Fe-N-Modified Sludge Biochar for Enhanced Acetic Acid Production from Sludge Anaerobic Fermentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sludge and Fe-N-Modified Biochar Preparation
2.2. Experimental Setup
2.3. Physicochemical Analysis
2.4. Microbial Community Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Optimization of Modification Conditions
3.1.1. Effect of Iron-Doped Biochar on VFAs Production
3.1.2. Effect of Nitrogen-Doped Biochar on VFAs Production
3.2. Characterization of Different Biochar
3.3. Effect of Fe-N-Modified Biochar on Anaerobic Fermentation Process
3.3.1. Production and Distribution of VFAs
3.3.2. Variations of Organic Substrates
3.4. Microbial Community and Growth
3.5. Variation in ETS Activities
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gu, J.; Liu, R.; Cheng, Y.; Stanisavljevic, N.; Li, L.; Djatkov, D.; Peng, X.; Wang, X. Anaerobic co-digestion of food waste and sewage sludge under mesophilic and thermophilic conditions: Focusing on synergistic effects on methane production. Bioresour. Technol. 2020, 301, 122765. [Google Scholar] [CrossRef]
- Wilen, B.M.; Jin, B.; Lant, P. The influence of key chemical constituents in activated sludge on surface and flocculating properties. Water Res. 2003, 37, 2127–2139. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, V.K.; Lo, S.-L. Sludge: A waste or renewable source for energy and resources recovery? Renew. Sustain. Energy Rev. 2013, 25, 708–728. [Google Scholar] [CrossRef]
- Wu, H.; Gao, J.; Yang, D.; Zhou, Q.; Liu, W. Alkaline fermentation of primary sludge for short-chain fatty acids accumulation and mechanism. Chem. Eng. J. 2010, 160, 1–7. [Google Scholar] [CrossRef]
- Luo, K.; Pang, Y.; Yang, Q.; Wang, D.; Li, X.; Lei, M.; Huang, Q. A critical review of volatile fatty acids produced from waste activated sludge: Enhanced strategies and its applications. Environ. Sci. Pollut. Res. Int. 2019, 26, 13984–13998. [Google Scholar] [CrossRef]
- Giordano, V.; Castagnoli, A.; Pecorini, I.; Chiarello, F. Identifying technologies in circular economy paradigm through text mining on scientific literature. PLoS ONE 2024, 19, e0312709. [Google Scholar] [CrossRef]
- Castagnoli, A.; Falcioni, S.; Touloupakis, E.; Pasciucco, F.; Pasciucco, E.; Michelotti, A.; Iannelli, R.; Pecorini, I. Influence of Aeration Rate on Uncoupled Fed Mixed Microbial Cultures for Polyhydroxybutyrate Production. Sustainability 2024, 16, 2961. [Google Scholar] [CrossRef]
- Trancone, G.; Policastro, G.; Spasiano, D.; Race, M.; Parrino, F.; Fratino, U.; Fabbricino, M.; Pirozzi, F. Treatment of concrete waste from construction and demolition activities: Application of organic acids from continuous dark fermentation in moving bed biofilm reactors. Chem. Eng. J. 2025, 505, 159536. [Google Scholar] [CrossRef]
- Uyar, B.; Eroglu, I.; Yücel, M.; Gündüz, U. Photofermentative hydrogen production from volatile fatty acids present in dark fermentation effluents. Int. J. Hydrogen Energy 2009, 34, 4517–4523. [Google Scholar] [CrossRef]
- Wang, L.; Liu, W.; Kang, L.; Yang, C.; Zhou, A.; Wang, A. Enhanced biohydrogen production from waste activated sludge in combined strategy of chemical pretreatment and microbial electrolysis. Int. J. Hydrogen Energy 2014, 39, 11913–11919. [Google Scholar] [CrossRef]
- Shi, X.; Zhu, L.; Li, B.; Liang, J.; Li, X. Surfactant-assisted thermal hydrolysis off waste activated sludge for improved dewaterability, organic release, and volatile fatty acid production. Waste Manag. 2021, 124, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Jia, T.; Wang, Z.; Shan, H.; Liu, Y.; Gong, L. Effect of nanoscale zero-valent iron on sludge anaerobic digestion. Resour. Conserv. Recycl. 2017, 127, 190–195. [Google Scholar]
- Kim, B.C.; Kim, M.; Choi, Y.; Nam, K. Effect of basic oxygen furnace slag addition on enhanced alkaline sludge fermentation and simultaneous phosphate removal. J. Environ. Manag. 2019, 239, 66–72. [Google Scholar] [CrossRef]
- Rasapoor, M.; Young, B.; Brar, R.; Sarmah, A.; Zhuang, W.Q.; Baroutian, S. Recognizing the challenges of anaerobic digestion: Critical steps toward improving biogas generation. Fuel 2020, 261, 116497. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Li, Z.; Zhao, Z.; Quan, X.; Zhao, Z. Adding granular activated carbon into anaerobic sludge digestion to promote methane production and sludge decomposition. J. Clean. Prod. 2017, 149, 1101–1108. [Google Scholar] [CrossRef]
- Zhai, S.; Li, M.; Xiong, Y.; Wang, D.; Fu, S. Dual resource utilization for tannery sludge: Effects of sludge biochars (BCs) on volatile fatty acids (VFAs) production from sludge anaerobic digestion. Bioresour. Technol. 2020, 316, 123903. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, X.; Li, W.; Chen, H.; Zhu, X.; Zhu, H.; Zhang, P. Responses of short-chain fatty acids production to the addition of various biocarriers to sludge anaerobic fermentation. Bioresour. Technol. 2020, 304, 122989. [Google Scholar] [CrossRef]
- Salvador, A.F.; Martins, G.; Melle-Franco, M.; Serpa, R.; Stams, A.J.M.; Cavaleiro, A.J.; Pereira, M.A.; Alves, M.M. Carbon nanotubes accelerate methane production in pure cultures of methanogens and in a syntrophic coculture. Environ. Microbiol. 2017, 19, 2727–2739. [Google Scholar] [CrossRef]
- Li, L.L.; Tong, Z.H.; Fang, C.Y.; Chu, J.; Yu, H.Q. Response of anaerobic granular sludge to single-wall carbon nanotube exposure. Water Res. 2015, 70, 1–8. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Wu, S.; Tan, Z.; Yang, C. Enhancing anaerobic digestion process with addition of conductive materials. Chemosphere 2021, 278, 130449. [Google Scholar] [CrossRef]
- He, J.; Wu, F.; Zhong, Y.; Zhang, P.; Zou, X.; Pan, X.; Zhang, J. Insight into magnetite effects on anaerobic digestion of waste activated sludge with thermal hydrolysis pretreatment: From reactor performance to metagenomics analysis. J. Water Process Eng. 2022, 49, 102963. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, Z.; Zhang, Y. Magnetite-contained biochar derived from fenton sludge modulated electron transfer of microorganisms in anaerobic digestion. J. Hazard. Mater. 2021, 403, 123972. [Google Scholar] [CrossRef]
- Wang, G.; Li, Q.; Li, Y.; Xing, Y.; Yao, G.; Liu, Y.; Chen, R.; Wang, X.C. Redox-active biochar facilitates potential electron tranfer between syntrophic partners to enhance anaerobic digestion under high organic loading rate. Bioresour. Technol. 2020, 298, 122524. [Google Scholar] [CrossRef]
- Fan, Q.; Shao, Z.; Guo, X.; Qu, Q.; Yao, Y.; Zhang, Z.; Qiu, L. Effects of Fe-N co-modified biochar on methanogenesis performance, microbial community, and metabolic pathway during anaerobic co-digestion of alternanthera philoxeroides and cow manure. J. Environ. Manag. 2024, 351, 120006. [Google Scholar] [CrossRef]
- Chen, W.; Huang, J.; Shen, Y.; Zhu, K.; Lei, L.; He, H.; Ai, Y. Fe-N co-doped coral-like hollow carbon shell toward boosting peroxymonosulfate activation for efficient degradation of tetracycline: Singlet oxygen-dominated non-radical pathway. J. Environ. Sci. 2023, 126, 470–482. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Fu, B.; Sun, Y.; Jin, P.; Bai, X.; Jin, X.; Shi, X.; Wang, Y.; Nie, S. Degradation of organic pollutants by Fe/N co-doped biochar via peroxymonosulfate activation: Synthesis, performance, mechanism and its potential for practical application. Chem. Eng. J. 2020, 400, 125870. [Google Scholar] [CrossRef]
- APHA; American Water Works Association; Water Environment Federation. Standard Methods for the Examination of Water and Waste-Water, 20th ed.; American Public Health Association: Washington, DC, USA, 1998. [Google Scholar]
- Zhang, Z.; Wan, J.; Ye, G.; Wang, Y.; Bai, Y.; Yan, Z. Effects of salinity and betaine addition on anaerobic granular sludge properties and microbial community succession patterns in organic saline wastewater. J. Environ. Sci. 2025, 147, 310–321. [Google Scholar] [CrossRef] [PubMed]
- Shao, Z.; Chen, H.; Zhao, Z.; Yang, Z.; Qiu, L.; Guo, X. Combined effects of liquid digestate recirculation and biochar on methane yield, enzyme activity, and microbial community during semi-continuous anaerobic digestion. Bioresour. Technol. 2022, 364, 128042. [Google Scholar] [CrossRef]
- Laurentin, A.; Edwards, C.A. A microtiter modification of the anthrone-sulfuric acid colorimetric assay for glucose-based carbohydrates. Anal. Biochem. 2003, 315, 143–145. [Google Scholar] [CrossRef]
- Zhong, Y.; He, J.; Wu, F.; Zhang, P.; Zou, X.; Pan, X.; Zhang, J. Metagenomic analysis reveals the size effect of magnetite on anaerobic digestion of waste activated sludge after thermal hydrolysis pretreatment. Sci. Total Environ. 2022, 851 Pt 1, 158133. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, R.; Wang, Z.; Wang, Y.; Cheng, W.; Qi, K.; Xie, X. Insights into iron-induced structural changes in N-rich biochar for facilitating efficient organic pollutants removal by peroxymonosulfate activation: Cooperation of enrichment and degradation. Sep. Purif. Technol. 2024, 346, 127486. [Google Scholar] [CrossRef]
- Su, J.-Z.; Wang, C.-C.; Zhang, M.-Y.; Zong, X.; Huang, X.; Deng, Z.; Xiang, P. Advances and prospectives of iron/biochar composites: Application, influencing factors and characterization methods. Ind. Crops Prod. 2023, 205, 117496. [Google Scholar] [CrossRef]
- Bailey, V.L.; Fansler, S.J.; Smith, J.L.; Bolton, H. Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization. Soil Biol. Biochem. 2011, 43, 296–301. [Google Scholar] [CrossRef]
- Li, P.; Wang, Q.; He, X.; Yu, R.; He, C.; Shen, D.; Jiao, Y. Investigation on the effect of different additives on anaerobic co-digestion of corn straw and sewage sludge: Comparison of biochar, Fe3O4, and magnetic biochar. Bioresour. Technol. 2022, 345, 126532. [Google Scholar] [CrossRef]
- Su, C.; Zhang, M.; Lin, L.; Yu, G.; Zhong, H.; Chong, Y. Reduction of iron oxides and microbial community composition in iron-rich soils with different organic carbon as electron donors. Int. Biodeterior. Biodegrad. 2020, 148, 104881. [Google Scholar] [CrossRef]
- González-Hourcade, M.; Simões dos Reis, G.; Grimm, A.; Dinh, V.M.; Lima, E.C.; Larsson, S.H.; Gentili, F.G. Microalgae biomass as a sustainable precursor to produce nitrogen-doped biochar for efficient removal of emerging pollutants from aqueous media. J. Clean. Prod. 2022, 348, 131280. [Google Scholar] [CrossRef]
- Reis, G.S.D.; Oliveira, H.P.; Larsson, S.H.; Thyrel, M.; Claudio Lima, E. A Short Review on the Electrochemical Performance of Hierarchical and Nitrogen-Doped Activated Biocarbon-Based Electrodes for Supercapacitors. Nanomaterials 2021, 11, 424. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, T.; Han, C.; Lv, X.; Bai, L.; Sun, X.; Zhang, P. Facile synthesis of Fe-modified lignin-based biochar for ultra-fast adsorption of methylene blue: Selective adsorption and mechanism studies. Bioresour. Technol. 2022, 344 Pt A, 126186. [Google Scholar] [CrossRef]
- Zhao, D.; Yan, B.; Liu, C.; Yao, B.; Luo, L.; Yang, Y.; Liu, L.; Wu, F.; Zhou, Y. Mitigation of acidogenic product inhibition and elevated mass transfer by biochar during anaerobic digestion of food waste. Bioresour. Technol. 2021, 338, 125531. [Google Scholar] [CrossRef]
- Zhang, H.; Yan, Z.; Wan, J.; Wang, Y.; Ye, G.; Huang, S.; Zeng, C.; Yi, J. Synthesis of Fe-Nx site-based iron-nitrogen co-doped biochar catalysts for efficient removal of sulfamethoxazole from water by activation of persulfate: Electron transfer mechanism of non-free radical degradation. Colloids Surf. A Physicochem. Eng. Asp. 2022, 654, 130174. [Google Scholar] [CrossRef]
- Sun, T.; Levin, B.D.; Guzman, J.J.; Enders, A.; Muller, D.A.; Angenent, L.T.; Lehmann, J. Rapid electron transfer by the carbon matrix in natural pyrogenic carbon. Nat. Commun. 2017, 8, 14873. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Shen, L.; Shan, S.; Liu, W.; Qi, Z.; Liu, C.; Gao, X. Optimizing magnetic functionalization conditions for efficient preparation of magnetic biochar and adsorption of Pb(II) from aqueous solution. Sci. Total Environ. 2022, 806 Pt 4, 151442. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Trouillet, V.; Dsoke, S. Are Functional Groups Beneficial or Harmful on the Electrochemical Performance of Activated Carbon Electrodes? J. Electrochem. Soc. 2019, 166, A1004–A1014. [Google Scholar] [CrossRef]
- Wu, Y.; Zhu, Z.; Sun, P.; Zhao, Z.; Zheng, X.; Long, M.; Chen, Y. Enhanced short-chain fatty acids production from food waste with magnetic biochar via anaerobic fermentation: Linking interfacial, extracellular, and intracellular electron transfer. Chem. Eng. J. 2024, 488, 150853. [Google Scholar] [CrossRef]
- Lee, W.H.; Lee, J.G.; Reucroft, P.J. XPS study of carbon fiber surfaces treated by thermal oxidation in a gas mixture of O2/(O2 + N2). Appl. Surf. Sci. 2001, 171, 136–142. [Google Scholar] [CrossRef]
- Leng, L.; Xu, S.; Liu, R.; Yu, T.; Zhuo, X.; Leng, S.; Xiong, Q.; Huang, H. Nitrogen containing functional groups of biochar: An overview. Bioresour. Technol. 2020, 298, 122286. [Google Scholar] [CrossRef]
- Wan, Z.; Sun, Y.; Tsang, D.C.W.; Khan, E.; Yip, A.C.K.; Ng, Y.H.; Rinklebe, J.; Ok, Y.S. Customised fabrication of nitrogen-doped biochar for environmental and energy applications. Chem. Eng. J. 2020, 401, 126136. [Google Scholar] [CrossRef]
- Luo, L.; Yan, B.; Xu, S.; Zhou, J.; Liang, J.; Zhao, J.; Tyagi, R.D.; Wong, J.W.C. Regulation of acidogenic fermentation through exogenous additives for promoting carbon conversion of food waste in two-phase anaerobic system. Bioresour. Technol. 2023, 368, 128368. [Google Scholar] [CrossRef]
- Choong, Y.Y.; Norli, I.; Abdullah, A.Z.; Yhaya, M.F. Impacts of trace element supplementation on the performance of anaerobic digestion process: A critical review. Bioresour. Technol. 2016, 209, 369–379. [Google Scholar] [CrossRef]
- Feng, L.; Mu, H.; Zhao, L.; He, S.; Liu, Y.; Gao, Z.; Hu, T.; Zhao, Q.; Wei, L. Enhancement of biogas production from sludge anaerobic digestion via supplementing magnetic co-pyrolysis biochar: Dosage response and syntrophic metabolism. Environ. Funct. Mater. 2023, 2, 201–212. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Z.; Zhu, S.; Li, S.; Wei, C. Effects of biochar on anaerobic treatment systems: Some perspectives. Bioresour. Technol. 2023, 367, 128226. [Google Scholar] [CrossRef]
- Jiang, B.; Lu, D.; Shen, X.; Zhang, F.; Xu, X.; Zhu, L. Magnetite enhancing sludge anaerobic fermentation to improve wastewater biological nitrogen removal: Pilot-scale verification. Chemosphere 2023, 336, 139197. [Google Scholar] [CrossRef] [PubMed]
- Lovley, D.R. Organic matter mineralization with the reduction of ferric iron: A review. Geomicrobiol. J. 1987, 5, 375–399. [Google Scholar] [CrossRef]
- Liu, C.; Ren, L.; Yan, B.; Luo, L.; Zhang, J.; Awasthi, M.K. Electron transfer and mechanism of energy production among syntrophic bacteria during acidogenic fermentation: A review. Bioresour. Technol. 2021, 323, 124637. [Google Scholar] [CrossRef]
- Xiang, Z.; Huang, X.; Xu, Y.; Chen, H.; Liu, B.; Dong, W.; Wang, H. Impact of thermal hydrolysis time on volatile fatty acids production from sludge fermentation: Insights into dissolved organic matter transformation and microbial succession. Fuel 2024, 357, 129733. [Google Scholar] [CrossRef]
- Feng, L.; Gao, Z.; Hu, T.; He, S.; Liu, Y.; Jiang, J.; Zhao, Q.; Wei, L. A review of application of combined biochar and iron-based materials in anaerobic digestion for enhancing biogas productivity: Mechanisms, approaches and performance. Environ. Res. 2023, 234, 116589. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Li, Q.; Gao, X.; Wang, X.C. Synergetic promotion of syntrophic methane production from anaerobic digestion of complex organic wastes by biochar: Performance and associated mechanisms. Bioresour. Technol. 2018, 250, 812–820. [Google Scholar] [CrossRef]
- Wang, J.; Xu, J.; Lu, M.; Shangguan, Y.; Liu, X. Mechanism of dielectric barrier plasma technology to improve the quantity and quality of short chain fatty acids in anaerobic fermentation of cyanobacteria. Waste Manag. 2023, 155, 65–76. [Google Scholar] [CrossRef]
- Kawaichi, S.; Ito, N.; Kamikawa, R.; Sugawara, T.; Yoshida, T.; Sako, Y. Ardenticatena maritima gen. nov., sp. nov., a ferric iron- and nitrate-reducing bacterium of the phylum ‘Chloroflexi’ isolated from an iron-rich coastal hydrothermal field, and description of Ardenticatenia classis nov. Int. J. Syst. Evol. Microbiol. 2013, 63 Pt 8, 2992–3002. [Google Scholar] [CrossRef]
- Xia, Y.; Wang, Y.; Wang, Y.; Chin, F.Y.; Zhang, T. Cellular adhesiveness and cellulolytic capacity in Anaerolineae revealed by omics-based genome interpretation. Biotechnol. Biofuels 2016, 9, 111. [Google Scholar]
- Tang, Z.; Chen, L.; Zhang, Y.; Xia, M.; Zhou, Z.; Wang, Q.; Taoli, H.; Zheng, T.; Meng, X. Improved Short-Chain Fatty Acids Production and Protein Degradation During the Anaerobic Fermentation of Waste-Activated Sludge via Alumina Slag-Modified Biochar. Appl. Biochem. Biotechnol. 2024, 196, 6115–6133. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Li, Y.; Yu, Q.; Zhang, Y. Ferroferric oxide triggered possible direct interspecies electron transfer between Syntrophomonas and Methanosaeta to enhance waste activated sludge anaerobic digestion. Bioresour. Technol. 2018, 250, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Schink, B. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol. Mol. Biol. Rev. 1997, 61, 262–280. [Google Scholar] [PubMed]
- Karekar, S.; Stefanini, R.; Ahring, B. Homo-Acetogens: Their Metabolism and Competitive Relationship with Hydrogenotrophic Methanogens. Microorganisms 2022, 10, 397. [Google Scholar] [CrossRef] [PubMed]
- Park, H.S.; Kim, B.H.; Kim, H.S.; Kim, H.J.; Kim, G.T.; Kim, M.; Chang, I.; Park, Y.K.; Chang, H.I. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 2001, 7, 297–306. [Google Scholar] [CrossRef]
- Atasoy, M.; Cetecioglu, Z. Butyric acid dominant volatile fatty acids production: Bio-augmentation of mixed culture fermentation by Clostridium butyricum. J. Environ. Chem. Eng. 2020, 8, 104496. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, J.; Li, Y.; Zhu, T.; Yu, Q.; Wang, T.; Liang, S.; Zhang, Y. Why do DIETers like drinking: Metagenomic analysis for methane and energy metabolism during anaerobic digestion with ethanol. Water Res. 2020, 171, 115425. [Google Scholar] [CrossRef]
Reaction | Reaction Equations | △G0 (KJ/mol) |
---|---|---|
Reaction 1: hydrogenesis and acetogenesis | CH3CH2COOH + H2O → 2CH3COOH + 3H2 + CO2 | +76.1 |
CH3CH2CH2COOH + 2H2O → 2CH3COOH + 2H2 | +48.1 | |
Reaction 2: hydrogen-consuming methanogenic | 4H2 + CO2 → CH4 + 2H2O | −131.7 |
Reaction 3: homoacetogenesis | 4H2 + 2CO2 → CH3COOH + 2H2O | −55.1 |
Categories | Bacteria | Control | R2 |
---|---|---|---|
Genus of homoacetogen bacteria | f__Sporomusaceae_Unclassified | 0.12 | 0.16 |
f__Holophagaceae_Unclassified | 0.11 | 0.15 | |
Natronincola | 0.05 | 0.09 | |
Holophaga | 0.01 | 0.03 | |
Propionate-oxidative bacteria | Syntrophobacter | 0 | 0.01 |
Smithella | 0.01 | 0.03 | |
Butyrate-oxidating bacteria | Syntrophomonas | 0.05 | 0.12 |
Methanogens | Methanosarcina | 0 | 0.01 |
Clostridium | Clostridium sensu stricto | 0.26 | 0.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, L.; Wan, J.; Yan, Z.; Wang, Y. Fe-N-Modified Sludge Biochar for Enhanced Acetic Acid Production from Sludge Anaerobic Fermentation. Sustainability 2025, 17, 3247. https://doi.org/10.3390/su17073247
Wei L, Wan J, Yan Z, Wang Y. Fe-N-Modified Sludge Biochar for Enhanced Acetic Acid Production from Sludge Anaerobic Fermentation. Sustainability. 2025; 17(7):3247. https://doi.org/10.3390/su17073247
Chicago/Turabian StyleWei, Lingling, Jinquan Wan, Zhicheng Yan, and Yan Wang. 2025. "Fe-N-Modified Sludge Biochar for Enhanced Acetic Acid Production from Sludge Anaerobic Fermentation" Sustainability 17, no. 7: 3247. https://doi.org/10.3390/su17073247
APA StyleWei, L., Wan, J., Yan, Z., & Wang, Y. (2025). Fe-N-Modified Sludge Biochar for Enhanced Acetic Acid Production from Sludge Anaerobic Fermentation. Sustainability, 17(7), 3247. https://doi.org/10.3390/su17073247