Next Article in Journal / Special Issue
Collaborative Plant Breeding for Organic Agricultural Systems in Developed Countries
Previous Article in Journal
A Longitudinal Study on the Carbon Emissions of a New Residential Development
Previous Article in Special Issue
The Soil Microbial Community and Grain Micronutrient Concentration of Historical and Modern Hard Red Spring Wheat Cultivars Grown Organically and Conventionally in the Black Soil Zone of the Canadian Prairies
Article Menu

Export Article

Open AccessArticle
Sustainability 2011, 3(8), 1190-1205;

Structuring an Efficient Organic Wheat Breeding Program

Agronomy and Horticulture Department, University of Nebraska–Lincoln, 279 PLSH, Lincoln, NE 68583-0915, USA
Panhandle Research and Extension Center, University of Nebraska–Lincoln, 4502 Avenue I, Scottsbluff, NE 69361, USA
Author to whom correspondence should be addressed.
Received: 8 June 2011 / Revised: 26 July 2011 / Accepted: 2 August 2011 / Published: 5 August 2011
(This article belongs to the Special Issue Plant Breeding for Sustainable Agriculture)
Full-Text   |   PDF [2335 KB, uploaded 24 February 2015]


Our long-term goal is to develop wheat cultivars that will improve the profitability and competitiveness of organic producers in Nebraska and the Northern Great Plains. Our approach is to select in early generations for highly heritable traits that are needed for both organic and conventional production (another breeding goal), followed by a targeted organic breeding effort with testing at two organic locations (each in a different ecological region) beginning with the F6 generation. Yield analyses from replicated trials at two organic breeding sites and 7 conventional breeding sites from F6 through F12 nurseries revealed, using analyses of variance, biplots, and comparisons of selected lines that it is inappropriate to use data from conventional testing for making germplasm selections for organic production. Selecting and testing lines under organic production practices in different ecological regions was also needed and cultivar selections for organic production were different than those for conventional production. Modifications to this breeding protocol may include growing early generation bulks in an organic cropping system. In the future, our selection efforts should also focus on using state-of-the-art, non-transgenic breeding technologies (genomic selection, marker-assisted breeding, and high throughput phenotyping) to synergistically improve organic and conventional wheat breeding. View Full-Text
Keywords: Triticum aestivum L.; crop improvement; genetics; organic agriculture; plant breeding; conventional agriculture Triticum aestivum L.; crop improvement; genetics; organic agriculture; plant breeding; conventional agriculture
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Share & Cite This Article

MDPI and ACS Style

Baenziger, P.S.; Salah, I.; Little, R.S.; Santra, D.K.; Regassa, T.; Wang, M.Y. Structuring an Efficient Organic Wheat Breeding Program. Sustainability 2011, 3, 1190-1205.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Sustainability EISSN 2071-1050 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top