Air Pollution Prevention and Control: Bioreactors and Bioenergy. By Christian Kennes, Maria C. Veiga, Wiley-Blackwell, 2013; 570 Pages. Price US $195.00, ISBN 978-1-119-94331-0
- Fundamentals and microbiological aspects
- Biofilters, bioscrubbers and other end-of-pipe treatment technologies
- Specific applications of bioreactors
- Biofuels production from pollutants and renewable resources (including biogas, biohydrogen, biodiesel and bioethanol) and its environmental impacts
- Case studies of applications including biotrickling filtration of waste gases, industrial bioscrubbers applied in different industries and biogas upgrading
Table of Contents
- List of Contributors xix
- Preface xxi
- I FUNDAMENTALS AND MICROBIOLOGICAL ASPECTS 1
- 1 Introduction to Air Pollution 3Christian Kennes and Maria C. Veiga
- 1.1 Introduction 3
- 1.2 Types and sources of air pollutants 3
- 1.2.1 Particulate matter 5
- 1.2.2 Carbon monoxide and carbon dioxide 6
- 1.2.3 Sulphur oxides 7
- 1.2.4 Nitrogen oxides 7
- 1.2.5 Volatile organic compounds (VOCs) 9
- 1.2.6 Odours 10
- 1.2.7 Ozone 11
- 1.2.8 Calculating concentrations of gaseous pollutants 11
- 1.3 Air pollution control technologies 11
- 1.3.1 Particulate matter 11
- 1.3.2 Volatile organic and inorganic compounds 12
- 1.3.2.1 Nonbiological processes 12
- 1.3.2.2 Bioprocesses 15
- 1.3.3 Environmentally friendly bioenergy 17
- 1.4 Conclusions 17
- References 17
- 2 Biodegradation and Bioconversion of Volatile Pollutants 19Christian Kennes, Haris N. Abubackar and Maria C. Veiga
- 2.1 Introduction 19
- 2.2 Biodegradation of volatile compounds 20
- 2.2.1 Inorganic compounds 20
- 2.2.1.1 Hydrogen sulphide (H2S) 20
- 2.2.1.2 Ammonia 20
- 2.2.2 Organic compounds 21
- 2.2.2.1 CxHy pollutants 22
- 2.2.2.2 CxHyOz pollutants 22
- 2.2.2.3 Organic sulphur compounds 22
- 2.2.2.4 Halogenated organic compounds 23
- 2.3 Mass balance calculations 24
- 2.4 Bioconversion of volatile compounds 25
- 2.4.1 Carbon monoxide and carbon dioxide 25
- 2.4.2 Volatile organic compounds (VOCs) 26
- 2.5 Conclusions 27
- References 27
- 3 Identification and Characterization of Microbial Communities in Bioreactors 31Luc Malhautier, L. Cabrol, S. Bayle and J.-L. Fanlo
- 3.1 Introduction 31
- 3.2 Molecular techniques to characterize the microbial communities in bioreactors 32
- 3.2.1 Quantification of the community members 32
- 3.2.1.1 Microscopic direct counts 32
- 3.2.1.2 Quantitative PCR 33
- 3.2.2 Assessment of microbial community diversity and structure 34
- 3.2.2.1 Biochemical methods 34
- 3.2.2.2 Genetic fingerprinting methods 34
- 3.2.2.3 Analysis of fingerprint data by multivariate statistical tools and diversity indices 38
- 3.2.3 Determination of the microbial community composition 39
- 3.2.3.1 Construction of small sub-unit (SSU) rRNA clone libraries followed by phylogenetic identification by randomly sequencing the clones 39
- 3.2.3.2 Fluorescent in situ hybridization (FISH) 39
- 3.2.4 Techniques linking microbial identity to ecological function 40
- 3.2.4.1 Stable isotope probing (SIP) 40
- 3.2.4.2 Microautoradiography combined with FISH (FISH-MAR) 41
- 3.2.5 Microarray techniques 41
- 3.2.6 Synthesis 42
- 3.3 The link of microbial community structure with ecological function in engineered ecosystems 42
- 3.3.1 Introduction 42
- 3.3.2 Temporal and spatial dynamics of the microbial community structure under stationary conditions in bioreactors 43
- 3.3.2.1 Temporal stability and dynamics of the total bacterial community structure in the steady state 43
- 3.3.2.2 Microbial and functional stratification along the biofilter height 45
- 3.3.2.3 The microbial community structure–ecosystem function relationship 45
- 3.3.3 Impact of environmental disturbances on the microbial community structure within bioreactors 45
- 3.3.4 Conclusions 47
- References 47
- II BIOREACTORS FOR AIR POLLUTION CONTROL 57
- 4 Biofilters 59Eldon R. Rene, Maria C. Veiga and Christian Kennes
- 4.1 Introduction 59
- 4.2 Historical perspective of biofilters 59
- 4.3 Process fundamentals 60
- 4.4 Operation parameters of biofilters 62
- 4.4.1 Empty-bed residence time (EBRT) 62
- 4.4.2 Volumetric loading rate (VLR) 63
- 4.4.3 Mass loading rate (MLR) 63
- 4.4.4 Elimination capacity (EC) 63
- 4.4.5 Removal efficiency (RE) 63
- 4.4.6 CO2 production rate (PCO2) 63
- 4.5 Design considerations 64
- 4.5.1 Reactor sizing 64
- 4.5.2 Irrigation system 66
- 4.5.3 Leachate collection and disposal 66
- 4.6 Start-up of biofilters 68
- 4.7 Parameters affecting biofilter performance 70
- 4.7.1 Inlet concentrations and pollutant load 70
- 4.7.2 Composition of waste gas and interaction patterns 71
- 4.7.3 Biomass support medium 72
- 4.7.4 Temperature 75
- 4.7.5 pH 78
- 4.7.6 Oxygen availability 79
- 4.7.7 Nutrient availability 80
- 4.7.8 Moisture content and relative humidity 81
- 4.7.9 Polluted gas flow direction 83
- 4.7.10 Carbon dioxide generation rates 83
- 4.7.11 Pressure drop 85
- 4.8 Role of microorganisms and fungal growth in biofilters 87
- 4.9 Dynamic loading pattern and starvation conditions in biofilters 89
- 4.10 On-line monitoring and control (intelligent) systems for biofilters 93
- 4.10.1 On-line flame ionization detector (FID) and photo-ionization detector (PID) analysers 93
- 4.10.2 On-line proton transfer reaction–mass spectrometry (PTR-MS) 94
- 4.10.3 Intelligent moisture control systems 94
- 4.10.4 Differential neural network (DNN) sensor 95
- 4.11 Mathematical expressions for biofilters 95
- 4.12 Artificial neural network-based models 97
- 4.12.1 Back error propagation (BEP) algorithm 97
- 4.12.2 Important considerations during neural network modelling 99
- 4.12.2.1 Data selection, division and normalization 99
- 4.12.2.2 Network parameters 100
- 4.12.2.3 Sensitivity analysis of input parameters 101
- 4.12.2.4 Estimating errors in prediction 102
- 4.12.3 Neural network model development for biofilters and specific examples 103
- 4.13 Fuzzy logic-based models 105
- 4.14 Adaptive neuro-fuzzy interference system-based models for biofilters 108
- 4.15 Conclusions 111
- References 111
- 5 Biotrickling Filters 121Christian Kennes and Maria C. Veiga
- 5.1 Introduction 121
- 5.2 Main characteristics of BTFs 122
- 5.2.1 General aspects 122
- 5.2.2 Packing material 123
- 5.2.3 Biomass and biofilm 126
- 5.2.4 Trickling phase 126
- 5.2.5 Gas EBRT 128
- 5.2.6 Liquid and gas velocities 129
- 5.3 Pressure drop and clogging 130
- 5.3.1 Excess biomass accumulation 130
- 5.3.1.1 Limitation of biomass growth 131
- 5.3.1.2 Physical and chemical methods 132
- 5.3.1.3 Biological methods – predation 132
- 5.3.1.4 Cleaning the packing material outside the reactor 133
- 5.3.2 Accumulation of solid chemicals 133
- 5.4 Full-scale applications and scaling up 134
- 5.5 Conclusions 135
- References 135
- 6 Bioscrubbers 139Pierre Le Cloirec and Philippe Humeau
- 6.1 Introduction 139
- 6.2 General approach of bioscrubbers 140
- 6.3 Operating conditions 141
- 6.3.1 Absorption column 142
- 6.3.2 Biodegradation step – activated sludge reactor 143
- 6.4 Removing families of pollutants 143
- 6.4.1 Volatile organic compound (VOC) removal 144
- 6.4.2 Odor control 146
- 6.4.3 Sulfur compounds degradation 146
- 6.4.3.1 Sulfur compounds present in air 146
- 6.4.3.2 Biogas desulfurization 147
- 6.4.3.3 Ammonia absorption and bio-oxidation 147
- 6.5 Treatment of by-products generated by bioscrubbers 148
- 6.6 Conclusions and trends 148
- References 149
- 7 Membrane Bioreactors 155Raquel Lebrero, Ra´ ul Mu˜ noz, Amit Kumar and Herman Van Langenhove
- 7.1 Introduction 155
- 7.2 Membrane basics 156
- 7.2.1 Types of membranes 156
- 7.2.1.1 Porous membranes 157
- 7.2.1.2 Dense membranes 157
- 7.2.1.3 Composite membranes 158
- 7.2.2 Membrane materials 159
- 7.2.3 Membrane characterization parameters 159
- 7.2.3.1 Membrane thickness 159
- 7.2.3.2 Membrane performance: selectivity and permeance 159
- 7.2.4 Mass transport through the membrane 160
- 7.2.4.1 Transport in porous membranes 162
- 7.2.4.2 Transport in homogeneous membranes 162
- 7.3 Reactor configurations 163
- 7.3.1 Flat-sheet membranes 164
- 7.3.1.1 Plate and frame modules 164
- 7.3.1.2 Spiral-wound modules 164
- 7.3.2 Tubular configuration membranes 165
- 7.3.2.1 Tubular modules 165
- 7.3.2.2 Capillary membrane modules 166
- 7.3.2.3 Hollow-fiber membrane modules 166
- 7.3.3 Membrane-based bioreactors 166
- 7.4 Microbiology 166
- 7.5 Performance of membrane bioreactors 168
- 7.5.1 Membrane-based bioreactors 168
- 7.5.2 Bioreactor operation: influence of the operating parameters 169
- 7.6 Membrane bioreactor modeling 170
- 7.7 Applications of membrane bioreactors in biological waste-gas treatment 172
- 7.7.1 Comparison with other technologies 172
- 7.8 New applications: CO2–NOx sequestration 173
- 7.8.1 NOx removal 173
- 7.8.2 CO2 sequestration 176
- 7.9 Future needs 177
- References 178
- 8 Two-Phase Partitioning Bioreactors 185Hala Fam and Andrew J. Daugulis
- 8.1 Introduction 185
- 8.2 Features of the sequestering phase – selection criteria 186
- 8.3 Liquid two-phase partitioning bioreactors (TPPBs) 187
- 8.3.1 Performance 187
- 8.3.2 Mass transfer 189
- 8.3.2.1 Mass transfer pathways and mechanisms 190
- 8.3.2.2 Substrate uptake mechanisms 191
- 8.3.2.3 Mass transfer of poorly soluble substrates and oxygen 192
- 8.3.2.4 Physical parameters affecting Kla 193
- 8.3.3 Modeling and design elements 194
- 8.3.4 Limitations and research opportunities 196
- 8.4 Solids as the partitioning phase 197
- 8.4.1 Rationale 197
- 8.4.2 Performance 197
- 8.4.3 Mass transfer 198
- 8.4.4 Modeling and design elements 199
- 8.4.5 Limitations and research opportunities 200
- References 200
- 9 Rotating Biological Contactors 207R. Ravi, K. Sarayu, S. Sandhya and T. Swaminathan
- 9.1 Introduction 207
- 9.1.1 Limitations of conventional gas-phase bioreactors 208
- 9.2 The rotating biological contactor 209
- 9.2.1 Modified RBCs for waste-gas treatment 210
- 9.2.1.1 Generation of humidified VOC stream 210
- 9.2.1.2 Biofilm development and start-up 211
- 9.2.1.3 VOC removal studies 212
- 9.3 Studies on removal of dichloromethane in modified RBCs 213
- 9.3.1 Comparison of different bioreactors (biofilters, biotrickling filters, and modified
- RBCs) 215
- 9.3.2 Studies on removal of benzene and xylene in modified RBCs 216
- 9.3.3 Microbiological studies of biofilms 217
- 9.3.3.1 Phylogenic analysis 219
- References 219
- 10 Innovative Bioreactors and Two-Stage Systems 221Eldon R. Rene, Maria C. Veiga and Christian Kennes
- 10.1 Introduction 221
- 10.2 Innovative bioreactor configurations 222
- 10.2.1 Planted biofilter 222
- 10.2.2 Rotatory-switching biofilter 223
- 10.2.3 Tubular biofilter 224
- 10.2.4 Fluidized-bed bioreactor 225
- 10.2.5 Airlift and bubble column bioreactors 227
- 10.2.6 Monolith bioreactor 229
- 10.2.7 Foam emulsion bioreactor 231
- 10.2.8 Fibrous bed bioreactor 233
- 10.2.9 Horizontal-flow biofilm reactor 234
- 10.3 Two-stage systems for waste-gas treatment 235
- 10.3.1 Adsorption pre-treatment plus bioreactor 235
- 10.3.2 Bioreactor plus adsorption polishing 237
- 10.3.3 UV photocatalytic reactor plus bioreactor 237
- 10.3.4 Bioreactor plus bioreactor 240
- 10.4 Conclusions 242
- References 243
- III BIOPROCESSES FOR SPECIFIC APPLICATIONS 247
- 11 Bioprocesses for the Removal of Volatile Sulfur Compounds from Gas Streams 249Albert Janssen, Pim L.F. van den Bosch, Robert Cornelis van Leerdam, and Marco de Graaff
- 11.1 Introduction 249
- 11.2 Toxicity of VOSCs to animals and humans 250
- 11.3 Biological formation of VOSCs 251
- 11.4 VOSC-producing and VOSC-emitting industries 252
- 11.4.1 VOSCs produced from biological processes 252
- 11.4.2 Chemical processes and industrial applications 252
- 11.4.3 Oil and gas 253
- 11.5 Microbial degradation of VOSCs 253
- 11.5.1 Aerobic degradation 253
- 11.5.2 Anaerobic degradation 254
- 11.5.3 Degradation via sulfate reduction 255
- 11.5.4 Anaerobic degradation of higher thiols 255
- 11.5.5 Inhibition of microorganisms 256
- 11.6 Treatment technologies for gas streams containing volatile sulfur compounds 256
- 11.6.1 Biofilters 256
- 11.6.2 Bioscrubbers 258
- 11.7 Operating experience from biological gas treatment systems 261
- 11.7.1 Shell–Paques process for H2S removal 266
- 11.8 Future developments 266
- References 266
- 12 Bioprocesses for the Removal of Nitrogen Oxides 275Yaomin Jin, Lin Guo, Osvaldo D. Frutos, Maria C. Veiga and Christian Kennes
- 12.1 Introduction 275
- 12.2 NOx emission at wastewater treatment plants (WWTPs) 276
- 12.2.1 Nitrification 276
- 12.2.2 Denitrification 276
- 12.2.3 Parameters that affect the formation of nitrogen oxides 277
- 12.2.3.1 DO concentration 277
- 12.2.3.2 High nitrite concentration 278
- 12.2.3.3 Cu2+ concentration 278
- 12.2.3.4 Salinity 278
- 12.2.3.5 pH effects 278
- 12.2.3.6 Solids retention time 278
- 12.2.3.7 Sudden changes in operating parameters 278
- 12.2.3.8 Low COD/N ratios 279
- 12.3 Recent developments in bioprocesses for the removal of nitrogen oxides 279
- 12.3.1 NOx removal 279
- 12.3.1.1 Rotating drum bioreactor (RDB) 279
- 12.3.1.2 BioDeNOx 280
- 12.3.1.3 Hollow-fiber membrane bioreactor (HFMB) 282
- 12.3.1.4 Photobioreactor 283
- 12.3.1.5 Integrated system 284
- 12.3.2 N2O removal 285
- 12.3.2.1 Bioelectrochemical system 285
- 12.3.2.2 Biotrickling filter 285
- 12.3.2.3 Biofilter 286
- 12.4 Challenges in NOx treatment technologies 287
- 12.5 Conclusions 288
- References 288
- 13 Biogas Upgrading 293M. Estefan´ýa L´opez, Eldon R. Rene, Maria C. Veiga and Christian Kennes
- 13.1 Introduction 293
- 13.2 Biotechnologies for biogas desulphurization 294
- 13.2.1 Environmental aspects 294
- 13.2.2 The natural sulphur cycle and sulphur-oxidizing bacteria 294
- 13.2.3 Bioreactor configurations for hydrogen sulphide removal at laboratory scale 295
- 13.2.3.1 Hydrogen sulphide biodegradation under aerobic or oxygen-limited conditions 295
- 13.2.3.2 Hydrogen sulphide removal under anoxic conditions 302
- 13.2.4 Case studies of biogas desulphurization in full-scale systems 302
- 13.2.4.1 THIOPAQ biogas desulphurization process 302
- 13.2.4.2 BioSulfurex biogas desulphurization process 304
- 13.2.4.3 BIO-Sulfex biogas desulphurization process 305
- 13.3 Removal of mercaptans 306
- 13.4 Removal of ammonia and nitrogen compounds 307
- 13.5 Removal of carbon dioxide 308
- 13.6 Removal of siloxanes 309
- 13.7 Comparison between biological and non-biological methods 311
- 13.8 Conclusions 311
- References 315
- IV ENVIRONMENTALLY FRIENDLY BIOENERGY 319
- 14 Biogas 321Marta Ben, Christian Kennes and Maria C. Veiga
- 14.1 Introduction 321
- 14.2 Anaerobic digestion 321
- 14.2.1 A brief history 321
- 14.2.2 Overview of the anaerobic digestion process 323
- 14.2.2.1 Biological process 323
- 14.2.2.2 Environmental factors affecting anaerobic digestion 323
- 14.2.2.3 Important parameters in anaerobic digesters 327
- 14.3 Substrates 328
- 14.3.1 Agricultural and farming wastes 328
- 14.3.1.1 Manure 328
- 14.3.1.2 Agricultural wastes 329
- 14.3.2 Industrial wastes 329
- 14.3.2.1 Food processing waste 330
- 14.3.2.2 Pulp and paper industry 332
- 14.3.3 Urban wastes 333
- 14.3.3.1 Food waste 333
- 14.3.4 Sewage sludge 333
- 14.4 Biogas 334
- 14.4.1 Biogas composition 334
- 14.4.2 Substrate influence on biogas composition 335
- 14.5 Bioreactors 335
- 14.5.1 Batch reactors 337
- 14.5.2 Continuously stirred tank reactor (CSTR) 337
- 14.5.3 Continuously stirred tank reactor with solids recycle (CSTR/SR) 337
- 14.5.4 Plug-flow reactor 337
- 14.5.5 Upflow anaerobic sludge blanket (UASB) 337
- 14.5.6 Attached film digester 338
- 14.5.7 Two-phase digester 338
- 14.6 Environmental impact of biogas 338
- 14.7 Conclusions 339
- References 339
- 15 Biohydrogen 345Bikram K. Nayak, Soumya Pandit and Debabrata Das
- 15.1 Introduction 345
- 15.1.1 Current status of hydrogen production and present use of hydrogen 346
- 15.1.2 Biohydrogen from biomass: present status 346
- 15.2 Environmental impacts of biohydrogen production 346
- 15.2.1 Air pollution due to conventional hydrocarbon-based fuel combustion 346
- 15.2.2 Biohydrogen, a zero-carbon fuel as a potential alternative 348
- 15.3 Properties and production of hydrogen 348
- 15.3.1 Properties of zero-carbon fuel 348
- 15.3.2 Biohydrogen production processes 350
- 15.3.2.1 Biophotolysis of water using algae and cyanobacteria 350
- 15.3.2.2 Photo-fermentation of organic compounds by photosynthetic bacteria 353
- 15.3.2.3 Factors involved in the production of biohydrogen using light 354
- 15.3.2.4 Dark fermentation 356
- 15.3.2.5 Microbial electrolysis cell (MEC) 359
- 15.3.2.6 Hybrid systems using dark, photo-fermentations and/or MECs 363
- 15.4 Potential applications of hydrogen as a zero-carbon fuel 363
- 15.4.1 Transport sector 363
- 15.4.1.1 Current status of technology 364
- 15.4.1.2 Advantages and disadvantages of hydrogen as a transport fuel 365
- 15.4.2 Fuel cells 366
- 15.4.2.1 Classifications of fuel cells 366
- 15.4.2.2 Characteristics of fuel cells 368
- 15.4.2.3 Current status of technology 369
- 15.4.2.4 Advantages and disadvantages of hydrogen-based fuel cells 370
- 15.5 Policies and economics of hydrogen production 371
- 15.5.1 Economics of biohydrogen production 372
- 15.6 Issues and barriers 373
- 15.7 Future prospects 374
- 15.8 Conclusion 375
- References 375
- 16 Catalytic Biodiesel Production 383Zhenzhong Wen, Xinhai Yu, Shan-Tung Tu and Jinyue Yan
- 16.1 Introduction 383
- 16.2 Trends in biodiesel production 384
- 16.2.1 Reactors 384
- 16.2.2 Catalysts 389
- 16.2.2.1 Solid base catalysts 389
- 16.2.2.2 Solid acid catalysts 391
- 16.2.2.3 Enzyme catalysts 393
- 16.3 Challenges for biodiesel production at industrial scale 393
- 16.3.1 Economic analysis 393
- 16.3.2 Ecological considerations 393
- 16.4 Recommendations 394
- 16.5 Conclusions 395
- References 395
- 17 Microalgal Biodiesel 399Hugo Pereira, Helena M. Amaro, Nadpi G. Katkam, Lu´ýsa Barreira, A. Catarina Guedes, Jo˜ao Varela and F. Xavier Malcata
- 17.1 Introduction 399
- 17.2 Wild versus modified microalgae 402
- 17.3 Lipid extraction and purification 404
- 17.3.1 Mechanical methods 405
- 17.3.2 Chemical methods 406
- 17.4 Lipid transesterification 407
- 17.4.1 Acid-catalyzed transesterification 408
- 17.4.2 Base-catalyzed transesterification 408
- 17.4.3 Heterogeneous acid/base-catalyzed transesterification 410
- 17.4.4 Lipase-catalyzed transesterification 410
- 17.4.5 Ionic liquid-catalyzed reactions 411
- 17.5 Economic considerations 412
- 17.5.1 Competition between microalgal biodiesel and biofuels 412
- 17.5.2 Main challenges to biodiesel production from microalgae 413
- 17.5.3 Economics of biodiesel production 414
- 17.6 Environmental considerations 415
- 17.6.1 Uptake of carbon dioxide 416
- 17.6.2 Upgrade of wastewaters 416
- 17.6.3 Management of microalgal biomass 417
- 17.7 Final considerations 418
- 17.7.1 Current state 418
- 17.7.2 Future perspectives 418
- References 420
- 18 Bioethanol 431Johan W. van Groenestijn, Haris N. Abubackar, Maria C. Veiga and Christian Kennes
- 18.1 Introduction 431
- 18.2 Fermentation of lignocellulosic saccharides to ethanol 432
- 18.2.1 Raw materials 432
- 18.2.2 Pretreatment 434
- 18.2.2.1 Dilute acid 434
- 18.2.2.2 Liquid hot water 435
- 18.2.2.3 Concentrated acid 436
- 18.2.2.4 Steam explosion 436
- 18.2.2.5 Ammonia fibre expansion (AFEX) 436
- 18.2.2.6 Wet oxidation 437
- 18.2.2.7 Ozonolysis 437
- 18.2.2.8 Alkali 437
- 18.2.2.9 The Organosolv process 437
- 18.2.2.10 Lignolytic fungi 438
- 18.2.2.11 Other 439
- 18.2.3 Production of inhibitors 439
- 18.2.4 Hydrolysis 439
- 18.2.5 Fermentation 440
- 18.3 Syngas conversion to ethanol – biological route 441
- 18.3.1 Sources of carbon monoxide 441
- 18.3.1.1 Biomass gasification for syngas production 441
- 18.3.1.2 Industrial waste gases 443
- 18.3.2 The Wood–Ljungdahl pathway involved in the bioconversion of carbon monoxide 445
- 18.3.3 Parameters affecting the bioconversion of carbon monoxide to ethanol 446
- 18.3.3.1 Fermentation medium pH and temperature 446
- 18.3.3.2 Mass transfer limitations 447
- 18.3.3.3 Fermentation media composition 448
- 18.3.3.4 Effect of gas composition 449
- 18.3.3.5 Media redox potential 449
- 18.4 Demonstration projects 450
- 18.5 Comparison of conventional fuels and bioethanol (corn, cellulosic, syngas) on air pollution 451
- 18.6 Key problems and future research needs 455
- 18.7 Conclusions 456
- References 456
- V CASE STUDIES 465
- 19 Biotrickling Filtration of Waste Gases from the Viscose Industry 467Andreas Willers, Christian Dressler and Christian Kennes
- 19.1 The waste-gas situation in the viscose industry 467
- 19.1.1 The viscose process 467
- 19.1.2 Overview of emission points 468
- 19.1.3 Technical solutions to treat the emissions 469
- 19.1.3.1 CS2 condensation 469
- 19.1.3.2 Wet catalytic oxidation 469
- 19.1.3.3 Regenerative adsorption 470
- 19.1.3.4 Thermal oxidation 470
- 19.1.3.5 Scrubbers 470
- 19.1.4 Potential to use biotrickling filters in the viscose industry 470
- 19.2 Biological CS2 and H2S oxidation 471
- 19.3 Case study of biological waste-gas treatment in the casing industry 472
- 19.3.1 Products from viscose 472
- 19.3.2 Process flowsheet of fibre-reinforced cellulose casing (FRCC) 473
- 19.3.2.1 Production of viscose 473
- 19.3.2.2 Production of fibre-reinforced cellulose casing 473
- 19.3.3 Alternatives for biotrickling filter configurations 473
- 19.3.4 Characteristics of the CaseTech plant 475
- 19.3.5 Description of the BioGat installation 475
- 19.3.6 Performance of the BioGat process 475
- 19.3.6.1 Start-up problems 475
- 19.3.6.2 Reasons for increasing pressure drop 475
- 19.3.6.3 Tower packing material 479
- 19.3.6.4 Influence of sulphuric acid on biological degradation 480
- 19.3.6.5 Removal efficiency 481
- 19.4 Conclusions 484
- References 484
- 20 Biotrickling Filters for Removal of Volatile Organic Compounds from Air in the Coating Sector 485Carlos Lafita, F. Javier A´ lvarez-Hornos, Carmen Gabaldo´n, Vicente Mart´ýnez-Soria and Josep-Manuel Penya-Roja
- 20.1 Introduction 485
- 20.2 Case study 1: VOC removal in a furniture facility 486
- 20.2.1 Characterization of the waste-gas sources 486
- 20.2.2 Design and operation of the system 487
- 20.2.3 Performance data 488
- 20.2.4 Economic aspects 490
- 20.3 Case study 2: VOC removal in a plastic coating facility 491
- 20.3.1 Characterization of the waste-gas sources 492
- 20.3.2 Design and operation of the system 492
- 20.3.3 Performance data 493
- 20.3.4 Economic aspects 495
- References 496
- 21 Industrial Bioscrubbers for the Food and Waste Industries 497Pierre Le Cloirec and Philippe Humeau
- 21.1 Introduction 497
- 21.2 Food industry emissions 498
- 21.2.1 Identification and quantification of waste-gas emissions 498
- 21.2.2 Choice of the technology 499
- 21.2.3 Design and operating conditions 500
- 21.2.3.1 Gas–liquid transfer 500
- 21.2.3.2 Biological regeneration of the washing solution 500
- 21.2.4 Performance of the system 501
- 21.3 Bioscrubbing treatment of gaseous emissions from waste composting 502
- 21.3.1 Waste-gas emissions: nature, concentrations, and flow 503
- 21.3.2 Choice of the gas treatment process 504
- 21.3.3 Design and operating conditions 505
- 21.3.4 Gas collection system 506
- 21.3.5 Gas treatment system 508
- 21.3.6 Performance of the overall system 509
- 21.4 Conclusions and perspectives 510
- References 511
- 22 Desulfurization of biogas in biotrickling filters 513David Gabriel, Marc A. Deshusses and Xavier Gamisans
- 22.1 Introduction 513
- 22.2 Microbiology and stoichiometry of sulfide oxidation 514
- 22.2.1 Microbiology of sulfide oxidation 514
- 22.2.2 Stoichiometry of sulfide biological oxidation 515
- 22.3 Case study background and description of biotrickling filter 517
- 22.3.1 Site description 517
- 22.3.2 Biotrickling filter design 517
- 22.4 Operational aspects of the full-scale biotrickling filter 519
- 22.4.1 Start-up and biotrickling filter performance 519
- 22.4.2 Facing operational and design challenges 520
- 22.5 Economic aspects of desulfurizing biotrickling filters 522
- References 522
- 23 Full-Scale Biogas Upgrading 525J. Langerak, R. Lems and E.H.M. Dirkse
- 23.1 Introduction 525
- 23.2 Case 1: Zalaegerszeg, PWS system with car fuelling station 526
- 23.2.1 Biogas composition and biomethane requirements at Zalaegerszeg 526
- 23.2.2 Plant configuration at Zalaegerszeg 526
- 23.2.2.1 Pre-treatment at Zalaegerszeg 528
- 23.2.2.2 Upgrading technique at Zalaegerszeg 528
- 23.2.2.3 Post-treatment at Zalaegerszeg 529
- 23.3 Case 2: Zwolle, PWS system with gas grid injection 529
- 23.3.1 Biogas composition and biomethane requirements at Zwolle 531
- 23.3.2 Plant configuration at Zwolle 531
- 23.3.2.1 Pre-treatment at Zwolle 532
- 23.3.2.2 Upgrading technique at Zwolle 532
- 23.3.2.3 Post-treatment at Zwolle 533
- 23.4 Case 3: Wijster, PWS system with gas grid injection 534
- 23.4.1 Biogas composition and biomethane requirements at Wijster 534
- 23.4.2 Plant configuration at Wijster 534
- 23.4.2.1 Pre-treatment at Wijster 535
- 23.4.2.2 Upgrading technique at Wijster 536
- 23.4.2.3 Post-treatment at Wijster 536
- 23.5 Case 4: Poundbury, MS system with gas grid injection 536
- 23.5.1 Biogas composition and biomethane requirements at Poundbury 537
- 23.5.2 Plant configuration at Poundbury 537
- 23.5.2.1 Pre-treatment at Poundbury 538
- 23.5.2.2 Upgrading technique at Poundbury 538
- 23.5.2.3 Post-treatment at Poundbury 538
- 23.6 Configuration overview and evaluation 539
- 23.7 Capital and operational expenses 540
- 23.7.1 Zalaegerszeg 540
- 23.7.2 Zwolle 541
- 23.7.3 Wijster 541
- 23.7.4 Poundbury 541
- 23.7.5 Overview table of capital and operating expenses 541
- 23.8 Conclusions 542
- References 543
- Index 545
Note
- The website for this book is: http://www.wiley.com/WileyCDA/WileyTitle/productCd-1119943310,descCd-description.html/.
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lin, S.-K. Air Pollution Prevention and Control: Bioreactors and Bioenergy. By Christian Kennes, Maria C. Veiga, Wiley-Blackwell, 2013; 570 Pages. Price US $195.00, ISBN 978-1-119-94331-0. Sustainability 2013, 5, 2272-2287. https://doi.org/10.3390/su5052272
Lin S-K. Air Pollution Prevention and Control: Bioreactors and Bioenergy. By Christian Kennes, Maria C. Veiga, Wiley-Blackwell, 2013; 570 Pages. Price US $195.00, ISBN 978-1-119-94331-0. Sustainability. 2013; 5(5):2272-2287. https://doi.org/10.3390/su5052272
Chicago/Turabian StyleLin, Shu-Kun. 2013. "Air Pollution Prevention and Control: Bioreactors and Bioenergy. By Christian Kennes, Maria C. Veiga, Wiley-Blackwell, 2013; 570 Pages. Price US $195.00, ISBN 978-1-119-94331-0" Sustainability 5, no. 5: 2272-2287. https://doi.org/10.3390/su5052272
APA StyleLin, S.-K. (2013). Air Pollution Prevention and Control: Bioreactors and Bioenergy. By Christian Kennes, Maria C. Veiga, Wiley-Blackwell, 2013; 570 Pages. Price US $195.00, ISBN 978-1-119-94331-0. Sustainability, 5(5), 2272-2287. https://doi.org/10.3390/su5052272