Sustainable Investment Strategy: A Fuzzy Nonlinear Multi-Objective Programming for Taiwan’s Solar Photovoltaic Billboards
Abstract
:1. Introduction
2. Literature Review
2.1. Application of Solar Photovoltaic Systems in Advertising Billboards
2.2. Application of Fuzzy Nonlinear Multi-Objective Programming Model
3. Methodology
3.1. Research Structure
3.2. Case Propositions
3.3. Case Methodology
4. Sample Problem and Results
4.1. Case Introduction
4.2. To RTCQCE from FNMOPM
5. Discussion
6. Conclusions
6.1. Research Conclusions
6.2. Research Recommendations
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmed, A.; Ge, T.; Peng, J.; Yan, W.C.; Tee, B.T.; You, S. Assessment of the renewable energy generation towards net-zero energy buildings: A review. Energy Build. 2022, 256, 111755. [Google Scholar] [CrossRef]
- Omole, F.O.; Olajiga, O.K.; Olatunde, T.M. Sustainable urban design: A review of eco-friendly building practices and community impact. Eng. Sci. Technol. J. 2024, 5, 1020–1030. [Google Scholar] [CrossRef]
- Christopher, S.; Vikram, M.P.; Bakli, C.; Thakur, A.K.; Ma, Y.; Ma, Z.; Singh, P. Renewable energy potential towards attainment of net-zero energy buildings status—A critical review. J. Clean. Prod. 2023, 405, 136942. [Google Scholar] [CrossRef]
- Chen, C.W.D.; Chen, C.C.; Hsiao, C.T. Determinants of installing solar power generation equipment in Taiwan: A viewpoint of integrating market environment and government policy. Int. J. Green Energy 2022, 19, 664–675. [Google Scholar] [CrossRef]
- Liu, J.; Song, D.; Li, Q.; Yang, J.; Hu, Y.; Fang, F.; Joo, Y.H. Life cycle cost modelling and economic analysis of wind power: A state of art review. Energy Convers. Manag. 2023, 277, 116628. [Google Scholar] [CrossRef]
- Qureshi, M.S.; Nawaz, M.U.; Umar, S. Cost Benefit Analysis of Photovoltaic Systems in Urban Environments: A Comparative Study. Rev. Esp. Doc. Cient. 2024, 18, 41–64. [Google Scholar]
- Saccardo, R.R.; Domingues, A.M.; Battistelle, R.A.G.; Bezerra, B.S.; Siqueira, R.M.; dos Santos Neto, J.B.S. Investment in photovoltaic energy: An attempt to frame Brazil within the 2030 passage target of the Paris agreement. Clean. Energy Syst. 2023, 5, 100070. [Google Scholar] [CrossRef]
- Kabir, K.M.; Matin, M.A.; Amin, N. An investigation of solar photovoltaic systems for potable water and lighting in socially and economically disadvantaged coastal regions. Energy Nexus 2025, 17, 100361. [Google Scholar] [CrossRef]
- Tsuchiya, Y.; Swai, T.A.; Goto, F. Energy payback time analysis and return on investment of off-grid photovoltaic systems in rural areas of Tanzania. Sustain. Energy Technol. Assess. 2020, 42, 100887. [Google Scholar] [CrossRef]
- Tawalbeh, M.; Al-Othman, A.; Kafiah, F.; Abdelsalam, E.; Almomani, F.; Alkasrawi, M. Environmental impacts of solar photovoltaic systems: A critical review of recent progress and future outlook. Sci. Total Environ. 2021, 759, 143528. [Google Scholar] [CrossRef]
- Ali Banihashemi, S.; Khalilzadeh, M. Towards sustainable project scheduling with reducing environmental pollution of projects: Fuzzy multi-objective programming approach to a case study of Eastern Iran. Environ. Dev. Sustain. 2023, 25, 7737–7767. [Google Scholar] [CrossRef]
- Mathaba, T.N.D.; Abo-Al-Ez, K. Design of Hybrid Renewable Energy Systems: Integrating Multi-Objective Optimization into a Multi-Criteria Decision-Making Framework. Eng. Rep. 2025, 7, e13074. [Google Scholar] [CrossRef]
- Bellman, R.E.; Zadeh, L.A. Decision-making in a fuzzy environment. Manag. Sci. 1970, 17, B-141–B-164. [Google Scholar] [CrossRef]
- Dubois, D.; Prade, H. Operations on fuzzy numbers. Int. J. Syst. Sci. 1978, 9, 613–626. [Google Scholar] [CrossRef]
- Dong, W.; Shah, H.C. Vertex methods for computing functions of fuzzy variable. Fuzzy Sets Syst. 1987, 24, 65–78. [Google Scholar] [CrossRef]
- Bodjanova, S. A generalized α-cut. Fuzzy Sets Syst. 2002, 126, 157–176. [Google Scholar] [CrossRef]
- Kumar, A.; Sindhu, M.R.; Mohan, V.; Viswanathan, R.; Akhil, V.S. An adaptive staggered investment strategy for promotion of residential rooftop solar PV installations in India. Int. J. Sustain. Energy Plan. Manag. 2023, 37, 75–94. [Google Scholar] [CrossRef]
- Chiang, K.L. Optimizing Warehouse Building Design for Simultaneous Revenue Generation and Carbon Reduction in Taiwan: A Fuzzy Nonlinear Multi-Objective Approach. Buildings 2024, 14, 2441. [Google Scholar] [CrossRef]
- Chiang, K.L. Delivering Goods Sustainably: A Fuzzy Nonlinear Multi-Objective Programming Approach for E-Commerce Logistics in Taiwan. Sustainability 2024, 16, 5720. [Google Scholar] [CrossRef]
- Şirin, C.; Goggins, J.; Hajdukiewicz, M. A review on building-integrated photovoltaic/thermal systems for green buildings. Appl. Therm. Eng. 2023, 229, 120607. [Google Scholar] [CrossRef]
- Cuce, E.; Shaik, S.; Roy, A.; Arumugam, C.; Afzal, A.; Cuce, P.M.; Shaik, S.V. Thermal Analysis of Building Roofs with Latent Heat Storage for Reduction in Energy Consumption and CO2 Emissions: An Experimental and Numerical Research. Adv. Civ. Eng. 2024, 2024, 6676188. [Google Scholar] [CrossRef]
- Seyedabadi, M.R.; Eicker, U.; Karimi, S. Plant selection for green roofs and their impact on carbon sequestration and the building carbon footprint. Environ. Chall. 2021, 4, 100119. [Google Scholar] [CrossRef]
- Ma, J.; Yuan, X. Techno-economic optimization of hybrid solar system with energy storage for increasing the energy independence in green buildings. J. Energy Storage 2023, 61, 106642. [Google Scholar] [CrossRef]
- Kokchang, P.; Chattranont, N.; Menaneatra, T.; Phetriang, N.; Lertmanokul, C.; Nateprapai, N.; Chaitusaney, S.; Larbwisuthisaroj, S.; Srianthumrong, S. Economic feasibility of hybrid solar-powered charging station with battery energy storage system in Thailand. Int. J. Energy Econ. Policy 2023, 13, 342–355. [Google Scholar] [CrossRef]
- Burhan, M.; Shahzad, M.W.; Ng, K.C. Hydrogen at the rooftop: Compact CPV-hydrogen system to convert sunlight to hydrogen. Appl. Therm. Eng. 2018, 132, 154–164. [Google Scholar] [CrossRef]
- Zakeri, B.; Cross, S.; Dodds, P.E.; Gissey, G.C. Policy options for enhancing economic profitability of residential solar photovoltaic with battery energy storage. Appl. Energy 2021, 290, 116697. [Google Scholar] [CrossRef]
- Magni, C.A.; Marchioni, A.; Baschieri, D. Impact of financing and payout policy on the economic profitability of solar photovoltaic plants. Int. J. Prod. Econ. 2022, 244, 108338. [Google Scholar] [CrossRef]
- Bensaha, A.; Bekkouche, S.M.E.A.; Hamdani, M.; Cherier, M.K. Integration opportunities, energy and financial profitability of photovoltaic systems in dry and hot climates. Energy Built Environ. 2025; in press. [Google Scholar] [CrossRef]
- Ziemba, P.; Szaja, M. Fuzzy Decision-Making Model for Solar Photovoltaic Panel Evaluation. Energies 2023, 16, 5161. [Google Scholar] [CrossRef]
- Eti, S.; Dinçer, H.; Yüksel, S.; Gökalp, Y. Analysis of the suitability of the solar panels for hospitals: A new fuzzy decision-making model proposal with the T-spherical TOP-DEMATEL method. J. Intell. Fuzzy Syst. 2023, 44, 4613–4625. [Google Scholar] [CrossRef]
- Auza, A.; Asadi, E.; Chenari, B.; da Silva, M.G. Review of cost objective functions in multi-objective optimization analysis of buildings. Renew. Sustain. Energy Rev. 2024, 191, 114101. [Google Scholar] [CrossRef]
- Adedokun, O.; Egbelakin, T. Structural equation modelling of risk factors influencing the success of building projects. J. Facil. Manag. 2024, 22, 64–90. [Google Scholar] [CrossRef]
- Elshenawy, M.R.; Mohamed, A.; Ali, A.A.; Mosa, M.A. Two-stage multi-objective framework for optimal operation of modern distribution network considering demand response program. Sci. Rep. 2025, 15, 989. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, H.J. Applications of fuzzy set theory to mathematical programming. Read. Fuzzy Sets Intell. Syst. 1993, 1993, 795–809. [Google Scholar] [CrossRef]
- Huang, H.Z. Fuzzy multi-objective optimization decision-making of reliability of series system. Microelectron. Reliab. 1997, 37, 447–449. [Google Scholar] [CrossRef]
- Sampaio Filho, A.C.D.S.; Vellasco, M.M.; Tanscheit, R. A unified solution in fuzzy capital budgeting. Expert Syst. Appl. 2018, 98, 27–42. [Google Scholar] [CrossRef]
- Zhu, J.; Shi, Q.; Zhang, C.; Yuan, J.; Li, Q.; Wang, X. Investigating cooperative strategies in low-carbon public–private partnership projects through evolutionary game. Eng. Constr. Archit. 2024, 31, 789–811. [Google Scholar] [CrossRef]
Project | Time (Days) | Cost (TWD) | Quality (%) | Quality Cost (TWD/%) | ||||
---|---|---|---|---|---|---|---|---|
Regular | Shortened | Regular | Shortened | Regular | Shortened | Regular | Shortened | |
1 | 78 | 52 | 25,660,000 | 27,712,800 | 90 | 85 | 3655 | 6270 |
2 | 78 | 53 | 25,660,000 | 27,633,846 | 90 | 86 | 3655 | 6169 |
3 | 83 | 53 | 26,686,400 | 28,821,312 | 95 | 92 | 3384 | 5911 |
Project | Time (Days) | Cost (TWD) | Quality (%) | Shortened Time (Days) (7) = (1) − (2) | Unit Time Cost (TWD/Day) [((4) − (3))/(7)] | Unit Time Quality (%/Day) [((6) − (5))/(7)] | |||
---|---|---|---|---|---|---|---|---|---|
Regular (1) | Shortened (2) | Regular (3) | Shortened (4) | Regular (5) | Shortened (6) | ||||
1 | 78 | 52 | 25,660,000 | 27,712,800 | 90 | 85 | 26 | 78,953.85 | −0.19 |
2 | 78 | 58 | 25,660,000 | 27,633,846 | 90 | 86 | 20 | 78,953.84 | −0.20 |
3 | 83 | 53 | 26,686,400 | 28,821,312 | 95 | 92 | 30 | 71,163.73 | −0.10 |
Wd (%) | FKd (%) | Ws (%) | FKs (%) | FT (%) | FWACC (%) |
---|---|---|---|---|---|
0 | – | 100 | [1.9800, 2.0148, 2.0500] | [25, 25, 25] | [1.9800, 2.0148, 2.0500] |
10 | [2.7630, 3.0597, 3.3770] | 90 | [1.7820, 1.8133, 1.8450] | [25, 25, 25] | [1.8110, 1.8615, 1.9138] |
20 | [2.4867, 2.7538, 3.0393] | 80 | [1.5840, 1.6118, 1.6400] | [25, 25, 25] | [1.6402, 1.7025, 1.7679] |
30 | [2.2104, 2.4478, 2.7016] | 70 | [1.3860, 1.4104, 1.4350] | [25, 25, 25] | [1.4675, 1.5380, 1.6124] |
40 | [1.9341, 2.1418, 2.3639] | 60 | [1.1880, 1.2089, 1.2300] | [25, 25, 25] | [1.2930, 1.3679, 1.4472] |
50 | [1.6578, 1.8358, 2.0262] | 50 | [1.3860, 1.4104, 1.4350] | [25, 25, 25] | [1.3147, 1.3936, 1.4773] |
60 | [1.9341, 2.1418, 2.3639] | 40 | [1.3860, 1.6118, 1.6400] | [25, 25, 25] | [1.4247, 1.6086, 1.7198] |
70 | [1.9341, 2.4478, 2.7016] | 30 | [1.7820, 1.8133, 1.8450] | [25, 25, 25] | [1.5500, 1.8291, 1.9718] |
Debt Ratio (%) | α-Cut | FWACC (%) | (FWACC) | (FWACC) | (FWACC) |
---|---|---|---|---|---|
0 | 0 | [1.98, 2.05] | 1.997398 | 2.032398 | 4.029797 |
0.2 | [1.9869, 2.0429] | ||||
0.4 | [1.9939, 2.0359] | ||||
0.6 | [2.0008, 2.0288] | ||||
0.8 | [2.0078, 2.0218] | ||||
1 | [2.0147, 2.0147] | ||||
10 | 0 | [1.8110, 1.9138] | 1.836245 | 1.887620 | 3.723865 |
0.2 | [1.8211, 1.9033] | ||||
0.4 | [1.8312, 1.8929] | ||||
0.6 | [1.8413, 1.8824] | ||||
0.8 | [1.8514, 1.8719] | ||||
1 | [1.8615, 1.8615] | ||||
20 | 0 | [1.6402, 1.7679] | 1.671369 | 1.735214 | 3.406584 |
0.2 | [1.6527, 1.7548] | ||||
0.4 | [1.6651, 1.7418] | ||||
0.6 | [1.6776, 1.7287] | ||||
0.8 | [1.6901, 1.7156] | ||||
1 | [1.7025, 1.7025] | ||||
30 | 0 | [1.4675, 1.6124] | 1.502771 | 1.575181 | 3.077952 |
0.2 | [1.4816, 1.5975] | ||||
0.4 | [1.4957, 1.5826] | ||||
0.6 | [1.5098, 1.5677] | ||||
0.8 | [1.5239, 1.5529] | ||||
1 | [1.5380, 1.5380] | ||||
40 | 0 | * [1.2930, 1.4472] | 1.330450 | 1.407520 | * 2.737970 |
0.2 | [1.3080, 1.4313] | ||||
0.4 | [1.3230, 1.4155] | ||||
0.6 | [1.3379, 1.3996] | ||||
0.8 | [1.3529, 1.3837] | ||||
1 | * [1.3679, 1.3679] | ||||
50 | 0 | [1.3147, 1.4773] | 1.354146 | 1.435471 | 2.789618 |
0.2 | [1.3305, 1.4606] | ||||
0.4 | [1.3463, 1.4438] | ||||
0.6 | [1.3620, 1.4271] | ||||
0.8 | [1.3778, 1.4104] | ||||
1 | [1.3936, 1.3936] | ||||
60 | 0 | [1.4247, 1.7198] | 1.516647 | 1.664152 | 3.180800 |
0.2 | [1.4615, 1.6975] | ||||
0.4 | [1.4983, 1.6753] | ||||
0.6 | [1.5350, 1.6530] | ||||
0.8 | [1.5718, 1.6308] | ||||
1 | [1.6086, 1.6086] | ||||
70 | 0 | [1.5500, 1.9718] | 1.689542 | 1.900461 | 3.590004 |
0.2 | [1.6058, 1.9433] | ||||
0.4 | [1.6616, 1.9147] | ||||
0.6 | [1.7175, 1.8862] | ||||
0.8 | [1.7733, 1.8576] | ||||
1 | [1.8291, 1.8291] |
Year | FMIRR (%) | Year | FMIRR (%) |
---|---|---|---|
1 | [−89.6574, −89.6919, −89.6574] | 11 | [2.4755, 2.5863, 2.7701] |
2 | [−54.2058, −54.2490, −54.1366] | 12 | [3.1343, 3.2503, 3.4347] |
3 | [−31.6772, −31.6866, −31.5387] | 13 | [3.6399, 3.7604, 3.9454] |
4 | [−18.9670, −18.9451, −18.7812] | 14 | [4.0316, 4.1561, 4.3415] |
5 | [−11.3825, −11.3367, −11.1647] | 15 | [4.3372, 4.4651, 4.6510] |
6 | [−6.5726, −6.5088, −6.3322] | 16 | [4.5766, 4.7075, 4.8940] |
7 | [−3.3668, −3.2890, −3.1098] | 17 | [4.7645, 4.8983, 5.0852] |
8 | [−1.1448, −1.0561, −0.8751] | 18 | [4.9120, 5.0483, 5.2357] |
9 | [0.4435, 0.5410, 0.7232] | 19 | [5.0273, 5.1660, 5.3539] |
10 | [1.6068, 1.7116, 1.8946] | 20 | [5.1170, 5.2579, 5.4463] |
Project | Time (Days) | Cost (TWD) | Quality (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
1 | 78.000 | 64.120 | 52.000 | 25,660,000.000 | 26,673,234.532 | 27,712,800.000 | 90.000 | 87.480 | 85.000 |
2 | 78.000 | 64.690 | 53.000 | 25,660,000.000 | 26,634,733.190 | 27,633,846.000 | 90.000 | 87.980 | 86.000 |
3 | 83.000 | 66.880 | 53.000 | 26,686,400.000 | 26,668,847.486 | 28,821,312.000 | 95.000 | 93.490 | 92.000 |
Project | Unit time cost | Unit time quality | |||||||
1 | 71,058.465 | 78,689.788 | 86,849.235 | −0.171 | −0.189 | −0.209 | |||
2 | 71,058.456 | 78,689.778 | 86,849.224 | −0.180 | −0.199 | −0.220 | |||
3 | 64,046.700 | 70,925.722 | 78,279.300 | −0.090 | −0.100 | −0.110 |
α | Project | ||
---|---|---|---|
1 | 2 | 3 | |
0 | [78, 52] | [78, 58] | [83, 53] |
0.2 | [75.224, 54.424] | [75.338, 55.338] | [79.776, 55.776] |
0.4 | [72.448, 56.848] | [72.676, 57.676] | [76.552, 58.552] |
0.6 | [69.672, 59.272] | [70.014, 60.014] | [73.328, 61.328] |
0.8 | [66.896, 61.696] | [67.352, 62.352] | [70.104, 64.104] |
1 | [64.12, 64.12] | [64.69, 66.88] | [66.88, 66.88] |
Ranking | * 129.12 | 132.69 | 134.88 |
α | Project | ||
---|---|---|---|
1 | 2 | 3 | |
0 | [25,660,000, 27,712,800] | [25,660,000, 27,633,846] | [26,686,400, 28,821,312] |
0.2 | [25,862,647, 27,504,887] | [25,854,946, 27,434,023] | [26,682,889, 28,390,819] |
0.4 | [26,065,294, 27,296,974] | [26,049,893, 27,234,200] | [26,679,379, 27,960,326] |
0.6 | [26,267,941, 27,089,061] | [26,244,839, 27,034,378] | [26,675,868, 27,529,833] |
0.8 | [26,470,588, 26,881,148] | [26,439,786, 26,834,555] | [26,672,358, 27,099,340] |
1 | [26,673,235, 26,673,235] | [26,634,733, 26,634,733] | [26,668,847, 26,668,847] |
Ranking | 53,359,634.532 | 53,281,656.190 | 54,422,703.496 |
α | Project | ||
---|---|---|---|
1 | 2 | 3 | |
0 | [90, 85] | [90, 86] | [95, 92] |
0.2 | [89.496, 85.496] | [89.596, 86.396] | [94.698, 92.298] |
0.4 | [88.992, 85.992] | [89.192, 86.792] | [94.396, 92.596] |
0.6 | [88.488, 86.488] | [88.788, 87.188] | [94.094, 92.894] |
0.8 | [87.984, 86.984] | [88.384, 87.584] | [93.792, 93.192] |
1 | [87.48, 87.48] | [87.98, 87.98] | [93.49, 93.49] |
Ranking | 174.98 | 175.98 | 186.99 |
α | Project | ||
---|---|---|---|
1 | 2 | 3 | |
0 | [73,653.63829, 90,323.2] | [71,058.456, 86,849.224] | [64,046.7, 78,279.3] |
0.2 | [75,290.38581, 88,626.03518] | [72,584.72047, 85,217.33487] | [65,422.35898, 76,808.43898] |
0.4 | [76,927.13332, 86,928.87035] | [74,110.98494, 83,585.44574] | [66,798.01795, 75,337.57795] |
0.6 | [78,563.88084, 85,231.70553] | [75,637.24942, 81,953.55662] | [68,173.67693, 73,866.71693] |
0.8 | [80,200.62836, 83,534.5407] | [77,163.51389, 80,321.66749] | [69,549.3359, 72,395.8559] |
1 | [81,837.37588, 81,837.37588] | [78,689.77836, 78,689.77836] | [70,924.99488, 70,924.99488] |
Ranking | 163,825.795 | 157,643.618 | 142,087.994 |
α | Project | ||
---|---|---|---|
1 | 2 | 3 | |
0 | [−0.171, −0.209] | [−0.180, −0.220] | [−0.090, −0.110] |
0.2 | [−0.209, −0.205] | [−0.183, −0.215] | [−0.091, −0.107] |
0.4 | [−0.178, −0.201] | [−0.187, −0.211] | [−0.093, −0.105] |
0.6 | [−0.182, −0.197] | [−0.191, −0.207] | [−0.095, −0.103] |
0.8 | [−0.185, −0.193] | [−0.195, −0.203] | [−0.097, −0.101] |
1 | [−0.189, −0.189] | [−0.199, −0.199] | [−0.099, −0.099] |
Ranking | −0.379 | −0.399 | −0.199 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-F. Sustainable Investment Strategy: A Fuzzy Nonlinear Multi-Objective Programming for Taiwan’s Solar Photovoltaic Billboards. Sustainability 2025, 17, 3763. https://doi.org/10.3390/su17093763
Lin Y-F. Sustainable Investment Strategy: A Fuzzy Nonlinear Multi-Objective Programming for Taiwan’s Solar Photovoltaic Billboards. Sustainability. 2025; 17(9):3763. https://doi.org/10.3390/su17093763
Chicago/Turabian StyleLin, Yu-Feng. 2025. "Sustainable Investment Strategy: A Fuzzy Nonlinear Multi-Objective Programming for Taiwan’s Solar Photovoltaic Billboards" Sustainability 17, no. 9: 3763. https://doi.org/10.3390/su17093763
APA StyleLin, Y.-F. (2025). Sustainable Investment Strategy: A Fuzzy Nonlinear Multi-Objective Programming for Taiwan’s Solar Photovoltaic Billboards. Sustainability, 17(9), 3763. https://doi.org/10.3390/su17093763