Soil Indicators of Terroir and Their Importance for Adaptive and Sustainable Viticulture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Characterization
2.2. Ancient Viticulture Regions in Western Crimea
2.3. Field Stage of Soil Study
2.4. Physical Indicators of Soils
2.5. Specific Magnetic Susceptibility of Soils
2.6. Agrochemical Indicators of Soils
2.7. Geochemical Composition and Indicators of Soils
3. Results and Discussion
3.1. Climatotops of Two Regions of Western Crimea
3.2. The Role of Selection for Climate Adaptation in the Formation of Wine Terroir
3.3. Anthrosols of Ancient Viticulture
3.4. Agrophysical Characteristics of Wine Soils
3.5. Magnetic Susceptibility of Soils
3.6. Agrochemical Indicators of Post-Agrogenic and Virgin Soils
3.7. Biogeochemical Features of Post-Agrogenic Soils and Their Virgin Analogues
3.7.1. Biogeochemical Features of Soils of Northwestern Crimea
3.7.2. Biogeochemical Features of Soils in Southwestern Crimea
3.7.3. Comparison of Biogeochemical Features of Soils from Two Historical Regions of Western Crimea
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BD | Bulk density. |
Corg | Organic carbon. |
GPC | General projective cover. |
HMMs | Heavy metals and metalloids. |
LOD | Limit of detection. |
MPC | Maximum permissible concentration. |
PLFL | Post-antique long-term fallow land. |
PR | Parent rock. |
RGB | Regional geochemical background. |
SOM | Soil organic matter. |
TN | Total nitrogen. |
Appendix A
Field No. | Object Type | Munsell Color | CaO | Rb | Fe | Ni | Co | ∑ (Fe, Ni, Co) | χ | |
---|---|---|---|---|---|---|---|---|---|---|
Moist | Dry | % | mg kg−1 | 10−8 m3/kg | ||||||
29 | PLFL, Kalos Limen | 10YR 4/3 | 10YR 5/4 | 23.53 | 45.52 | 1.85 | 27.37 | LOD | 29.22 | 47.46 |
30 | virgin steppe, Kalos Limen | 10YR 4/4 | 10YR 5/5 | 21.83 | 48.71 | 1.98 | 30.14 | LOD | 32.12 | 53.79 |
33 | virgin steppe, NW | 7.5YR 3/3 | 7.5YR 3/4 | 36.34 | 27.38 | 1.22 | 15.02 | LOD | 16.24 | 30.10 |
34 | fallow land in the modern era, NW | 10YR 4/4 | 10YR 5/4 | 15.07 | 68.82 | 2.52 | 38.63 | 5.33 | 46.48 | 48.06 |
36 | PLFL, land plot No. 153 | 7.5YR 3/4 | 7.5YR 4/4 | 12.59 | 102.58 | 3.42 | 58.54 | 6.22 | 68.18 | 51.46 |
37 | PLFL, land plot No. 34 | 7.5YR 3/4 | 7.5YR 4/6 | 15.41 | 71.90 | 2.99 | 43.77 | 2.81 | 49.57 | 68.59 |
43 | virgin steppe, SW | 7.5YR 3/4 | 7.5YR 5/4 | 0.60 | 40.60 | 2.45 | 28.33 | 28.93 | 59.71 | 32.10 |
49 | Modern vineyard, SW | 7.5YR 4/2 | 7.5YR 4/4 | 5.05 | 93.57 | 3.77 | 51.78 | 10.96 | 66.51 | 224.53 |
40 | fallow land in the modern era, SW | 10YR 3/2.5 | 10YR 4/3 | 8.04 | 81.39 | 3.00 | 47.01 | 10.13 | 60.14 | 67.24 |
42 | PLFL, land plot No. 131 | 7.5R 4/2 | 7.5YR 5/4 | 27.04 | 58.71 | 2.07 | 34.38 | LOD | 36.45 | 44.00 |
44 | PLFL, land plot No. 360 | 7.5YR 4/4 | 7.5YR 5/4 | 19.62 | 69.06 | 2.89 | 42.83 | LOD | 45.72 | 51.17 |
2 | PR, eluvium limestone | 10YR 8/3 | 10YR 8/3 | 38.99 | 18.25 | 0.89 | 10.98 | LOD | 11.87 | 8.84 |
4 | PR, loess-like loam | 10YR 5/4 | 10YR 7/4 | 13.68 | 75.42 | 2.79 | 39.91 | LOD | 42.70 | 35.06 |
Field No. | Al2O3 | TiO2 | Na2O | V | Cr | As | Rb | Sr | Zr | Ba | Pb |
---|---|---|---|---|---|---|---|---|---|---|---|
% | mg kg−1 | ||||||||||
Temperate climate | |||||||||||
29 | 8.7 | 0.5 | 3.0 | 51.5 | 55.8 | 7.0 | 45.5 | 239.8 | 187.3 | 374.5 | 16.8 |
30 | 9.1 | 0.5 | 2.7 | 53.8 | 59.1 | 7.5 | 48.7 | 248.0 | 198.2 | 384.3 | 19.6 |
31 | 13.1 | 0.7 | 1.5 | 84.9 | 87.6 | 9.5 | 82.5 | 139.5 | 205.9 | 418.2 | 17.6 |
32 | 8.6 | 0.5 | 2.1 | 52.0 | 60.1 | 4.5 | 46.0 | 191.5 | 169.0 | 322.0 | 17.5 |
33 | 6.3 | 0.3 | 2.8 | 33.6 | 44.7 | 4.7 | 27.4 | 281.5 | 74.8 | 226.4 | 14.6 |
34 | 10.9 | 0.7 | 2.5 | 74.0 | 73.0 | 7.9 | 68.8 | 189.2 | 258.5 | 437.9 | 22.9 |
39 | 11.7 | 0.7 | 2.2 | 79.4 | 76.7 | 8.0 | 75.2 | 173.1 | 274.6 | 433.8 | 20.6 |
40 | 12.3 | 0.8 | 1.7 | 85.0 | 80.0 | 11.7 | 81.4 | 108.1 | 272.6 | 476.5 | 18.9 |
Average | 10.1 | 0.6 | 2.3 | 64.3 | 67.1 | 7.6 | 59.4 | 196.3 | 205.1 | 384.2 | 18.6 |
PR | 4.9 | 0.2 | 4.1 | 43.1 | 26.2 | 5.5 | 18.2 | 549.5 | 94.0 | 318.4 | 13.0 |
Sub-Mediterranean | |||||||||||
35 | 18.8 | 0.7 | 2.2 | 111.6 | 95.8 | 13.4 | 131.3 | 227.1 | 159.6 | 328.7 | 29.3 |
36 | 14.8 | 0.6 | 2.1 | 79.6 | 86.3 | 9.6 | 102.6 | 149.9 | 150.2 | 401.1 | 23.8 |
37 | 13.4 | 0.6 | 2.7 | 79.2 | 76.8 | 9.0 | 71.9 | 77.6 | 132.7 | 301.5 | 24.6 |
41 | 12.5 | 0.5 | 2.6 | 65.5 | 71.1 | 7.4 | 75.8 | 176.4 | 113.2 | 358.5 | 20.1 |
42 | 10.0 | 0.4 | 2.8 | 48.4 | 56.8 | 6.2 | 58.7 | 156.9 | 86.7 | 307.1 | 19.2 |
43 | 8.3 | 0.4 | 1.9 | 49.1 | 32.8 | 9.7 | 40.6 | 47.6 | 116.7 | 180.5 | 75.8 |
44 | 13.1 | 0.5 | 2.7 | 75.3 | 71.9 | 5.1 | 69.1 | 97.5 | 96.0 | 258.9 | 22.7 |
45 | 11.6 | 0.5 | 2.3 | 74.7 | 66.0 | 8.4 | 70.0 | 103.7 | 96.1 | 284.6 | 17.2 |
46 | 15.6 | 0.7 | 2.0 | 104.9 | 81.9 | 10.6 | 103.7 | 78.5 | 181.7 | 460.7 | 26.9 |
47 | 14.2 | 0.7 | 2.0 | 90.5 | 81.0 | 10.4 | 85.8 | 68.8 | 216.2 | 386.6 | 22.0 |
48 | 15.2 | 0.8 | 1.9 | 91.5 | 82.7 | 9.5 | 105.7 | 63.3 | 213.0 | 393.8 | 26.7 |
49 | 15.2 | 0.8 | 2.0 | 103.9 | 84.2 | 9.2 | 93.6 | 88.5 | 233.2 | 451.7 | 22.3 |
50 | 11.4 | 0.5 | 2.2 | 66.2 | 38.9 | 3.0 | 45.3 | 186.8 | 112.6 | 534.3 | 14.5 |
51 | 14.3 | 0.6 | 2.4 | 99.0 | 20.4 | 3.6 | 43.3 | 479.5 | 124.7 | 561.3 | 14.6 |
52 | 13.3 | 0.7 | 1.8 | 89.3 | 86.7 | 11.8 | 86.3 | 112.8 | 200.8 | 402.6 | 30.8 |
Average | 13.4 | 0.6 | 2.2 | 81.9 | 68.9 | 8.5 | 78.9 | 141.0 | 148.9 | 374.1 | 26.0 |
PR | 8.9 | 3.0 | 2.4 | 62.7 | 71.3 | 6.5 | 56.3 | 161.0 | 119.4 | 318.0 | 19.5 |
Parameters | Plowland in the Ancient Period and Under Vineyard Since 1945 (in Fallow for 20 Years) | Post-Antique Fallow Land (Vineyard Plowing Plantation) |
---|---|---|
No. land plot [59] | 378 | 153 |
Layer, cm | 0–18 | 0–12 |
Munsell color (dry) | 10YR 5/4 | 7.5YR 4/4 |
Corg, % | 4.72 | 3.95 |
pH (H2O) | 7.97 | 7.93 |
СаСО3, % | 24.40 | 20.49 |
P2O5 tot., % | 0.24 | 0.16 |
K2O tot., % | 1.60 | 2.13 |
Zn, mg kg−1 | 146 | 102 |
Co, mg kg−1 | 15 | 10 |
Cu tot., mg kg−1 | 306.4 | 13.2 |
Cu mov., mg kg−1 | 2.24 | 0.12 |
P2O5 mov., mg kg−1 | 21 | 10 |
K2O mov., mg kg−1 | 550 | 491 |
References
- Cataldo, E.; Fucile, M.; Mattii, G.B. A review: Soil management, sustainable strategies and approaches to improve the quality of modern viticulture. Agronomy 2021, 11, 2359. [Google Scholar] [CrossRef]
- Brito, C.; Pereira, S.; Martins, S.; Monteiro, A.; Moutinho-Pereira, J.M.; Dinis, L. Strategies for achieving the sustainable development goals across the wine chain: A review. Front. Sustain. Food Syst. 2024, 8, 1437872. [Google Scholar] [CrossRef]
- Masson, J.E.; Soustre-Gacougnolle, I.; Perrin, M.; Schmitt, C.; Henaux, M.; Jaugey, C.; Teillet, E.; Lollier, M.; Lallemand, J.F.; Schermesser, F. Transdisciplinary participatory-action-research from questions to actionable knowledge for sustainable viticulture development. Humanit. Soc. Sci. Commun. 2021, 8, 24. [Google Scholar] [CrossRef]
- Ivanov, D.A. Theoretical aspects of agrogeography. Her. Russ. Acad. Sci. 2018, 88, 379–384. [Google Scholar] [CrossRef]
- Kiryushin, V.I. The management of soil fertility and productivity of agrocenoses in adaptive-landscape farming systems. Eurasian Soil Sci. 2019, 52, 1137–1145. [Google Scholar] [CrossRef]
- Gorbunov, A.S.; Mikhno, V.B.; Bykovskaya, O.P. Agricultural landscape studies in Russian Federation. Curr. Landsc. Ecol. Rep. 2022, 7, 83–95. [Google Scholar] [CrossRef]
- Lopyrev, M.I.; Orobinsky, S.A. Agrolandscape and formation of landscape farming systems. Russ. Agric. Sci. 1993, 4, 25–33. (In Russian) [Google Scholar]
- Savchenko, E.S.; Kiryushin, V.I.; Lukin, S.V. Experience of biologization of agricultural technologies during the development of adaptive-landscape agricultural systems in Belgorod region. Int. Agric. J. 2022, 6, 658–661. (In Russian) [Google Scholar] [CrossRef]
- Shoba, S.A.; Alyabina, I.O.; Golozubov, O.M.; Chekmaryov, P.A.; Lukin, S.V.; Chernova, O.V.; Kolesnikova, V.M. Experience in creating an information system for rational use of soil resources. Mosc. Univ. Soil Sci. Bull. 2023, 78, 327–338. [Google Scholar] [CrossRef]
- Villat, J.; Nicholas, K.A. Quantifying soil carbon sequestration from regenerative agricultural practices in crops and vineyards. Front. Sustain. Food Syst. 2024, 7, 1234108. [Google Scholar] [CrossRef]
- Zhuchenko, A.A. Adaptive Plant-Growing (Genetic and Ecological Bases); Stiintsa Publishers: Kishinev, Moldova, 1990; ISBN 5-376-00834-7. (In Russian) [Google Scholar]
- Gabechaya, V.; Andreeva, I.; Morev, D. Comparative assessment of the climatological conditions on the biological activity of ampelocenoses soils cultivated in the wine-growing regions of the Southern Coast of Crimea and the eastern part of the national park “Fruska Gora”. Proc. BIO Web Conf. 2024, 85, 01051. [Google Scholar] [CrossRef]
- Fonseca, A.; Cruz, J.; Fraga, H.; Andrade, C.; Valente, J.; Alves, F.; Neto, A.C.; Flores, R.; Santos, J.A. Vineyard microclimatic zoning as a tool to promote sustainable viticulture under climate change. Sustainability 2024, 16, 3477. [Google Scholar] [CrossRef]
- Santagostini, L.; Guglielmi, V. Geological influences on wine quality: Analyzing Nebbiolo grapes from Northern Italy. Appl. Sci. 2025, 15, 258. [Google Scholar] [CrossRef]
- Tomić, N.; Ninkov, J.; Milić, S.; Marković, S.B.; Tomić, T. Power of Terroir: Case study of Grašac at the Fruška Gora wine region (North Serbia). Open Geosci. 2024, 16, 20220701. [Google Scholar] [CrossRef]
- White, R.E. The value of soil knowledge in understanding wine terroir. Front. Environ. Sci. 2020, 8, 12. [Google Scholar] [CrossRef]
- Eslava-Lecumberri, F.J.; Jiménez-Ballesta, R. Delineating vineyard management zones: Intrafield spatial variability of soil properties of carbonate vineyard soils. Eur. J. Soil Sci. 2024, 75, e70029. [Google Scholar] [CrossRef]
- Castillo, P.; Serra, I.; Townley, B.; Aburto, F.; López, S.; Tapia, J.; Contreras, M. Biogeochemistry of plant essential mineral nutrients across rock, soil, water and fruits in vineyards of Central Chile. Catena 2021, 196, 104905. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Schmutz, M.; de Rességuier, L. The contribution of near surface geophysics to measure soil related terroir factors in viticulture: A review. Geoderma 2024, 449, 116983. [Google Scholar] [CrossRef]
- Khalilova, E.A.; Islammagomedova, E.A.; Abakarova, A.A.; Kotenko, M.E.; Aliverdieva, D.A. Soil-climatic conditions of the vineyard and biochemical characteristics of the red dry wine ‘Kara-Koysu’ (Republic of Dagestan, Russian Federation). J. Wine Res. 2024, 35, 307–322. [Google Scholar] [CrossRef]
- Bažon, I.; Bakić, H.; Romić, M. Soil geochemistry as a component of terroir of the wine-growing station Jazbina, Zagreb. Agric. Conspec. Sci. 2013, 78, 95–106. [Google Scholar]
- García-Navarro, F.J.; Jiménez-Ballesta, R.; Chacón-Vozmediano, J.L.; Martínez-Gascueña, J.; Amorós, J.A.; Pérez-de-Los-Reyes, C.; García-Pradas, J.; Sanchez, M.; Bravo, S. Connecting the soils with a potential viticultural terroir zone. Commun. Soil Sci. Plant Anal. 2023, 54, 597–610. [Google Scholar] [CrossRef]
- Ghilardi, F.; Virano, A.; Prandi, M.; Borgogno-Mondino, E. Zonation of a viticultural territorial context in Piemonte (NW Italy) to support terroir identification: The role of pedological, topographical and climatic factors. Land 2023, 12, 647. [Google Scholar] [CrossRef]
- Karapetsas, N.; Alexandridis, T.K.; Bilas, G.; Theocharis, S.; Koundouras, S. Delineating natural terroir units in wine regions using geoinformatics. Agriculture 2023, 13, 629. [Google Scholar] [CrossRef]
- Averianov, A.A.; Androsova, E.D.; Rusakov, A.V. Winemaking terroir–the guideline for choosing of grape rootstocks for soils with different characteristics. Dokuchaev Soil Bull. 2023, 116, 155–187. [Google Scholar] [CrossRef]
- del Río, S.; Álvarez-Esteban, R.; Alonso-Redondo, R.; Hidalgo, C.; Penas, Á. A new integrated methodology for characterizing and assessing suitable areas for viticulture: A case study in Northwest Spain. Eur. J. Agron. 2021, 131, 126391. [Google Scholar] [CrossRef]
- Ferretti, C.G.; Febbroni, S. Terroir traceability in grapes, musts and Gewürztraminer wines from the South Tyrol wine region. Horticulturae 2022, 8, 586. [Google Scholar] [CrossRef]
- Zeng, G.; Hao, X.; Wang, H.; Li, H.; Gao, F. Effects of geographical origin, vintage, and soil on stable isotopes and mineral elements in Ecolly grape berries for traceability. Food Chem. 2024, 435, 137646. [Google Scholar] [CrossRef]
- Visconti, F.; López, R.; Olego, M.Á. The health of vineyard soils: Towards a sustainable viticulture. Horticulturae 2024, 10, 154. [Google Scholar] [CrossRef]
- Tana, C.M.; Marginean, M.C.; Tita, O. Characterization vineyard soil agrochemical Tarnave. In Proceedings of the 13th International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, Albena, Bulgaria, 16–22 June 2013; pp. 521–526. [Google Scholar] [CrossRef]
- Grinko, E.L.; Alesina, N.V.; Kuzmin, A.V. Conditions, opportunities, and issues of actualizing the potential for developing viticulture and winemaking in current realities: The regional aspect of the Russian Federation. Sib. J. Life Sci. Agric. 2022, 14, 297–334. (In Russian) [Google Scholar] [CrossRef]
- Ablaev, R.R.; Abramova, L.S.; Ablaev, A.R. Modern trends in the development of viticulture and winemaking in the agro-industrial complex of the Russian Federation. Int. Agric. J. 2023, 66, 748–765. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Seguin, G. The concept of terroir in viticulture. J. Wine Res. 2006, 17, 1–10. [Google Scholar] [CrossRef]
- Riccioli, F.; El Asmar, T.; El Asmar, J.P.; Fratini, R. Use of cellular automata in the study of variables involved in land use changes: An application in the wine production sector. Environ. Monit. Assess. 2013, 185, 5361–5374. [Google Scholar] [CrossRef] [PubMed]
- Šindelková, I.; Novotná, J.; Badalíková, B. The influence of vineyard greening on soil properties. In Proceedings of the 17th International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, Albena, Bulgaria, 29 June–5 July 2017; pp. 595–602. [Google Scholar] [CrossRef]
- Averianov, A.A.; Androsova, E.D.; Rusakov, A.V. Integral assessment of the soil component of wine terroir. Eurasian Soil Sci. 2023, 56, S172–S182. [Google Scholar] [CrossRef]
- Franco, G.C.; Leiva, J.; Nand, S.; Lee, D.M.; Hajkowski, M.; Dick, K.; Withers, B.; Soto, L.; Mingoa, B.-R.; Acholonu, M.; et al. Soil Microbial Communities and Wine Terroir: Research Gaps and Data Needs. Foods 2024, 13, 2475. [Google Scholar] [CrossRef] [PubMed]
- Legras, J.L.; Erny, C.; Charpentier, C. Population structure and comparative genome hybridization of European flor yeast reveal a unique group of Saccharomyces cerevisiae strains with few gene duplications in their genome. PLoS ONE 2014, 9, e108089. [Google Scholar] [CrossRef]
- Scott, E.I.; Toensmeier, E.; Iutzi, F.; Rosenberg, N.A.; Lovell, S.T.; Jordan, N.R.; Peters, T.E.; Akwii, E.; Broad Leib, E.M. Policy pathways for perennial agriculture. Front. Sustain. Food Syst. 2022, 6, 983398. [Google Scholar] [CrossRef]
- Lisetskii, F.N.; Zelenskaya, E.Y. Ampelopedological peculiarities of geographical areas of Crimea viticulture. Eurasian Soil Sci. 2022, 55, 1770–1785. [Google Scholar] [CrossRef]
- Rybalko, E.A.; Cherviak, S.N.; Ermikhina, M.V. Evaluation of viticulture and winemaking regions of Crimea in accordance with climatic factors, and their influence on the quality characteristics of grapes. Sib. J. Life Sci. Agric. 2023, 15, 246–263. (In Russian) [Google Scholar] [CrossRef]
- Semenov, V.A.; Aleshina, M.A. Scenario-based forecasts of changes in the temperature and hydrological regime of Crimea in the XXI century by data of CMIP6 climate models. Water Resour. 2022, 49, 661–670. [Google Scholar] [CrossRef]
- Doetterl, S.; Berhe, A.A.; Heckman, K.; Lawrence, C.; Schnecker, J.; Vargas, R.; Vogel, C.; Wagai, R. A landscape-scale view of soil organic matter dynamics. Nat. Rev. Earth Environ. 2025, 6, 67–81. [Google Scholar] [CrossRef]
- Lisetskii, F.N. Soil catenas in archeological landscapes. Eurasian Soil Sci. 1999, 32, 1084–1093. [Google Scholar]
- Narbarte-Hernández, J.; Iriarte, E.; Rad, C.; Tejerizo, C.; Eraso, J.F.; Quirós-Castillo, J.A. Long-term construction of vineyard landscapes in the Ebro Valley: The deserted village of Torrentejo (Basque Country, Spain). Catena 2020, 187, 104417. [Google Scholar] [CrossRef]
- Ved’, I.P. Climate Atlas of Crimea. Supplement to the Scientific and Practical Discussion and Analytical Collection “Issues of Development of Crimea”; Tavria-Plus: Simferopol, Ukraine, 2000; ISBN 966-7503-53-4. (In Russian) [Google Scholar]
- Lisetskii, F. (Ed.) Crimea: The History of Interaction between Man and Nature; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2019; ISBN 978-1-53615-004-9. [Google Scholar]
- Lisetskii, F.N.; Ergina, E.I. Soil development on the Crimean Peninsula in the late Holocene. Eurasian Soil Sci. 2010, 43, 601–613. [Google Scholar] [CrossRef]
- Rybalko, E.A.; Baranova, N.V.; Borisova, V.Y. Patterns of spatial variation of the Huglin index in the conditions of the Crimean Peninsula. Winemak. Vitic. 2020, 1, 18–23. (In Russian) [Google Scholar]
- Strzheletsky, S.F. Klers of Tauric Chersonesos; Krymizdat: Simferopol, Ukraine, 1961. (In Russian) [Google Scholar]
- Nikolaenko, G.M. The Chora of Tauric Chersonesos and the cadastre of the 4th-2nd century BC. In Surveying the Greek Chora: The Black Sea Region in a Comparative Perspective; Bilde, P.G., Stolba, V.F., Eds.; Aarhus University Press: Aarhus, Denmark, 2006; pp. 151–174. [Google Scholar]
- Kolesnikov, A.B.; Jacenko, I.V. Le territoire agricole de Chersonèsos Taurique dans la région de Kerkinitis. Territ. Cités Grecques. BCH Suppl. 1999, 34, 307–311. [Google Scholar]
- Smekalova, T.N.; Bevan, B.W.; Chudin, A.V.; Garipov, A.S. The discovery of an ancient Greek vineyard. Archaeol. Prospect. 2016, 23, 15–26. [Google Scholar] [CrossRef]
- Kruglikova, I.T. Agriculture of the Bosporus; Nauka: Moscow, Russia, 1975. (In Russian) [Google Scholar]
- Vinokurov, N.I. Viticulture and wine production in the antique states of the Northern Black Sea area. Bosporos Stud. 2007, 3, 22–39. [Google Scholar]
- Zelenskaya, E. Biogeochemical characteristics of grape growing soils and their soil-forming materials on post-ancient and modern vineyards of the Crimean Peninsula. In Proceedings of the 20th International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, Albena, Bulgaria, 18–24 August 2020; pp. 107–114. [Google Scholar] [CrossRef]
- Kadeev, V.I.; Sorochan, S.B. Economic Ties of Ancient Cities of the Northern Black Sea Region in the 1st Century BC–5th Century AD (Based on Materials from Chersonesos); Vyshha Shkola: Kharkov, Ukraine, 1989; ISBN 5-11-000701-2. (In Russian) [Google Scholar]
- Smekalova, T.N.; Kutaisov, V.A. Two recently-discovered ancient vineyards in northwestern Crimea. Vestn. Drevnei Istor. 2014, 2, 54–78. (In Russian) [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; Update 2015 (No. World Soil Resources Report 106); FAO: Rome, Italy, 2015. [Google Scholar]
- Nikolaenko, G.M. Chora of Tauric Chersonesus. Land Cadastre of the 4th and 3rd cc. BC; Part II; Tauric Chersonesos: Sevastopol, Ukraine, 2001. (In Russian) [Google Scholar]
- Terekhin, E.A.; Smekalova, T.N. Study of ancient land boundaries at Tauric Chersonesos using satellite images. Anc. Civiliz. Scythia Sib. 2019, 25, 44–58. [Google Scholar] [CrossRef]
- Marshall, C.E. Russian literature on pedology: Ecology of soils. Science 1965, 3677, 1581. [Google Scholar] [CrossRef]
- Huglin, P. Nouveau Mode D’évaluation des Possibilités Héliothermiques d’un Milieu Viticole. Comptes Rendus de l’Académie d’Agriculture; Académie d’agriculture de France: Paris, France, 1978. [Google Scholar]
- Van Leeuwen, C.; Friant, P.; Chone, X.; Tregoat, O.; Koundouras, S.; Dubourdieu, D. Influence of climate, soil, and cultivar on terroir. Am. J. Enol. Vitic. 2004, 55, 207–217. [Google Scholar] [CrossRef]
- Andrianov, P.I. On the strength of a soil lump and methods for determining it. Pochvovedenie 1947, 2, 96–101. (In Russian) [Google Scholar]
- Munsell, A.H. Munsell Soil Color Charts; Gretag Macbeth: New Windsor, NY, USA, 2000. [Google Scholar]
- Maher, B.A.; Alekseev, A.; Alekseeva, T. Variation of soil magnetism across the Russian steppe: Its significance for use of soil magnetism as a palaeorainfall proxy. Quat. Sci. Rev. 2002, 21, 1571–1576. [Google Scholar] [CrossRef]
- Arinushkina, E.V. Treatise for Chemical Analysis of Soils; Moscow State University: Moscow, Russia, 1970. (In Russian) [Google Scholar]
- van Reeuwijk, L.P. Procedures for Soil Analysis; International Soil Reference and Information Centre: Wageningen, The Netherlands, 2002. [Google Scholar]
- Bityutsky, N.P. Microelements of Higher Plants. Publishing house of St. Petersburg State University: St. Petersburg, Russia, 2011; ISBN 978-5-288-05127-2. (In Russian) [Google Scholar]
- Orlov, D.S. Debatable problems of modern soil chemistry. Eurasian Soil Sci. 2001, 34, 336–341. [Google Scholar]
- Alekseev, A.O.; Kalinin, P.I.; Alekseeva, T.V. Soil indicators of paleoenvironmental conditions in the south of the East European Plain in the Quaternary time. Eurasian Soil Sci. 2019, 52, 349–358. [Google Scholar] [CrossRef]
- Lisetskii, F.N.; Smekalova, T.N.; Marinina, O.A. Biogeochemical features of fallow lands in the steppe zone. Contemp. Probl. Ecol. 2016, 9, 366–375. [Google Scholar] [CrossRef]
- Storie, R.E. Storie Index Soil Rating; Division of Agricultural Sciences, University of California Special Publication: Oakland, CA, USA, 1978; Special Publication 3203. [Google Scholar]
- O’Geen, A.T.; Susan, B.; Southard, B.S.; Southard, J.R. A Revised Storie Index for Use with Digital Soil Information; University of California, Division of Agriculture and Natural Resources: Oakland, CA, USA, 2008. [Google Scholar] [CrossRef]
- Krupenikov, I.A.; Godelman, Y.M. New aspects of large-scale soil mapping. Pochvovedenie 1973, 1, 25–34. (In Russian) [Google Scholar]
- Novikova, L.Y.; Naumova, L.G. Dependence of fresh grapes and wine taste scores on the origin of varieties and weather conditions of the harvest year in the northern zone of industrial viticulture in Russia. Agronomy 2020, 10, 1613. [Google Scholar] [CrossRef]
- Cordova, C. Crimea and the Black Sea: An Environmental History; I.B. Tauris: London, UK; New York, NY, USA, 2016; ISBN 9781784530013. [Google Scholar]
- Ivanov, I.V.; Lisetskiy, F.N. Correlation of soil formation rhythms with periodicity of solar activity over the last 5000 years. Trans. Russ. Acad. Sci. Earth Sci. Sect. 1996, 340, 189–194. (In Russian) [Google Scholar]
- Rooney, E.C.; Possinger, A.R. Climate and ecosystem factors mediate soil freeze-thaw cycles at the continental scale. JGR Biogeosciences 2024, 129, e2024JG008009. [Google Scholar] [CrossRef]
- Jiang, P.; Chen, Y.; Wang, W.; Yang, J.; Wang, H.; Li, N.; Wang, W. Flexural behavior evaluation and energy dissipation mechanisms of modified iron tailings powder incorporating cement and fibers subjected to freeze-thaw cycles. J. Clean. Prod. 2022, 351, 131527. [Google Scholar] [CrossRef]
- Isikov, V.P.; Plugatar, Y.V. Wild-Growing Trees and Bushes of the Crimea; PP Arial: Simferopol, Russia, 2018; ISBN 978-5-907032-47-7. (In Russian) [Google Scholar]
- Main Directorate of Natural Resources and Ecology of the City of Sevastopol. The Red Data Book of Sevastopol; ROST-DOAFK: Kaliningrad, Russia; Sevastopol, Russia, 2018; ISBN 978-5-6040479-4-1. (In Russian) [Google Scholar]
- Cordova, C.E.; Lehman, P.H. Holocene environmental change in southwestern Crimea (Ukraine) in pollen and soil records. Holocene 2005, 15, 263–277. [Google Scholar] [CrossRef]
- Cherenkova, N.I. (Ed.) Agroclimatic Reference Book for the Crimean Region; Hydrometeorological Publishing House: Leningrad, Russia, 1959. (In Russian) [Google Scholar]
- Janushevich, Z.V. Cultivated Plants of the Northern Black Sea Region (Paleobotanical Studies); Stiintsa Publishers: Kishinev, Moldova, 1986. (In Russian) [Google Scholar]
- Volynkin, V.; Likhovskoi, V.; Polulyakh, A.; Levchenko, S.; Ostroukhova, E.; Vasylyk, I.; Peskova, I. Native grape varieties of the Euro-Asian eco-geographical region of Russia: Taxonomic, biological and agroeconomic specificity of cultivars from Crimea. In Vitis: Biology and Species; Nova Science Publishers: New York, NY, USA, 2020; pp. 45–72. [Google Scholar]
- Polulyakh, A.A. Adaptive potential of native Crimean grape varieties to extreme winter frosts of 2006. Magarach Vitic. Winemak. 2007, 4, 5–8. (In Russian) [Google Scholar]
- Shiraishi, M.; Yamada, M.; Mitani, N.; Ueno, T. A rapid determination method for anthocyanin profiling in the grape genetic resources. J. Jpn. Soc. Hortic. Sci. 2007, 76, 28–35. [Google Scholar] [CrossRef]
- Deineka, L.A.; Litvin, Y.Y.; Deineka, V.I. Criteria for grape classification by fruit anthocyanins composition. Nauch. Ved. Belgorod. Gos. Univ. Ser. Estestv. Nauki 2008, 7, 71–78. [Google Scholar]
- Cosano, D.; Román, J.M.; Esquivel, D.; Lafont, F.; Arrebola, J.R.R. New archaeochemical insights into Roman wine from Baetica. J. Archaeol. Sci. Rep. 2024, 57, 104636. [Google Scholar] [CrossRef]
- Skorbanova, E.A.; Ryinda, P.D.; Kayryak, N.F. Detection of variety of the wine from grape of Vitis vinifera. Winemak. Vitic. 2006, 1, 24–25. (In Russian) [Google Scholar]
- Ginjom, I.; D’Arcy, B.; Caffin, N.; Gidley, M. Phenolic compound profiles in selected Queensland red wines at all stages of the wine-making process. Food Chem. 2011, 125, 823–834. [Google Scholar] [CrossRef]
- Khmelev, V.N.; Sevodin, V.P.; Shesternin, V.I.; Kuzovnikov, Y.M.; Levin, S.V. Using of ultrasound in grape wine making process. In Proceedings of the 16th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices, Novosibirsk State Technical University, Erlagol, Russia, 29 June–3 July 2015; pp. 218–220. [Google Scholar] [CrossRef]
- Lopina, E.M.; Zelenskaya, E.Y. Geochemical features of the translocation of elements in the “soil-plant” system based on the results of studying the geographical regions of Crimean viticulture. Region. Geosyst. 2021, 45, 431–440. (In Russian) [Google Scholar] [CrossRef]
- Ščeglov, A.N. Utilisation de la photographie aérienne dans l’étude du cadastre de Chersonésos Taurique (IVe-IIe s. av. n. ère). Dialogues Hist. Anc. 1980, 6, 59–72. [Google Scholar]
- Surveying the Greek Chora. In Black Sea Region in a Comparative Perspective; Bilde, P.G., Stolba, V.F., Eds.; Aarhus University Press: Aarhus, Denmark, 2006; ISBN 978-87-7934-972-8. [Google Scholar]
- Vinokurov, N.I. Viticulture and Winemaking of the Ancient States of the Northern Black Sea Region. Bosporan Studies; ADEF-Ukraine: Simferopol, Ukraine; Kerch, Ukraine, 2007. [Google Scholar]
- Garbuzov, G. Quantiication of arable land in the bosphorus region during antiquity. Mediterranee 2016, 126, 101–109. [Google Scholar] [CrossRef]
- Lisetskii, F.N.; Stolba, V.F.; Pichura, V.I. Late-Holocene palaeoenvironments of Southern Crimea: Soils, soil-climate relationship and human impact. Holocene 2017, 27, 1859–1875. [Google Scholar] [CrossRef]
- Zelenskaya, E.Y.; Marinina, O.A. Geoecological assessment of soils in the main areas of viticulture of the Crimean Peninsula. Region. Geosyst. 2021, 45, 258–268. (In Russian) [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Zamanian, K. Reviews and syntheses: Agropedogenesis–humankind as the sixth soil-forming factor and attractors of agricultural soil degradation. Biogeosciences 2019, 16, 4783–4803. [Google Scholar] [CrossRef]
- Dudal, R. The sixth factor of soil formation. Eurasian Soil Sci. 2005, 38, 60–65. [Google Scholar]
- Yigini, Y.; Panagos, P.; Montanarella, L. Soil Resources of Mediterranean and Caucasus Countries; Office for Official Publications of the European Communities: Luxembourg, 2013. [Google Scholar] [CrossRef]
- Tabunshchik, V.; Gorbunov, R.; Gorbunova, T.; Safonova, M. Vegetation dynamics of Sub-Mediterranean low-mountain landscapes under climate change (on the example of Southeastern Crimea). Forests 2023, 14, 1969. [Google Scholar] [CrossRef]
- Agadzhanova, N.V.; Izosimova, Y.G.; Kostenko, I.V.; Krasilnikov, P.V. Indicators of pedogenic processes in red clayey soils of the Cape Martyan Reserve, South Crimea. Eurasian Soil Sci. 2021, 54, 1–12. [Google Scholar] [CrossRef]
- Zech, W.; Schad, P.; Hintermaier-Erhard, G. Böden der Welt: Ein Bildatlas, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 3-8274-1348-6. [Google Scholar]
- Grodzinsky, M.D. Evolution of Ukrainian Landscapes: Landscape-Geographical World of the Problem; Kyiv University: Kyiv, Ukraine, 2023. (In Ukrainian) [Google Scholar]
- Lisetskii, F.N. Autogenic succession of steppe vegetation in postantique landscapes. Russ. J. Ecol. 1998, 29, 217–219. [Google Scholar]
- Borovyk, L.P. Patterns of vegetation succession in abandoned fields in semi-arid conditions. Biosyst. Divers. 2020, 28, 357–363. [Google Scholar] [CrossRef]
- Lisetskii, F.; Pichura, V. Steppe ecosystem functioning of East-European plain under age-long climatic change influence. Indian J. Sci. Technol. 2016, 9, 1–9. [Google Scholar] [CrossRef]
- Titlyanova, A.A.; Shibareva, S.V. Change in the net primary production and carbon stock recovery in fallow soils. Eurasian Soil Sci. 2022, 55, 501–510. [Google Scholar] [CrossRef]
- Lisetskii, F.N. Soil reproduction in steppe ecosystems of different ages. Contemp. Probl. Ecol. 2012, 5, 580–588. [Google Scholar] [CrossRef]
- Dembicz, I.; Zachwatowicz, M.; Moysiyenko, I.; Shapoval, V.; Smreczak, B.; Zagorodniuk, N.; Davydova, A.; Vynokurov, D.; Seiler, H.; Sudnik-Wójcikowska, B. Rapid functional but slow species diversity recovery of steppe vegetation on former arable fields in southern Ukraine. App. Veg. Sci. 2023, 26, e12756. [Google Scholar] [CrossRef]
- Akimtsev, V.V. Soil and quality of wines. Pochvovedenie 1950, 5, 296–302. [Google Scholar]
- Li, X.; Fu, S.; Hu, Y.; Liu, B. Effects of rock fragment coverage on soil erosion: Differ among rock fragment sizes? Catena 2022, 214, 106248. [Google Scholar] [CrossRef]
- Luo, Y.; Wen, T.; Lin, X.; Chen, X.; Shao, L. Quantitative analysis of pore-size influence on granite residual soil permeability using CT scanning. J. Hydrol. 2024, 645, 132133. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, T.; Ge, Z.; Man, T.; Huppert, H.E. Infiltration characteristics of slurries in porous media based on the coupled Lattice-Boltzmann discrete element method. Comput. Geotech. 2025, 177, 106865. [Google Scholar] [CrossRef]
- Sukhacheva, E.Y.; Revina, Y.S. Medium-scale soil map of the Crimea Southern Coast. Eurasian Soil Sci. 2020, 53, 397–404. [Google Scholar] [CrossRef]
- Klymenko, O.; Klymenko, M.; Kameneva, I.; Klymenko, N. Ecologization of fruit crops grafted seedlings growing. Acta Hortic. 2014, 1032, 125–132. [Google Scholar] [CrossRef]
- Aver’yanov, A.A.; Agadzhanova, N.V.; Androsova, E.D.; Rusakov, A.V. Parametrization and integral evaluation of the terroir of winemaking sites on the Taman Peninsula. Gruntovedenie 2021, 2, 22–30. (In Russian) [Google Scholar] [CrossRef]
- Vavilov, N.I.; Bukinich, D.D. Agriculture Afghanistan. Supplement 33th to the Bulletin of Applied Botany, of Genetics and Plant-Breeding; All-Union Institute of Applied Botany and New Crops under the Council of People’s Commissars, USSR, State Institute of Experimental Agronomy of the People’s Commissariat of Agriculture: Leningrad, Russia, 1929. (In Russian) [Google Scholar]
- Kochkin, M.A.; Opanasenko, N.E. Fundamentals of rational use of skeletal soils of Crimea for gardens. Plant Biol. Hortic. Theory Innov. 1981, 84, 14–24. (In Russian) [Google Scholar]
- Medvedev, V.V. Physical properties and spatial distribution of the plowpan in different arable soils. Eurasian Soil Sci. 2011, 44, 1364–1372. [Google Scholar] [CrossRef]
- Bulygin, S.Y.; Lisetskii, F.N. Soil microaggregation as an index of erosion resistance. Eurasian Soil Sci. 1992, 24, 59–65. [Google Scholar]
- Bryk, M.; Słowińska-Jurkiewicz, A.; Medvedev, V.V. Morphometrical structure evaluation of long-term manured Ukrainian Chernozem. Int. Agrophys. 2012, 26, 117–128. [Google Scholar] [CrossRef]
- Lisetskii, F.; Chepelev, O. Quantitative substantiation of pedogenesis model key components. Adv. Environ. Biol. 2014, 8, 996–1000. [Google Scholar]
- Kubiena, W.L. The Soils of Europe; Thomas Murby & Co., Ltd.: London, UK, 1953; ISBN 978-00-4550-001-7. [Google Scholar]
- Kiriliuk, V.P. Microelements in the Components of the Biosphere of Moldova; Pontos: Chisinau, Moldova, 2006; ISBN 978-9975-72-206-3. (In Russian) [Google Scholar]
- Evangelou, E.; Giourga, C. Identification of soil quality factors and indicators in Mediterranean agro-ecosystems. Sustainability 2024, 16, 10717. [Google Scholar] [CrossRef]
- Orlov, D.S.; Biryukova, O.N.; Rozanova, M.S. Revised system of the humus status parameters of soils and their genetic horizons. Eurasian Soil Sci. 2004, 37, 918–926. [Google Scholar]
- Savosko, V.M. Genesis of the idea and definition of pedogeochemical barriers of heavy metals migration. Gruntoznavstvo 2017, 18, 21–29. [Google Scholar]
- Lisetskii, F.N.; Pichura, V.I. Catena linking of landscape-geochemical processes and reconstruction of pedosedimentogenesis: A case study of defensive constructions of the mid-17th century, South Russia. Catena 2020, 187, 104300. [Google Scholar] [CrossRef]
- Prikhodko, V.; Savelev, N.; Kotov, V.; Nikolaev, S.; Ruslanov, E.; Rumyantsev, M.; Manakhova, E. Complex study of settlements dating from the Paleolithic to Medieval Period in the Ural Mountains on the border of Europe and Asia. Geosciences 2025, 15, 31. [Google Scholar] [CrossRef]
- Lisetskii, F. Biogeochemical features of soil formation without parent rock in natural conditions and in an urban environment. IOP Conf. Ser. Earth Environ. Sci. 2022, 1010, 012018. [Google Scholar] [CrossRef]
- Sirbu-Radasanu, D.S.; Huzum, R.; Iftode, S.P.; Iancu, G.O.; Buzgar, N. Geochemical assessment of soil potentially toxic elements from Copou-Iasi vineyard area (NE Romania). Analele Stiintifice Ale Univ. Al. Cuza Din Iasi Ser. Geol. 2015, 61, 5–19. [Google Scholar]
- Gallet, S.; Borming, J.; Gallet, S.; Masayuki, T. Geochemical characterization of the Luochuan loess-paleosol sequence, China, and paleoclimatic implications. Chem. Geol. 1996, 133, 67–88. [Google Scholar] [CrossRef]
- Jiménez-Ballesta, R.; García-Navarro, F.J.; Amorós, J.A.; Pérez-de-los-Reyes, C.; Bravo, S. Unravelling the concentrations of five rare earth elements in two vineyard red soils. Pollutants 2023, 3, 114–122. [Google Scholar] [CrossRef]
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral ecology 2001, 26, 32–46. [Google Scholar]
- Lisetskii, F.; Poletaev, A.; Zelenskaya, E. Soil-litological features of ancient Greek vineyards on the Herakleian Peninsula, south-west Crimea. In Proceedings of the 20th International Multidisciplinary Scientific GeoConference Proceedings SGEM 2020, Albena, Bulgaria, 18–24 August 2020; Volume 20, pp. 599–606. [Google Scholar] [CrossRef]
- Vaudour, E.; Costantini, E.; Jones, G.V.; Mocali, S. An overview of the recent approaches to terroir functional modelling, footprinting and zoning. Soil 2015, 1, 287–312. [Google Scholar] [CrossRef]
Climate Parameters | Regions | |||
---|---|---|---|---|
Northwest | Southwest | East | South Coast of Crimea | |
Average t (I), °C a | +0.3 ÷ −1.8 | +1.6 | +0.3 ÷ −1.5 | +1.8 ÷ +4.0 |
Date of Frosts (last of spring) | 15–20.04 | 25.03 | 10.04 | 15–25.03 |
Frost-free period, days | 186–223 | 240 | 214–220 | 237–259 |
Precipitation for the period from t > 10 °C, mm | 190–216 | 177 | 195–220 | 195–260 |
Huglin index [49] | 2403 | 2502 | 2571 | 2546 |
Q b (MJ m−2 yr−1) | 900–1000 | 900–1100 | 900 | 1200–1400 |
Section No. | Coordinates | Location | Agricultural Land | Phytocoenosis a | GPC b % | Soil c | |
---|---|---|---|---|---|---|---|
Latitude | Longitude | ||||||
Tarkhankut Peninsula | |||||||
29 | 45.529166 | 32.715770 | Rural area of ancient Kalos Limen | Post-antique fallow land (vineyard, plantation plowing) | H+F | 80 | LPk |
30 | 45.529300 | 32.715475 | Coastal area near section No. 29 | Virgin land (steppe) | H+Sc | 95 | CHk |
31 | 45.246011 | 33.467303 | Antique land plot (near of Mamai-Tyup) | Post-antique fallow land (vineyard, plantation plowing) | H+Sc | 80 | LPk |
32 | 45.322236 | 32.668159 | Antique land plot (near of Oirat) | Post-antique fallow land (vineyard, plantation plowing) | Sc+H | 90 | LPk |
33 | 45.388269 | 32.695604 | “Krasnoselskaya steppe” nature reserve | Virgin land (steppe) | Sc+H | 90 | CHk |
34 | 45.350074 | 32.703932 | 2.5 km east of section No. 32 | Abandoned cropland since 1980s (vineyard) | H+(Sc+Sl) | 80 | CHk |
Herakleian Peninsula | |||||||
35 | 44.485509 | 33.625644 | 2.5 km east of Balaklava Bay | Sub-Mediterranean forest | PJ+H | 40 | CMu |
36 | 44.572428 | 33.476739 | Antique land plot No. 153 | Post-antique fallow land (vineyard, plantation plowing) | H+Sc | 80 | CMc |
37 | 44.534027 | 33.542985 | Antique land plot No. 378 | Modern fallow land (vineyard, antique plantation plowing) | H | 60 | CMc |
43 | 44.493874 | 33.608177 | 0.9 km east of Balaklava Bay | Virgin land (steppe) | Sl+F | 90 | CMc |
Section No. | BD (g cm−3) | Water Resistance (%) of Soil Aggregates with Diameter, mm | Average (%) | ||
---|---|---|---|---|---|
1–2 | 2–3.15 | 3.15–5 | |||
29 | 0.96 | 84.5 | 92.1 | 94.7 | 90.4 |
30 | 0.98 | 71.8 | 74.3 | 87.2 | 77.7 |
31 | 0.89 | 84.6 | 87.3 | 91.7 | 87.8 |
32 | 0.95 | 83.2 | 87.2 | 88.1 | 86.2 |
33 | 0.97 | 75.1 | 77.2 | 80.4 | 77.5 |
34 | 0.92 | 69.0 | 70.1 | 79.0 | 72.7 |
35 | 1.24 | 91.2 | 94.8 | 96.4 | 94.1 |
36 | 0.99 | 61.9 | 67.0 | 67.5 | 65.4 |
37 | 1.08 | 85.9 | 90.1 | 92.4 | 89.4 |
Section No. | GPC a (Stones)% | MS (1–50) b % | MS (>50) b % | Horizon Ad mm | Detritus Mass (Horizon Ad) % | Depth of Selection from Horizon A cm | Munsell Color (Horizon A) Moist Dry | SOM % | TN % | Labile Humus % | C/N Ratio | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
29 | 2.0 | 22 | 28 | 30 | 1.31 | 3–16.5 | 10YR 4/3 | 10YR 5/4 | 3.27 | 0.24 | 0.01 | 7.9 |
30 | 0 | 1 | 0 | 45 | 8.90 | 4.5–16.5 | 10YR 4/4 | 10YR 5/5 | 3.63 | 0.28 | 0.05 | 7.5 |
31 | 1.9 | 31 | 47 | 25 | 6.62 | 2.5–27 | 10YR 4/3 | 10YR 5/4 | 3.51 | 0.23 | 0.05 | 8.9 |
32 | 2.7 | 21 | 32 | 37 | 0.75 | 3.7–16 | 10YR 4/3 | 10YR 5/4 | 4.18 | 0.27 | 0.06 | 9.0 |
33 | 0.1 | 4 | 0 | 47 | 0.25 | 4.7–17 | 7.5YR 3/3 | 7.5YR 3/4 | 3.64 | 0.25 | 0.04 | 8.4 |
34 | 1.3 | 25 | 0 | 40 | 0.26 | 4–33 | 10YR 4/4 | 10YR 5/4 | 2.20 | 0.16 | 0.04 | 8.0 |
35 | 9.7 | 6 | 0 | 36 | 44.85 | 3.6–19.5 | 10YR 4/3.5 | 10YR 6/4 | 4.91 | 0.27 | 0.05 | 10.5 |
36 | 4.8 | 31 | 26 | 35 | 1.46 | 3.5–20.5 | 7.5YR 3/4 | 7.5YR 4/4 | 4.41 | 0.32 | 0.05 | 8.0 |
37 | 3.5 | 55 | 17 | 40 | 0.84 | 4–21 | 7.5YR 3/4 | 7.5YR 4/6 | 4.20 | 0.24 | 0.06 | 10.2 |
43 | 0 | - | - | 15 | 2.99 | 1.5–17 | 7.5YR 3/4 | 10YR 5/5 | 3.02 | 0.22 | 0.05 | 8.0 |
Section No. | CEC | pH H2O | CO2 | P(mob.) | K(mob.) | Cu(mob.) | B(mob.) | Mb(mob.) | SQ(8) |
---|---|---|---|---|---|---|---|---|---|
cmol+ kg−1 | % | mg kg−1 | |||||||
29 | 24.6 | 8.1 | 16.38 | 6 | 435 | 0.115 | 1.78 | 0.11 | 0.074 |
30 | 26.6 | 8.1 | 15.34 | 7 | 785 | 0.116 | 2.56 | 0.13 | 0.079 |
31 | 20.8 | 8.2 | 9.77 | 9 | 380 | 0.099 | 2.00 | 0.11 | 0.069 |
32 | 24.4 | 8.0 | 16.50 | 5 | 301 | 0.106 | 2.48 | 0.12 | 0.074 |
33 | 32.6 | 8.1 | 24.13 | 5 | 242 | 0.092 | 1.67 | 0.13 | 0.062 |
34 | 25.2 | 8.2 | 11.26 | 6 | 209 | 0.148 | 1.51 | 0.14 | 0.064 |
35 | 29.2 | 8.1 | 4.93 | 8 | 346 | 0.123 | 4.04 | 0.11 | 0.060 |
36 | 36.8 | 8.1 | 9.76 | 5 | 401 | 0.115 | 3.07 | 0.12 | 0.063 |
37 | 33.4 | 8.1 | 11.46 | 5 | 321 | 2.240 | 2.10 | 0.13 | 0.100 |
Section No. | Ca | Si | Fe | Mg | Mn | K | P | S | Cl | Ni | Cu | Zn | SQ (7) | SQ (12) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% | mg kg−1 | |||||||||||||
29 | 16.80 | 17.42 | 1.89 | 0.96 | 0.06 | 1.33 | 0.09 | 877.35 | 98.6 | 27.37 | 22.95 | 52.99 | 1.21 | 0.15 |
30 | 15.59 | 18.12 | 1.96 | 1.03 | 0.06 | 1.41 | 0.09 | 874.35 | 156.1 | 30.14 | 21.97 | 54.50 | 1.23 | 0.16 |
31 | 9.01 | 21.62 | 3.15 | 0.96 | 0.07 | 1.49 | 0.09 | 681.13 | 48.7 | 47.77 | 17.88 | 69.10 | 1.28 | 0.15 |
32 | 16.95 | 17.51 | 1.82 | 0.90 | 0.05 | 1.25 | 0.09 | 975.69 | 81.0 | 27.36 | 27.29 | 54.46 | 1.15 | 0.15 |
33 | 25.95 | 10.51 | 1.19 | 0.72 | 0.04 | 0.91 | 0.04 | 691.50 | 95.4 | 15.02 | 43.07 | 43.02 | 0.86 | 0.12 |
34 | 10.80 | 22.09 | 2.52 | 1.03 | 0.08 | 1.33 | 0.09 | 526.00 | 25.2 | 38.63 | 28.57 | 62.70 | 1.29 | 0.14 |
39 | 8.75 | 23.22 | 2.73 | 1.00 | 0.07 | 1.49 | 0.08 | 586.34 | 16.4 | 41.15 | 25.69 | 63.40 | 1.24 | 0.13 |
40 | 5.75 | 25.11 | 3.00 | 1.01 | 0.09 | 1.41 | 0.07 | 539.45 | 6.1 | 47.01 | 14.49 | 65.81 | 1.21 | 0.11 |
11.34 ± 4.81 | 21.16 ± 3.26 | 2.52 ± 0.59 | 0.98 ± 0.05 | 0.07 ± 0.01 | 1.38 ± 0.10 | 0.09 ± 0.01 | 697.66 ± 197.27 | – | 38.22 ± 9.53 | 22.81 ± 5.84 | 61.41 ± 6.69 | – | – |
Section No. | Land a | Plot b No. | Depth cm | Munsell Color (Dry) | Ca | Si | Fe | Mg | Mn | K | P | S | Cl | Ni | Cu | Zn | SQ (7) | SQ (12) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% | mg kg−1 | |||||||||||||||||
35 | V (forest) | - | 3.6–19.5 | 10YR 6/4 | 4.60 | 53.90 | 5.30 | 1.70 | 0.06 | 2.60 | 0.10 | 545.5 | 107.3 | 62.00 | 19.70 | 97.30 | 0.15 | 1.05 |
43 | V (steppe) | - | 1.5–17 | 10YR 5/5 | 0.60 | 73.40 | 3.50 | 0.90 | 0.04 | 1.20 | 0.10 | 565.9 | 56.0 | 28.30 | 39.30 | 52.20 | 0.09 | 0.59 |
36 | PA-F | 153 | 3.5–20.5 | 7.5YR 4/4 | 12.6 | 44.80 | 4.90 | 1.50 | 0.10 | 2.10 | 0.20 | 737.0 | 20.1 | 58.50 | 13.20 | 87.30 | 0.14 | 1.32 |
37 | PA-F + VY(MF) | 378 | 4–21 | 7.5YR 4/6 | 15.4 | 43.50 | 4.30 | 1.10 | 0.08 | 1.40 | 0.20 | 654.8 | 65.5 | 43.80 | 306.40 | 90.40 | 0.18 | 1.16 |
41 | PA-F | 175 | 0–21 | 7.5YR 5/4 | 20.04 | 37.39 | 3.75 | 1.34 | 0.08 | 1.71 | 0.15 | 805.6 | 32.7 | 44.84 | 28.25 | 75.66 | 0.14 | 1.17 |
42 | PA-F | 131 | 0–18 | 10YR 5/4 | 27.04 | 30.28 | 2.96 | 1.38 | 0.08 | 1.65 | 0.16 | 871.7 | 47.9 | 34.38 | 8.25 | 66.59 | 0.13 | 1.16 |
44 | PA-F | 360 | 3–17.5 | 10YR 4/3 | 19.62 | 37.72 | 4.14 | 1.21 | 0.07 | 1.46 | 0.16 | 715.2 | 16 | 42.83 | 19.09 | 83.21 | 0.13 | 1.13 |
45 | PA-F + VY(MF) | 365 | 2–14.5 | 10YR 5/4 | 22.90 | 36.42 | 3.81 | 1.17 | 0.08 | 1.54 | 0.08 | 332.8 | LOD | 36.73 | 56.60 | 72.70 | 0.18 | 1.05 |
46 | PA-F + VY(MF) | 366 | 2–17.5 | 10YR 5/3 | 4.53 | 55.29 | 5.40 | 1.27 | 0.15 | 1.79 | 0.12 | 369.8 | LOD | 62.41 | 138.96 | 93.93 | 0.22 | 1.12 |
47 | PA-F + VY(MF) | 380 | 1.5–20 | 10YR 4/4 | 7.69 | 53.17 | 4.82 | 1.27 | 0.10 | 1.55 | 0.14 | 461.0 | LOD | 50.66 | 178.74 | 92.30 | 0.23 | 1.12 |
48 | PA-F + MF | 379 | 1.5–21 | 7.5YR 4/3 | 2.69 | 59.68 | 5.36 | 1.21 | 0.13 | 1.79 | 0.10 | 349.4 | LOD | 58.95 | 98.69 | 83.12 | 0.20 | 0.99 |
49 | PA-F + VY | 403 | 0–21 | 7.5YR 4/2 | 2.15 | 58.76 | 5.39 | 1.49 | 0.11 | 1.68 | 0.13 | 307.8 | LOD | 51.78 | 34.12 | 78.81 | 0.17 | 0.99 |
50 | PA-F + VY | 403б | 0–20 | 10YR 5/4 | 16.68 | 46.40 | 3.54 | 1.45 | 0.10 | 1.48 | 0.23 | 374.4 | 5.7 | 25.82 | 98.76 | 68.33 | 0.13 | 1.27 |
51 | PA-F + VY(MF) | 404 | 0–21 | 10YR 5/4 | 5.84 | 56.04 | 4.95 | 1.88 | 0.12 | 1.22 | 0.17 | 294.1 | 9.2 | 20.59 | 40.29 | 80.75 | 0.12 | 1.17 |
52 | PA-F | 268 | 2.5–19.5 | 10YR 4/3 | 10.60 | 49.11 | 4.63 | 1.55 | 0.10 | 1.96 | 0.21 | 802.0 | 6.1 | 50.24 | 16.65 | 89.47 | 0.13 | 1.29 |
12.91 ± 4.90 | 46.81 ± 5.73 | 4.46 ± 0.47 | 1.37 ± 0.13 | 0.10 ± 0.01 | 1.64 ± 0.14 | 0.16 ± 0.03 | 544.2 ± 133.84 | – | 44.73 ± 7.68 | 79.85 ± 52.19 | 81.74 ± 5.43 | – | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lisetskii, F.; Poletaev, A.; Zelenskaya, E. Soil Indicators of Terroir and Their Importance for Adaptive and Sustainable Viticulture. Sustainability 2025, 17, 3166. https://doi.org/10.3390/su17073166
Lisetskii F, Poletaev A, Zelenskaya E. Soil Indicators of Terroir and Their Importance for Adaptive and Sustainable Viticulture. Sustainability. 2025; 17(7):3166. https://doi.org/10.3390/su17073166
Chicago/Turabian StyleLisetskii, Fedor, Arseniy Poletaev, and Evgenia Zelenskaya. 2025. "Soil Indicators of Terroir and Their Importance for Adaptive and Sustainable Viticulture" Sustainability 17, no. 7: 3166. https://doi.org/10.3390/su17073166
APA StyleLisetskii, F., Poletaev, A., & Zelenskaya, E. (2025). Soil Indicators of Terroir and Their Importance for Adaptive and Sustainable Viticulture. Sustainability, 17(7), 3166. https://doi.org/10.3390/su17073166