Credit 2.1 (one point): recycle and/or salvage at least 50 percent of construction, demolition and land-clearing waste.
- Credit 2.2 (one point): recycle and/or salvage an additional 25 percent (75 percent total) of construction, demolition and land-clearing waste.
Novelty and Organization of the Research
2. Case Study
3. Methodology
3.1. Hybrid LCA Model
3.2. Multi-Criteria Optimization Model
3.3. Data Collection
4. Results
4.1. LCA Results
4.1.1. Energy Savings
Material | Recycling | % Share | Landfilling | % Share | Incineration | % Share |
---|---|---|---|---|---|---|
Cardboard | 0.271 | 3.6% | −0.004 | 5.6% | 0.000 | 27.2% |
Non-ferrous | 5.720 | 75.5% | −0.002 | 2.8% | N/A | N/A |
Ferrous Metal | 0.156 | 2.1% | −0.002 | 2.8% | N/A | N/A |
Concrete | 0.241 | 3.2% | −0.024 | 37.0% | N/A | N/A |
Plastic | 0.978 | 12.9% | −0.002 | 2.7% | 0.000 | 13.2% |
Wood | 0.093 | 1.2% | −0.008 | 12.3% | 0.000 | 59.6% |
Glass | 0.010 | 0.1% | 0.000 | 0.2% | N/A | N/A |
Drywall | 0.084 | 1.1% | −0.004 | 6.1% | N/A | N/A |
Asphalt | 0.027 | 0.4% | −0.020 | 30.3% | N/A | N/A |
4.1.2. GHG Emission Savings
Material | Recycling | % Share | Landfilling | % Share | Incineration | % Share |
---|---|---|---|---|---|---|
Cardboard | 9.430 | 7% | −2.714 | 6% | -26.718 | 18% |
Non-ferrous | 38.142 | 30% | −1.370 | 3% | N/A | N/A |
Ferrous Metal | 61.732 | 49% | −1.370 | 3% | N/A | N/A |
Concrete | −23.800 | - | −17.918 | 37% | N/A | N/A |
Plastic | 15.733 | 12% | −1.318 | 3% | −32.250 | 22% |
Wood | −7.910 | - | −5.955 | 12% | −90.400 | 61% |
Glass | 0.436 | 0% | −0.108 | 0% | N/A | N/A |
Drywall | 0.562 | 0% | −2.963 | 6% | N/A | N/A |
Asphalt | −8.930 | - | −14.663 | 30% | N/A | N/A |
4.1.3. Water Savings
Material | Recycling | % Share | Landfilling | % Share | Incineration | % Share |
---|---|---|---|---|---|---|
Cardboard | 0.201 | 0.2% | −1.102 | 5.6% | −0.048 | 27.3% |
Non-ferrous | 5.707 | 5.2% | −0.556 | 2.8% | N/A | N/A |
Ferrous Metal | 0.130 | 0.1% | −0.556 | 2.8% | N/A | N/A |
Concrete | −0.211 | - | −7.276 | 37.0% | N/A | N/A |
Plastic | 0.945 | 0.9% | −0.535 | 2.7% | −0.023 | 12.9% |
Wood | −0.058 | - | −2.418 | 12.3% | −0.106 | 59.8% |
Glass | 0.007 | 0.0% | −0.044 | 0.2% | N/A | N/A |
Drywall | 0.009 | 0.0% | −1.203 | 6.1% | N/A | N/A |
Asphalt | 101.988 | 93.6% | −5.954 | 30.3% | N/A | N/A |
4.2. Optimization Results
5. Conclusions, Limitations and Future Work
Author Contributions
Conflicts of Interest
References
- USEPA. Estimating 2003 Building-Related Construction and Demolition Materials Amounts; USEPA: Washington, DC, USA, 2009. [Google Scholar]
- Townsend, T.; Wilson, C.; Beck, B. The Benefits of Construction and Demolition Materials Recycling in the United States; University of Florida: Gainesville, FL, USA, 2014. [Google Scholar]
- USGBC. LEED 2009 for New Construction and Major Renovations Rating System; U.S. Green Building Council: Washington, DC, USA, 2009. [Google Scholar]
- Tatari, O.; Kucukvar, M. Cost premium prediction of certified green buildings: A neural network approach. Build. Environ. 2010, 46, 1081–1085. [Google Scholar] [CrossRef]
- Lave, L.B.; Hendrickson, C.T.; Conway-Schempf, N.M.; McMichael, F.C. Municipal Solid Waste Recycling Issues. J. Environ. Eng. 1999, 125, 1–16. [Google Scholar] [CrossRef]
- Gustavsson, L.; Sathre, R. Variability in energy and carbon dioxide balances of wood and concrete building materials. Build. Environ. 2006, 41, 940–951. [Google Scholar] [CrossRef]
- Petersen, A.K.; Solberg, B. Environmental and economic impacts of substitution between wood products and alternative materials: A review of micro-level analyses from Norway and Sweden. For. Policy Econ. 2005, 7, 249–259. [Google Scholar] [CrossRef]
- Lasvaux, S.; Habert, G.; Peuportier, B.; Chevalier, J. Comparison of generic and product-specific Life Cycle Assessment databases: Application to construction materials used in building LCA studies. Int. J. Life Cycle Assess. 2015, 20, 1473–1490. [Google Scholar] [CrossRef]
- Dixit, M.K.; Culp, C.H.; Fernandez-Solis, J.L. Embodied energy of construction materials: Integrating human and capital energy into an IO-based hybrid model. Environ. Sci. Technol. 2015, 49, 1936–1945. [Google Scholar] [CrossRef] [PubMed]
- Pierucci, A. LCA evaluation methodology for multiple life cycles impact assessment of building materials and components. Tema:Tempo Mater. Arch. 2015, 1, 1–6. [Google Scholar]
- Cabeza, L.F.; Rincón, L.; Vilariño, V.; Pérez, G.; Castell, A. Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renew. Sustain. Energy Rev. 2014, 29, 394–416. [Google Scholar] [CrossRef]
- Dixit, M.K.; Fernández-Solís, J.L.; Lavy, S.; Culp, C.H. Need for an embodied energy measurement protocol for buildings: A review paper. Renew. Sustain. Energy Rev. 2012, 16, 3730–3743. [Google Scholar] [CrossRef]
- Van den Heede, P.; de Belie, N. Environmental impact and life cycle assessment (LCA) of traditional and “green” concretes: Literature review and theoretical calculations. Cem. Concr. Compos. 2012, 34, 431–442. [Google Scholar] [CrossRef]
- Ortiz, O.; Castells, F.; Sonnemann, G. Sustainability in the construction industry: A review of recent developments based on LCA. Constr. Build. Mater. 2009, 23, 28–39. [Google Scholar] [CrossRef]
- University of Central Florida Sustainability and Energy Management Department. LEED GOLD Physical Sciences Building: Material and Resources Credits. 2012. Available online: http://www.sustainable.ucf.edu/?q=node/108 (accessed on 5 March 2015).
- Hendrickson, C.; Lave, L.; Matthews, H. Environmental Life Cycle Assessment of Goods and Services: An Input-Output Approach; Routledge: London, UK, 2006. [Google Scholar]
- Suh, S.; Huppes, G. Methods for Life Cycle Inventory of a product. J. Clean. Prod. 2005, 13, 687–697. [Google Scholar] [CrossRef]
- Egilmez, G.; Kucukvar, M.; Tatari, O. Sustainability assessment of U.S. manufacturing sectors: An economic input output-based frontier approach. J. Clean. Prod. 2013, 53, 91–102. [Google Scholar]
- Egilmez, G.; Kucukvar, M.; Tatari, O. Supply chain sustainability assessment of the U.S. food manufacturing sectors: A life cycle-based frontier approach. Resour. Conserv. Recycl. 2014, 82, 8–20. [Google Scholar]
- Kucukvar, M.; Egilmez, G.; Tatari, O. Evaluating environmental impacts of alternative construction waste management approaches using supply-chain-linked life-cycle analysis. Waste Manag. Res. 2014, 32, 500–508. [Google Scholar] [CrossRef] [PubMed]
- Noori, M.; Kucukvar, M.; Tatari, O. A macro-level decision analysis of wind power as a solution for sustainable energy. Int. J. Sustain. Energy 2013, 34, 629–644. [Google Scholar] [CrossRef]
- Tatari, O.; Nazzal, M.; Kucukvar, M. Comparative sustainability assessment of warm-mix asphalts: A thermodynamic based hybrid life cycle analysis. Resour. Conserv. Recycl. 2012, 58, 18–24. [Google Scholar] [CrossRef]
- Kucukvar, M.; Noori, M.; Egilmez, G.; Tatari, O. Stochastic decision modeling for sustainable pavement designs. Int. J. Life Cycle Assess. 2014, 19, 1185–1199. [Google Scholar] [CrossRef]
- Onat, N.C.; Kucukvar, M.; Tatari, O.; Zheng, Q.P. Combined Application of Multi-Criteria Optimization and Life-Cycle Sustainability Assessment for Optimal Distribution of Alternative Passenger Cars in US. J. Clean. Prod. 2015, 30, 1–17. [Google Scholar]
- Chang, N.-B. Systems Analysis for Sustainable Engineering; McGraw-Hill: New York, NY, USA, 2011. [Google Scholar]
- Lindo Inc. LINDO Systems—Optimization Software: Integer Programming, Linear Programming, Nonlinear Programming, Stochastic Programming, Global Optimization. 2012. Available online: http://www.lindo.com/ (accessed on 10 May 2012).
- Christensen, T.H.; Bhander, G.; Lindvall, H.; Larsen, A.W.; Fruergaard, T.; Damgaard, A.; Manfredi, S. Experience with the use of LCA-modelling (EASEWASTE) in waste management. Waste Manag. Res. 2007, 25, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Denison, R.A. Environmental life-cycle comparisons of recycling, landfilling, and incineration: a review of recent studies. Annu. Rev. Energy Environ. 1996, 21, 191–237. [Google Scholar] [CrossRef]
- USEPA. Waste Reduction Model (WARM). 2010. Available online: http://www.epa.gov/climatechange/wycd/waste/calculators/Warm_Form.html (accessed on 3 March 2015). [Google Scholar]
- Diaz, R.; Warith, M. Life-cycle assessment of municipal solid wastes: Development of the WASTED model. Waste Manag. 2006, 26, 886–901. [Google Scholar] [CrossRef] [PubMed]
- NREL. U.S. Life Cycle Inventory Database: Transport, Train, Diesel Powered; NREL: Washington, DC, USA, 2010. [Google Scholar]
- Carnegie Mellon University Green Design Institute. Economic Input-Output Life Cycle Assessment (EIO-LCA), US 2002 Industry Benchmark Model. 2012. Available online: http://www.eiolca.net/ (accessed on 5 March 2015).
- Tam, V.W. Economic comparison of concrete recycling: A case study approach. Resour. Conserv. Recycl. 2008, 52, 821–828. [Google Scholar] [CrossRef]
- Tam, V.W. Comparing the implementation of concrete recycling in the Australian and Japanese construction industries. J. Clean. Prod. 2009, 17, 688–702. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kucukvar, M.; Egilmez, G.; Tatari, O. Life Cycle Assessment and Optimization-Based Decision Analysis of Construction Waste Recycling for a LEED-Certified University Building. Sustainability 2016, 8, 89. https://doi.org/10.3390/su8010089
Kucukvar M, Egilmez G, Tatari O. Life Cycle Assessment and Optimization-Based Decision Analysis of Construction Waste Recycling for a LEED-Certified University Building. Sustainability. 2016; 8(1):89. https://doi.org/10.3390/su8010089
Chicago/Turabian StyleKucukvar, Murat, Gokhan Egilmez, and Omer Tatari. 2016. "Life Cycle Assessment and Optimization-Based Decision Analysis of Construction Waste Recycling for a LEED-Certified University Building" Sustainability 8, no. 1: 89. https://doi.org/10.3390/su8010089