Natural Disaster Risk Assessment in Countries Along the Maritime Silk Road
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
3. Method
3.1. Selection of Indicators for Natural Disaster Risk Assessment
3.2. Single-Indicator Weight Calculation Methodology
3.2.1. CRITIC
3.2.2. Independence Weighting Method
3.2.3. Information-Weighting Method
3.2.4. Entropy Weight Method
3.2.5. Analytic Hierarchy Process
3.3. Combination Assessment Method Based on Maximum Deviations
- (1)
- Indicator object set: Construct the evaluation object set S = {S1, S2, …, Sm}, the indicator set of each object is G = {G1, G2, …, Gn}, let the jth indicator value of the ith object be yij, and, then, Y = (yij) m×n is the attribute matrix.
- (2)
- Method set: Construct a method set, f = {f1, f2, …, fc}, and use different evaluation methods in the method set f for evaluation. The evaluation result matrix F is obtained. F = (fij)m×c, where fij is the evaluation result of the ith object under method c.
- (3)
- Calculation of combined weights: Assuming that the weight vector of each single evaluation method is W = [w1, w2, … wc]T, then the combined evaluation value of the ith object can be obtained as follows:
3.4. Metric Weights
4. Results
4.1. Seismic Hazard Risk Assessment Results
4.2. Storm Hazard Risk Assessment Results
4.3. Drought Hazard Risk Assessment Results
4.4. Flood Hazard Risk Assessment Results
4.5. The Comprehensive Risk of Natural Disaster Assessment Results
5. Discussion and Recommendations
5.1. Discussion
5.2. Recommendations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Data Source | Data Name | Disaster Type |
---|---|---|
EM-DAT data (https://www.emdat.be/) | Seismic frequency | Seismic |
Seismic intensity | ||
Casualties | Seismic\Storm | |
Economic losses | Seismic\Storm\Drought\Flood | |
Cumulative number of storm surges | Storm | |
Storm surge intensity | ||
Drought frequency | Drought | |
Number of people affected | ||
Frequency of floods | Flood | |
Human casualties | ||
Land scan population data (https://landscan.ornl.gov/) | Population density | Seismic\Storm\Drought\Flood |
MS Buildings data (https://gee-community-catalog.org/projects/msbuildings/) | Building density | Seismic |
Wiki data (https://www.wikidata.org/wiki/Wikidata:Main_Page) | Number of bridges | Seismic |
Railway transport density | ||
Coastline length | Storm | |
Internet penetration | Storm | |
Road network density | Flood | |
Quick data (https://www.kylc.com/stats) | Urban land area share | Seismic |
Average annual population growth rate | ||
GDP growth rate in the past five years | ||
GDP per capita | Drought | |
Statistical bureaus data of various countries | Population shares over 65 years old | Seismic\Storm |
Per capita disposable income | Seismic | |
Number of monitoring and early warning stations | ||
Proportion of income from tourism | Storm | |
Unemployment rate | Drought | |
Food yield | Flood | |
Proportion of land area protected | ||
World Bank Open data (https://data.worldbank.org/) | Urbanization rate | Seismic |
WHO data (https://www.who.int/en/data) | Number of hospital beds per thousand people | Seismic |
Number of doctors per thousand people | ||
Data from Global Change Research Data Publishing & Repository (https://www.geodoi.ac.cn/weben/doi.aspx?Id=3753) | Proportion of built-up area | Storm |
Data from Food and Agriculture Organization of the United Nations (https://www.fao.org/faostat/en/#home) | Total marine production | Storm |
Index Mundi database (https://www.indexmundi.com/) | Proportion of population in coastal areas | Storm |
Proportion of land area below 5 m above sea level | ||
Net national income per capita | ||
R&D expenditure as a percentage of GDP | ||
Universal health coverage index | ||
Proportion of permanent arable land | Drought | |
Proportion of arable land | ||
Proportion of net agricultural output | ||
Fertiliser consumption as a percentage | ||
Forest area percentage | Flood | |
Proportion of gross domestic savings | ||
Rural electricity access | ||
Number of patents | ||
Environmental Performance Index (https://epi.yale.edu/) | Health and drinking water index | Storm |
Proportion of marine protected areas | ||
Renewable freshwater resources per capita | Drought | |
WMO Catalogue for Climate Data (https://climatedata-catalogue-wmo.org/) | Palmer Drought Severity Index | Drought |
World Clim data (https://worldclim.org/data/index.html) | Average annual precipitation | Drought |
Multi-year average rainfall | Flood | |
Goddard Space Flight Center data (https://www.nasa.gov/goddard/) | Soil surface moisture | Drought\Flood |
Hydro ATLAS v1.0 data (https://www.hydrosheds.org/hydroatlas) | River network density | Drought |
US Geological Survey data (https://www.usgs.gov/products/data) | Slope | Flood |
Mean elevation |
Indicators | CRITIC | EWM | IWM | IM | AHP |
---|---|---|---|---|---|
Seismic frequency | 6.80 | 3.28 | 6.11 | 4.28 | 4.78 |
Seismic intensity | 5.68 | 2.73 | 6.65 | 4.10 | 7.88 |
Casualties | 5.30 | 1.98 | 6.53 | 3.24 | 3.94 |
Economic losses | 4.40 | 1.39 | 5.95 | 2.57 | 3.40 |
Population density | 4.53 | 1.74 | 5.46 | 3.03 | 5.84 |
Building density | 5.28 | 2.08 | 6.43 | 3.44 | 8.04 |
Number of bridges | 5.68 | 2.62 | 5.73 | 4.08 | 3.16 |
Urban land area share | 4.95 | 1.64 | 5.50 | 2.94 | 7.56 |
Population shares over 65 years old | 5.25 | 2.17 | 5.61 | 3.58 | 3.68 |
Average annual population growth rate | 6.18 | 5.19 | 5.65 | 6.20 | 5.64 |
Urbanization rate | 6.59 | 3.68 | 5.54 | 5.25 | 6.08 |
Per capita disposable income | 7.45 | 15.59 | 5.60 | 10.70 | 4.84 |
Number of hospital beds per thousand people | 6.41 | 10.25 | 5.90 | 9.08 | 6.64 |
Railway transport density | 7.20 | 8.45 | 6.28 | 7.75 | 9.68 |
Number of monitoring and early warning stations | 6.09 | 25.13 | 5.71 | 16.89 | 6.00 |
Number of doctors per thousand people | 5.96 | 9.06 | 5.49 | 8.35 | 7.24 |
GDP growth rate in the past five years | 6.25 | 3.04 | 5.85 | 4.51 | 5.60 |
Indicators | CRITIC | EWM | IWM | IM | AHP |
---|---|---|---|---|---|
Cumulative number of storm surges | 4.69 | 1.55 | 5.73 | 2.92 | 6.24 |
Casualties | 4.28 | 1.28 | 5.26 | 2.61 | 5.14 |
Economic losses | 5.07 | 1.90 | 5.38 | 3.34 | 4.44 |
Storm surge intensity | 5.56 | 2.93 | 6.46 | 4.24 | 10.28 |
Population density | 4.57 | 1.42 | 5.34 | 2.64 | 4.73 |
Proportion of built-up area | 5.68 | 2.05 | 5.43 | 3.21 | 6.66 |
Total marine production | 6.96 | 21.14 | 5.38 | 15.26 | 3.37 |
Population shares over 65 years old | 5.73 | 1.77 | 5.31 | 3.12 | 3.37 |
Coastline length | 5.60 | 1.81 | 5.99 | 3.07 | 5.06 |
Proportion of income from tourism | 5.21 | 2.57 | 6.71 | 4.02 | 4.27 |
Proportion of population in coastal areas | 5.46 | 2.08 | 5.33 | 3.44 | 7.93 |
Proportion of land area below 5 m above sea level | 5.23 | 1.55 | 5.39 | 2.94 | 5.71 |
Net national income per capita | 5.86 | 17.53 | 5.41 | 12.52 | 4.85 |
R&D expenditure as a percentage of GDP | 5.60 | 11.44 | 5.44 | 9.72 | 6.59 |
Health and drinking water index | 5.30 | 5.04 | 5.32 | 5.79 | 6.04 |
Internet penetration | 6.75 | 6.62 | 5.29 | 6.23 | 4.92 |
Universal health coverage index | 5.28 | 3.45 | 5.30 | 4.60 | 4.33 |
Proportion of marine protected areas | 7.18 | 13.87 | 5.52 | 10.35 | 6.07 |
Indicators | CRITIC | EWM | IWM | IM | AHP |
---|---|---|---|---|---|
Palmer Drought Severity Index | 6.68 | 4.56 | 7.50 | 6.02 | 9.85 |
Drought frequency | 4.33 | 0.94 | 6.94 | 2.61 | 5.98 |
Economic loss | 5.11 | 1.43 | 7.05 | 2.89 | 4.93 |
Number of people affected | 4.89 | 1.41 | 6.35 | 2.98 | 4.25 |
Average annual precipitation | 8.96 | 13.64 | 5.97 | 10.50 | 10.28 |
Soil moisture | 8.70 | 10.01 | 6.18 | 9.44 | 8.20 |
Renewable freshwater resources per capita | 8.55 | 16.14 | 6.39 | 11.78 | 6.53 |
Population density | 5.92 | 1.45 | 6.79 | 2.92 | 6.35 |
Proportion of permanent arable land | 8.15 | 2.98 | 6.41 | 4.49 | 5.30 |
Proportion of arable land | 5.46 | 2.04 | 6.77 | 3.65 | 5.98 |
Proportion of net agricultural output | 7.07 | 4.16 | 6.42 | 5.30 | 7.38 |
Fertilizer consumption as a percentage | 5.74 | 11.37 | 6.87 | 10.69 | 4.18 |
River network density | 7.15 | 10.17 | 6.01 | 9.58 | 8.33 |
GDP per capita | 7.08 | 16.56 | 6.66 | 12.58 | 6.25 |
Unemployment rate | 6.22 | 3.14 | 7.69 | 4.59 | 6.25 |
Indicators | CRITIC | EWM | IWM | IM | AHP |
---|---|---|---|---|---|
Frequency of floods | 6.37 | 2.79 | 7.39 | 4.24 | 5.98 |
Multi-year average rainfall | 8.06 | 3.99 | 6.11 | 5.12 | 9.85 |
Human casualties | 6.00 | 2.75 | 6.74 | 4.22 | 4.93 |
Economic losses | 6.37 | 2.39 | 7.26 | 3.92 | 4.25 |
Slope | 7.82 | 6.42 | 6.16 | 6.82 | 7.33 |
Forest area percentage | 7.12 | 12.79 | 6.09 | 9.90 | 7.33 |
Mean elevation | 7.27 | 11.65 | 6.16 | 10.09 | 5.18 |
Soil surface moisture | 8.32 | 5.89 | 6.28 | 6.20 | 5.18 |
Population density | 4.83 | 1.49 | 6.25 | 2.93 | 6.53 |
Road network density | 6.99 | 4.11 | 6.24 | 5.18 | 8.20 |
Food yield | 5.70 | 2.12 | 7.33 | 3.54 | 10.28 |
Proportion of land area protected | 6.38 | 9.77 | 7.79 | 9.53 | 5.85 |
Rural electricity access | 6.06 | 1.52 | 6.73 | 2.91 | 9.23 |
Number of patents | 6.47 | 26.61 | 6.90 | 18.99 | 6.05 |
Proportion of gross domestic savings | 6.24 | 5.71 | 6.58 | 6.40 | 3.88 |
Country | CRITIC | EWM | IWM | AHP | IM | Final Score |
---|---|---|---|---|---|---|
Vietnam | 0.636 | 0.384 | 0.668 | 0.646 | 0.494 | 0.562 |
Malaysia | 0.625 | 0.446 | 0.652 | 0.620 | 0.517 | 0.569 |
Philippines | 0.582 | 0.392 | 0.608 | 0.605 | 0.471 | 0.528 |
Indonesia | 0.569 | 0.443 | 0.599 | 0.589 | 0.495 | 0.537 |
Singapore | 0.571 | 0.478 | 0.575 | 0.511 | 0.510 | 0.528 |
Brunei | 0.707 | 0.508 | 0.732 | 0.709 | 0.587 | 0.646 |
Cambodia | 0.663 | 0.351 | 0.700 | 0.672 | 0.484 | 0.569 |
Thailand | 0.591 | 0.392 | 0.614 | 0.585 | 0.475 | 0.529 |
Myanmar | 0.576 | 0.330 | 0.608 | 0.582 | 0.435 | 0.502 |
Pakistan | 0.563 | 0.309 | 0.596 | 0.568 | 0.417 | 0.487 |
Sri Lanka | 0.531 | 0.344 | 0.538 | 0.522 | 0.429 | 0.470 |
India | 0.494 | 0.340 | 0.514 | 0.507 | 0.407 | 0.450 |
Oman | 0.714 | 0.509 | 0.742 | 0.726 | 0.586 | 0.652 |
Yemen | 0.623 | 0.353 | 0.659 | 0.648 | 0.465 | 0.545 |
United Arab Emirates | 0.682 | 0.493 | 0.714 | 0.674 | 0.566 | 0.623 |
Qatar | 0.643 | 0.496 | 0.659 | 0.606 | 0.546 | 0.588 |
Iran (Islamic Republic of) | 0.560 | 0.353 | 0.600 | 0.585 | 0.441 | 0.504 |
Saudi Arabia | 0.746 | 0.615 | 0.771 | 0.755 | 0.662 | 0.708 |
Kuwait | 0.712 | 0.544 | 0.736 | 0.718 | 0.606 | 0.660 |
Egypt | 0.633 | 0.383 | 0.668 | 0.641 | 0.489 | 0.559 |
Kenya | 0.623 | 0.345 | 0.654 | 0.618 | 0.462 | 0.536 |
Tanzania | 0.609 | 0.328 | 0.642 | 0.614 | 0.444 | 0.523 |
Turkey | 0.587 | 0.528 | 0.615 | 0.614 | 0.556 | 0.579 |
Greece | 0.632 | 0.567 | 0.654 | 0.649 | 0.598 | 0.619 |
Italy | 0.595 | 0.624 | 0.600 | 0.631 | 0.612 | 0.613 |
Lebanon | 0.650 | 0.466 | 0.673 | 0.657 | 0.546 | 0.596 |
Bahrain | 0.585 | 0.447 | 0.594 | 0.543 | 0.493 | 0.531 |
Iraq | 0.608 | 0.358 | 0.645 | 0.608 | 0.459 | 0.532 |
Bangladesh | 0.560 | 0.296 | 0.588 | 0.540 | 0.408 | 0.475 |
China | 0.620 | 0.542 | 0.630 | 0.650 | 0.615 | 0.610 |
Country | CRITIC | EWM | IWM | AHP | IM | Final Score |
---|---|---|---|---|---|---|
Vietnam | 0.493 | 0.346 | 0.505 | 0.496 | 0.402 | 0.446 |
Malaysia | 0.706 | 0.504 | 0.726 | 0.718 | 0.581 | 0.644 |
Philippines | 0.455 | 0.263 | 0.468 | 0.465 | 0.335 | 0.394 |
Indonesia | 0.549 | 0.346 | 0.576 | 0.597 | 0.425 | 0.495 |
Singapore | 0.659 | 0.549 | 0.686 | 0.696 | 0.602 | 0.636 |
Brunei | 0.735 | 0.456 | 0.771 | 0.773 | 0.569 | 0.656 |
Cambodia | 0.593 | 0.348 | 0.627 | 0.626 | 0.443 | 0.523 |
Thailand | 0.669 | 0.479 | 0.691 | 0.699 | 0.555 | 0.615 |
Myanmar | 0.493 | 0.285 | 0.519 | 0.491 | 0.364 | 0.427 |
Pakistan | 0.470 | 0.229 | 0.500 | 0.494 | 0.320 | 0.398 |
Sri Lanka | 0.527 | 0.261 | 0.562 | 0.572 | 0.367 | 0.453 |
India | 0.436 | 0.280 | 0.446 | 0.456 | 0.337 | 0.388 |
Oman | 0.633 | 0.368 | 0.658 | 0.641 | 0.470 | 0.550 |
Yemen | 0.546 | 0.233 | 0.584 | 0.609 | 0.355 | 0.460 |
United Arab Emirates | 0.789 | 0.664 | 0.796 | 0.811 | 0.706 | 0.751 |
Qatar | 0.706 | 0.551 | 0.730 | 0.717 | 0.609 | 0.660 |
Iran (Islamic Republic of) | 0.651 | 0.380 | 0.680 | 0.663 | 0.489 | 0.568 |
Saudi Arabia | 0.723 | 0.461 | 0.750 | 0.756 | 0.562 | 0.646 |
Kuwait | 0.667 | 0.448 | 0.690 | 0.694 | 0.531 | 0.602 |
Egypt | 0.659 | 0.451 | 0.678 | 0.677 | 0.528 | 0.595 |
Kenya | 0.562 | 0.269 | 0.595 | 0.620 | 0.383 | 0.481 |
Tanzania | 0.566 | 0.292 | 0.599 | 0.598 | 0.395 | 0.486 |
Turkey | 0.655 | 0.413 | 0.683 | 0.704 | 0.511 | 0.589 |
Greece | 0.643 | 0.502 | 0.661 | 0.711 | 0.560 | 0.613 |
Italy | 0.637 | 0.567 | 0.646 | 0.672 | 0.594 | 0.622 |
Lebanon | 0.540 | 0.286 | 0.564 | 0.583 | 0.386 | 0.467 |
Bahrain | 0.515 | 0.343 | 0.536 | 0.518 | 0.410 | 0.462 |
Iraq | 0.622 | 0.336 | 0.659 | 0.655 | 0.449 | 0.539 |
Bangladesh | 0.491 | 0.487 | 0.486 | 0.467 | 0.477 | 0.482 |
China | 0.655 | 0.528 | 0.648 | 0.645 | 0.581 | 0.610 |
Country | CRITIC | EWM | IWM | AHP | IM | Final Score |
---|---|---|---|---|---|---|
Vietnam | 0.538 | 0.447 | 0.577 | 0.562 | 0.482 | 0.519 |
Malaysia | 0.707 | 0.708 | 0.745 | 0.741 | 0.710 | 0.722 |
Philippines | 0.596 | 0.512 | 0.626 | 0.633 | 0.538 | 0.579 |
Indonesia | 0.621 | 0.539 | 0.646 | 0.645 | 0.561 | 0.601 |
Singapore | 0.643 | 0.535 | 0.671 | 0.662 | 0.571 | 0.614 |
Brunei | 0.797 | 0.721 | 0.812 | 0.817 | 0.737 | 0.775 |
Cambodia | 0.595 | 0.449 | 0.625 | 0.605 | 0.494 | 0.551 |
Thailand | 0.540 | 0.431 | 0.570 | 0.559 | 0.467 | 0.511 |
Myanmar | 0.615 | 0.501 | 0.638 | 0.615 | 0.529 | 0.578 |
Pakistan | 0.453 | 0.264 | 0.498 | 0.458 | 0.340 | 0.400 |
Sri Lanka | 0.528 | 0.406 | 0.564 | 0.556 | 0.451 | 0.499 |
India | 0.413 | 0.311 | 0.427 | 0.431 | 0.350 | 0.385 |
Oman | 0.618 | 0.406 | 0.671 | 0.611 | 0.493 | 0.557 |
Yemen | 0.479 | 0.237 | 0.522 | 0.482 | 0.331 | 0.406 |
United Arab Emirates | 0.644 | 0.482 | 0.693 | 0.626 | 0.552 | 0.597 |
Qatar | 0.647 | 0.483 | 0.694 | 0.629 | 0.550 | 0.598 |
Iran (Islamic Republic of) | 0.409 | 0.262 | 0.428 | 0.407 | 0.314 | 0.362 |
Saudi Arabia | 0.584 | 0.374 | 0.630 | 0.576 | 0.456 | 0.521 |
Kuwait | 0.640 | 0.463 | 0.694 | 0.625 | 0.543 | 0.591 |
Egypt | 0.569 | 0.353 | 0.620 | 0.568 | 0.447 | 0.508 |
Kenya | 0.407 | 0.208 | 0.451 | 0.398 | 0.281 | 0.346 |
Tanzania | 0.449 | 0.261 | 0.497 | 0.448 | 0.328 | 0.394 |
Turkey | 0.559 | 0.420 | 0.589 | 0.557 | 0.468 | 0.517 |
Greece | 0.508 | 0.397 | 0.548 | 0.519 | 0.435 | 0.480 |
Italy | 0.540 | 0.474 | 0.570 | 0.541 | 0.493 | 0.522 |
Lebanon | 0.462 | 0.298 | 0.514 | 0.472 | 0.365 | 0.420 |
Bahrain | 0.581 | 0.433 | 0.635 | 0.565 | 0.504 | 0.542 |
Iraq | 0.464 | 0.270 | 0.494 | 0.450 | 0.341 | 0.401 |
Bangladesh | 0.492 | 0.410 | 0.507 | 0.516 | 0.439 | 0.471 |
China | 0.497 | 0.406 | 0.500 | 0.485 | 0.438 | 0.464 |
Country | CRITIC | EWM | IWM | AHP | IM | Final Score |
---|---|---|---|---|---|---|
Vietnam | 0.561 | 0.395 | 0.567 | 0.573 | 0.446 | 0.506 |
Malaysia | 0.604 | 0.454 | 0.623 | 0.621 | 0.501 | 0.558 |
Philippines | 0.509 | 0.339 | 0.527 | 0.535 | 0.396 | 0.458 |
Indonesia | 0.570 | 0.411 | 0.577 | 0.583 | 0.462 | 0.518 |
Singapore | 0.599 | 0.560 | 0.616 | 0.585 | 0.568 | 0.585 |
Brunei | 0.719 | 0.546 | 0.752 | 0.720 | 0.611 | 0.667 |
Cambodia | 0.647 | 0.472 | 0.660 | 0.667 | 0.535 | 0.593 |
Thailand | 0.555 | 0.395 | 0.566 | 0.594 | 0.448 | 0.509 |
Myanmar | 0.594 | 0.405 | 0.602 | 0.602 | 0.468 | 0.531 |
Pakistan | 0.507 | 0.343 | 0.501 | 0.569 | 0.397 | 0.460 |
Sri Lanka | 0.600 | 0.430 | 0.619 | 0.617 | 0.490 | 0.548 |
India | 0.481 | 0.364 | 0.473 | 0.519 | 0.396 | 0.444 |
Oman | 0.582 | 0.329 | 0.589 | 0.605 | 0.419 | 0.501 |
Yemen | 0.540 | 0.320 | 0.546 | 0.592 | 0.396 | 0.475 |
United Arab Emirates | 0.600 | 0.369 | 0.613 | 0.616 | 0.457 | 0.527 |
Qatar | 0.623 | 0.377 | 0.643 | 0.651 | 0.471 | 0.549 |
Iran (Islamic Republic of) | 0.659 | 0.553 | 0.664 | 0.698 | 0.587 | 0.630 |
Saudi Arabia | 0.619 | 0.410 | 0.631 | 0.667 | 0.486 | 0.559 |
Kuwait | 0.596 | 0.346 | 0.609 | 0.626 | 0.439 | 0.519 |
Egypt | 0.554 | 0.318 | 0.571 | 0.614 | 0.403 | 0.488 |
Kenya | 0.608 | 0.391 | 0.612 | 0.633 | 0.466 | 0.538 |
Tanzania | 0.705 | 0.563 | 0.709 | 0.694 | 0.616 | 0.655 |
Turkey | 0.635 | 0.539 | 0.652 | 0.675 | 0.568 | 0.612 |
Greece | 0.638 | 0.473 | 0.659 | 0.669 | 0.531 | 0.591 |
Italy | 0.585 | 0.560 | 0.597 | 0.622 | 0.562 | 0.584 |
Lebanon | 0.510 | 0.337 | 0.521 | 0.548 | 0.390 | 0.458 |
Bahrain | 0.526 | 0.289 | 0.543 | 0.550 | 0.374 | 0.452 |
Iraq | 0.645 | 0.377 | 0.655 | 0.691 | 0.472 | 0.563 |
Bangladesh | 0.458 | 0.290 | 0.449 | 0.485 | 0.340 | 0.401 |
China | 0.567 | 0.575 | 0.569 | 0.632 | 0.561 | 0.580 |
Country | CRITIC | EWM | IWM | AHP | IM | Final Score |
---|---|---|---|---|---|---|
Vietnam | 0.557 | 0.393 | 0.579 | 0.569 | 0.456 | 0.508 |
Malaysia | 0.661 | 0.528 | 0.686 | 0.675 | 0.577 | 0.623 |
Philippines | 0.535 | 0.376 | 0.557 | 0.560 | 0.435 | 0.490 |
Indonesia | 0.577 | 0.435 | 0.600 | 0.604 | 0.486 | 0.538 |
Singapore | 0.618 | 0.530 | 0.637 | 0.613 | 0.563 | 0.591 |
Brunei | 0.740 | 0.558 | 0.767 | 0.755 | 0.626 | 0.686 |
Cambodia | 0.625 | 0.405 | 0.653 | 0.642 | 0.489 | 0.559 |
Thailand | 0.589 | 0.424 | 0.610 | 0.609 | 0.486 | 0.541 |
Myanmar | 0.569 | 0.380 | 0.592 | 0.573 | 0.449 | 0.510 |
Pakistan | 0.498 | 0.286 | 0.524 | 0.522 | 0.369 | 0.436 |
Sri Lanka | 0.546 | 0.360 | 0.571 | 0.567 | 0.434 | 0.493 |
India | 0.456 | 0.324 | 0.465 | 0.478 | 0.373 | 0.417 |
Oman | 0.637 | 0.403 | 0.665 | 0.646 | 0.492 | 0.565 |
Yemen | 0.547 | 0.286 | 0.578 | 0.583 | 0.387 | 0.472 |
United Arab Emirates | 0.679 | 0.502 | 0.704 | 0.682 | 0.570 | 0.625 |
Qatar | 0.655 | 0.477 | 0.682 | 0.651 | 0.544 | 0.599 |
Iran (Islamic Republic of) | 0.570 | 0.387 | 0.593 | 0.588 | 0.458 | 0.516 |
Saudi Arabia | 0.668 | 0.465 | 0.696 | 0.689 | 0.542 | 0.609 |
Kuwait | 0.654 | 0.450 | 0.682 | 0.666 | 0.530 | 0.593 |
Egypt | 0.604 | 0.376 | 0.634 | 0.625 | 0.467 | 0.538 |
Kenya | 0.550 | 0.303 | 0.578 | 0.567 | 0.398 | 0.475 |
Tanzania | 0.582 | 0.361 | 0.612 | 0.589 | 0.446 | 0.515 |
Turkey | 0.609 | 0.475 | 0.635 | 0.637 | 0.526 | 0.574 |
Greece | 0.605 | 0.485 | 0.631 | 0.637 | 0.531 | 0.576 |
Italy | 0.589 | 0.556 | 0.603 | 0.616 | 0.565 | 0.585 |
Lebanon | 0.540 | 0.347 | 0.568 | 0.565 | 0.422 | 0.485 |
Bahrain | 0.552 | 0.378 | 0.577 | 0.544 | 0.445 | 0.497 |
Iraq | 0.585 | 0.335 | 0.613 | 0.601 | 0.430 | 0.509 |
Bangladesh | 0.500 | 0.370 | 0.508 | 0.502 | 0.416 | 0.457 |
China | 0.585 | 0.512 | 0.587 | 0.603 | 0.547 | 0.566 |
References
- Smith, K.; Smith, K. Environmental Hazards: Assessing Risk and Reducing Disaster, 6th ed.; Routledge: London, UK, 2013. [Google Scholar] [CrossRef]
- Cutter, S.L.; Boruff, B.J.; Shirley, W.L. Social Vulnerability to Environmental Hazards*. Soc. Sci. Q. 2003, 84, 242–261. [Google Scholar] [CrossRef]
- Blaikie, P.; Cannon, T.; Davis, I.; Wisner, B. At Risk-Natural Hazards, People’s Vulnerability and Disasters, 2nd ed.; Routledge: London, UK, 2004. [Google Scholar] [CrossRef]
- Adger, W.N. Vulnerability. Glob. Environ. Change 2006, 16, 268–281. [Google Scholar] [CrossRef]
- Aguirre, B.E. Review of Disasters: A Sociological Approach by Kathleen TierneyPolity Press, Cambridge, UK; 2018; ISBN 9780745671024; 311 Pp.; $26.95. Nat. Hazards Rev. 2020, 21, 07519001. [Google Scholar] [CrossRef]
- Rygel, L.; O’Sullivan, D.; Yarnal, B. A Method for Constructing a Social Vulnerability Index: An Application to Hurricane Storm Surges in a Developed Country. Mitig. Adapt. Strat. Glob. Change 2006, 11, 741–764. [Google Scholar] [CrossRef]
- Peduzzi, P.; Dao, H.; Herold, C.; Mouton, F. Assessing Global Exposure and Vulnerability towards Natural Hazards: The Disaster Risk Index. Nat. Hazards Earth Syst. Sci. 2009, 9, 1149–1159. [Google Scholar] [CrossRef]
- Sheffield, J.; Wood, E.F. Global Trends and Variability in Soil Moisture and Drought Characteristics, 1950–2000, from Observation-Driven Simulations of the Terrestrial Hydrologic Cycle. J. Clim. 2008, 21, 432–458. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Yang, X.; Qin, X.; Zhou, X.; Chen, Y.; Gao, L. Assessment of Disaster Mitigation Capability Oriented to Typhoon Disaster Chains: A Case Study of Fujian Province, China. Ecol. Indic. 2024, 167, 112621. [Google Scholar] [CrossRef]
- Diakoulaki, D.; Papayannakis, L. Determining Objective Weights In Multiple Criteria Problems: The Critic Method. Comput. Ops. Res. 1995, 22, 763–770. [Google Scholar] [CrossRef]
- Huling, J.D.; Greifer, N.; Chen, G. Independence Weights for Causal Inference with Continuous Treatments. J. Am. Stat. Assoc. 2024, 119, 1657–1670. [Google Scholar] [CrossRef]
- Fagbohun, B.J.; Aladejana, O.O.; Okonye, I.F.; Tobore, A.O. Assessing Gully Erosion Susceptibility Dynamics Using Information Value and Hazard Index Methods: A Case Study of Agulu-Nanka Watershed, Southeast Nigeria. CATENA 2024, 241, 108070. [Google Scholar] [CrossRef]
- Cheng, W.; Xi, H.; Sindikubwabo, C.; Si, J.; Zhao, C.; Yu, T.; Li, A.; Wu, T. Ecosystem Health Assessment of Desert Nature Reserve with Entropy Weight and Fuzzy Mathematics Methods: A Case Study of Badain Jaran Desert. Ecol. Indic. 2020, 119, 106843. [Google Scholar] [CrossRef]
- Schmoldt, D.L.; Kangas, J.; Mendoza, G.A.; Pesonen, M. (Eds.) The Analytic Hierarchy Process in Natural Resource and Environmental Decision Making. Managing Forest Ecosystems; Springer: Dordrecht, The Netherlands, 2001; Volume 3, ISBN 978-90-481-5735-8. [Google Scholar]
- Wang, G.; Tian, X.; Li, Y.; Xu, T.; Wan, B.; Chen, Y.; Nie, S.; Yang, X.; Zuo, S.; Zhang, J. Indian Plate Blocked by the Thickened Eurasian Crust in the Middle of the Continental Collision Zone of Southern Tibet. Earthq. Res. Adv. 2023, 3, 100233. [Google Scholar] [CrossRef]
- Hui, G.; Li, S.; Wang, P.; Suo, Y.; Somerville, I.D. Implications of Earthquakes for the Slab Subduction Dynamic Process in Southeast Asia. J. Asian Earth Sci. 2020, 194, 103955. [Google Scholar] [CrossRef]
- Jian, W.; Lo, E.Y.-M.; Stojanovski, P.; Pan, T.-C. Quantifying Uncertainties in Tropical Cyclone Wind Hazard Assessment Due to Synthetic Track Stochastic Variability for Southeast Asia. Weather Clim. Extrem. 2023, 41, 100599. [Google Scholar] [CrossRef]
- Al-Ruzouq, R.; Shanableh, A.; Jena, R.; Gibril, M.B.A.; Hammouri, N.A.; Lamghari, F. Flood Susceptibility Mapping Using a Novel Integration of Multi-Temporal Sentinel-1 Data and eXtreme Deep Learning Model. Geosci. Front. 2024, 15, 101780. [Google Scholar] [CrossRef]
- Abdul Talib, S.A.; Idris, W.M.R.; Neng, L.J.; Lihan, T.; Abdul Rasid, M.Z. Irregularity and Time Series Trend Analysis of Rainfall in Johor, Malaysia. Heliyon 2024, 10, e30324. [Google Scholar] [CrossRef]
- Hameed, M.; Ahmadalipour, A.; Moradkhani, H. Drought and Food Security in the Middle East: An Analytical Framework. Agric. For. Meteorol. 2020, 281, 107816. [Google Scholar] [CrossRef]
- Hasan, M.H.; Ahmed, A.; Nafee, K.M.; Hossen, M.A. Use of Machine Learning Algorithms to Assess Flood Susceptibility in the Coastal Area of Bangladesh. Ocean. Coast. Manag. 2023, 236, 106503. [Google Scholar] [CrossRef]
- Brammer, H. Bangladesh’s Dynamic Coastal Regions and Sea-Level Rise. Clim. Risk Manag. 2014, 1, 51–62. [Google Scholar] [CrossRef]
- Devi, S. Pakistan Floods: Impact on Food Security and Health Systems. Lancet 2022, 400, 799–800. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Panel On Climate Change (IPCC) Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK, 2023; ISBN 978-1-00-915789-6.
- Reduction, U.N.O. for D.R. Global Assessment Report on Disaster Risk Reduction 2022: Our World at Risk: Transforming Governance for a Resilient Future; Global Assessment Report on Disaster Risk Reduction (GAR) Series, 1st ed.; United Nations Publications: New York, NY, USA, 2022; ISBN 978-92-1-232028-1.
- Van Der Keur, P.; Van Bers, C.; Henriksen, H.J.; Nibanupudi, H.K.; Yadav, S.; Wijaya, R.; Subiyono, A.; Mukerjee, N.; Hausmann, H.-J.; Hare, M.; et al. Identification and Analysis of Uncertainty in Disaster Risk Reduction and Climate Change Adaptation in South and Southeast Asia. Int. J. Disaster Risk Reduct. 2016, 16, 208–214. [Google Scholar] [CrossRef]
- UNESCO. UNESCO Recommendation on Open Science; UNESCO: Paris, France, 2021. [Google Scholar] [CrossRef]
Primary Indicator | Secondary Indicator | Tertiary Indicator | Nature |
---|---|---|---|
Seismic disaster risk | Danger of disaster-causing factors | Seismic frequency | - |
Seismic intensity | - | ||
Casualties | - | ||
Economic losses | - | ||
Vulnerability of disaster-bearing bodies | Population density | - | |
Building density | - | ||
Number of bridges | - | ||
Urban land area share | - | ||
Population shares over 65 years old | - | ||
Average annual population growth rate | - | ||
Urbanisation rate | - | ||
Disaster risk reduction capacities | Per capita disposable income | + | |
Number of hospital beds per thousand people | + | ||
Railway transport density | + | ||
Number of monitoring and early warning stations | + | ||
Number of doctors per thousand people | + | ||
GDP growth rate in the past five years | + | ||
Storm disaster risk | Danger of disaster-causing factors | Cumulative number of storm surges | - |
Casualties | - | ||
Economic losses | - | ||
Storm surge intensity | - | ||
Vulnerability of disaster-bearing bodies | Population density | - | |
Proportion of built-up area | - | ||
Total marine production | |||
Population shares over 65 years old | - | ||
Coastline length | - | ||
Proportion of income from tourism | - | ||
Proportion of population in coastal areas | - | ||
Proportion of land area below 5 metres above sea level | - | ||
Disaster risk reduction capacities | Net national income per capita | + | |
R&D expenditure as a percentage of GDP | + | ||
Health and drinking water index | + | ||
Internet penetration | + | ||
Universal health coverage index | + | ||
Proportion of marine protected areas | + | ||
Drought disaster risk | Danger of disaster-causing factors | Palmer Drought Severity Index | + |
Drought frequency | - | ||
Economic loss | - | ||
Number of people affected | - | ||
Sensitivity of disaster-conceiving environments | Average annual precipitation | + | |
Soil moisture | + | ||
Renewable freshwater resources per capita | + | ||
Vulnerability of disaster-bearing bodies | Population density | - | |
Proportion of permanent arable land | - | ||
Proportion of arable land | - | ||
Proportion of net agricultural output | - | ||
Disaster risk reduction capacities | Fertiliser consumption as a percentage | + | |
River network density | + | ||
GDP per capita | + | ||
Unemployment rate | - | ||
Flood disaster risk | Danger of disaster-causing factors | Frequency of floods | - |
Multi-year average rainfall | - | ||
Human casualties | - | ||
Economic losses | - | ||
Sensitivity of disaster-conceiving environments | Slope | - | |
Forest area percentage | + | ||
Mean elevation | + | ||
Soil surface moisture | - | ||
Vulnerability of disaster-bearing bodies | Population density | - | |
Road network density | - | ||
Food yield | - | ||
Disaster risk reduction capacities | Proportion of land area protected | + | |
Proportion of gross domestic savings | + | ||
Rural electricity access | + | ||
Number of patents | + |
Methodology | CRITIC | EWM | IWM | IM | AHP |
---|---|---|---|---|---|
Weight | 0.191 | 0.204 | 0.199 | 0.188 | 0.218 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, C.; Wang, J.; Liu, J.; Wang, H. Natural Disaster Risk Assessment in Countries Along the Maritime Silk Road. Sustainability 2025, 17, 3219. https://doi.org/10.3390/su17073219
Xu C, Wang J, Liu J, Wang H. Natural Disaster Risk Assessment in Countries Along the Maritime Silk Road. Sustainability. 2025; 17(7):3219. https://doi.org/10.3390/su17073219
Chicago/Turabian StyleXu, Chen, Juanle Wang, Jingxuan Liu, and Huairui Wang. 2025. "Natural Disaster Risk Assessment in Countries Along the Maritime Silk Road" Sustainability 17, no. 7: 3219. https://doi.org/10.3390/su17073219
APA StyleXu, C., Wang, J., Liu, J., & Wang, H. (2025). Natural Disaster Risk Assessment in Countries Along the Maritime Silk Road. Sustainability, 17(7), 3219. https://doi.org/10.3390/su17073219