Chromium Contamination in Chayote (Sechium edule (Jacq.) Sw.): Health Risk Assessment, Producer Perceptions, and Sustainability Perspectives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Sites
2.2. Collection of Plant Material
2.3. Sample Preparation and Heavy Metal Determination
2.4. Health Risk Assessment
2.4.1. Estimated Daily Intake (EDI)
2.4.2. Target Hazard Quotient
2.4.3. Target Cancer Risk
2.5. Perceptions and Irrigation Practices of Chayote Producers
- (1)
- Use of Lake Chapala water: Do you use Lake Chapala as a water source to irrigate your crops?
- (2)
- Perception of water contamination: Do you consider Lake Chapala to be a source of contamination?
- (3)
- Water quality analysis: Do you perform any water quality analysis on irrigation water?
- (4)
- Impact of pollution on human health: Do you believe that water pollution could be harmful to human health?
- (5)
- Product marketing: Where are your products primarily marketed?
- (6)
- Training in sustainable practices: Do you consider it important to receive training in sustainable production? What type of training would be most useful to your production?
2.6. Statistical Analysis
3. Results
3.1. Chromium Concentrations in Chayote Fruits
3.2. Health Risk Assessment
3.3. Analysis of the Perceptions and Irrigation Practices Among Producers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jolly, Y.N.; Akter, S.; Kabir, M.J.; Mamun, K.M.; Abedin, M.J.; Fahad, S.M.; Rahman, A. Heavy Metals Accumulation in Vegetables and Its Consequences on Human Health in the Areas Influenced by Industrial Activities. Biol. Trace Elem. Res. 2024, 202, 3362–3376. [Google Scholar] [CrossRef]
- Sanaei, F.; Amin, M.M.; Alavijeh, Z.P.; Esfahani, R.A.; Sadeghi, M.; Bandarrig, N.S.; Fatehizadeh, A.; Taheri, E.; Rezakazemi, M. Health risk assessment of potentially toxic elements intake via food crops consumption: Monte Carlo simulation-based probabilistic and heavy metal pollution index. Environ. Sci. Pollut. Res. 2020, 28, 1479–1490. [Google Scholar] [CrossRef]
- Rashid, A.; Schutte, B.J.; Ulery, A.; Deyholos, M.K.; Sanogo, S.; Lehnhoff, E.A.; Beck, L. Heavy Metal Contamination in Agricultural Soil: Environmental Pollutants Affecting Crop Health. Agronomy 2023, 13, 1521. [Google Scholar] [CrossRef]
- Ketema, B.; Amde, M.; Teju, E. Contents and health risk assessments of selected heavy metals in vegetables produced through irrigation with effluent-impacted river. Environ. Monit. Assess. 2023, 195, 1160. [Google Scholar] [CrossRef] [PubMed]
- Kharazi, A.; Leili, M.; Khazaei, M.; Alikhani, M.Y.; Shokoohi, R. Human health risk assessment of heavy metals in agricultural soil and food crops in Hamadan, Iran. J. Food Compos. Anal. 2021, 100, 103890. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, Q.; Yuan, Y.; Sun, W. Human health risk assessment of heavy metals in soil and food crops in the Pearl River Delta urban agglomeration of China. Food Chem. 2020, 316, 126213. [Google Scholar] [CrossRef]
- Habte, G.; Mekonen, N.; Desse, G.; Kassa, G. Heavy metal contamination and health risk assessment of horticultural crops in two sub-cities of Addis Ababa, Ethiopia. Toxicol. Rep. 2023, 11, 420–432. [Google Scholar] [CrossRef]
- Osae, R.; Nukpezah, D.; Darko, D.A.; Koranteng, S.S.; Mensah, A. Accumulation of heavy metals and human health risk assessment of vegetable consumption from a farm within the Korle lagoon catchment. Heliyon 2023, 9, e16005. [Google Scholar] [CrossRef]
- Singh, R.; Kaur, S.; Bhullar, S.S.; Singh, H.; Sharma, L.K. Bacterial biostimulants for climate smart agriculture practices: Mode of action, effect on plant growth and roadmap for commercial products. Soc. Automot. Eng. Jpn. 2023, 3, e12085. [Google Scholar] [CrossRef]
- Okereafor, U.; Makhatha, M.; Mekuto, L.; Uche-Okereafor, N.; Sebola, T.; Mavumengwana, V. Toxic Metal Implications on Agricultural Soils, Plants, Animals, Aquatic life and Human Health. Int. J. Environ. Res. Public Health 2020, 17, 2204. [Google Scholar] [CrossRef]
- Ismael, D.S.; Goran, S.M.A. Health risk assessment of heavy metals in some vegetables-Erbil City-Kurdistan Region of Iraq. Environ. Monit. Assess. 2024, 196, 417. [Google Scholar] [CrossRef] [PubMed]
- Afonne, O.J.; Ifediba, E.C. Heavy metals risks in plant foods—Need to step up precautionary measures. Curr. Opin. Toxicol. 2020, 22, 1–6. [Google Scholar] [CrossRef]
- Edelstein, M.; Ben-Hur, M. Heavy metals and metalloids: Sources, risks and strategies to reduce their accumulation in horticultural crops. Sci. Hortic. 2018, 234, 431–444. [Google Scholar] [CrossRef]
- Sharma, A.; Katnoria, J.K.; Nagpal, A.K. Heavy metals in vegetables: Screening health risks involved in cultivation along wastewater drain and irrigating with wastewater. SpringerPlus 2016, 5, 488. [Google Scholar] [CrossRef] [PubMed]
- Xiang, M.; Li, Y.; Yang, J.; Lei, K.; Li, Y.; Li, F.; Zheng, D.; Fang, X.; Cao, Y. Heavy metal contamination risk assessment and correlation analysis of heavy metal contents in soil and crops. Environ. Pollut. 2021, 278, 116911. [Google Scholar] [CrossRef]
- Amarloei, A.; Mirzaei, S.A.; Noorimotlagh, Z.; Nazmara, S.; Nourmoradi, H.; Fard, N.J.H.; Heidari, M.; Mohammadi-Moghadam, F.; Mazloomi, S. Human health risk assessment of toxic heavy metals in summer crops and vegetables: A study in Ilam Province, Iran. J. Environ. Health Sci. Eng. 2023, 22, 139–148. [Google Scholar] [CrossRef]
- Liu, R.; Xu, Y.; Zhang, J.; Wang, W.; Elwardany, R.M. Effects of heavy metal pollution on farmland soils and crops: A case study of the Xiaoqinling Gold Belt, China. China Geol. 2020, 3, 402–410. [Google Scholar]
- Obaideen, K.; Shehata, N.; Sayed, E.T.; Abdelkareem, M.A.; Mahmoud, M.S.; Olabi, A. The role of wastewater treatment in achieving sustainable development goals (SDGs) and sustainability guideline. Energy Nexus 2022, 7, 100112. [Google Scholar] [CrossRef]
- Calderón, R.; García-Hernández, J.; Palma, P.; Leyva-Morales, J.; Godoy, M.; Zambrano-Soria, M.; Bastidas-Bastidas, P.; Valenzuela, G. Heavy metals and metalloids in organic and conventional vegetables from Chile and Mexico: Implications for human health. J. Food Compos. Anal. 2023, 123, 105527. [Google Scholar] [CrossRef]
- Garduño-Jiménez, A.; Durán-Álvarez, J.; Ortori, C.A.; Abdelrazig, S.; Barrett, D.A.; Gomes, R.L. Delivering on sustainable development goals in wastewater reuse for agriculture: Initial prioritization of emerging pollutants in the Tula Valley, Mexico. Water Res. 2023, 238, 119903. [Google Scholar] [CrossRef]
- Maldonado-Villegas, M.; Ramírez-Hernández, B.; Torres-Morán, M.; Álvarez-Moya, C.; Zarazúa-Villaseñor, P.; Velasco-Ramírez, A. Presence of arsenic and potentially toxic metals (Cd, Cr, Pb) in water and soil of the NE shore of Chapala Lake, Mexico, and its genotoxic effect in the edible chayote fruit (Sechium edule (Jacq.) Sw.). Eur. J. Hortic. Sci. 2020, 85, 110–117. [Google Scholar] [CrossRef]
- Aveldaño-Arrazate, C.H.; Cadena-Iñiguez, J.; Arévalo-Galarza, M.; Campos-Rojas, E.; Cisneros-Solano, V.M.; Aguirre-Medina, J.F. Las Variedades del Chayote Mexicano, Recurso Ancestral con Potencial de Comercialización. Grupo Interdisciplinario De Investigación en Sechium Edule en México 2010. Available online: https://www.gob.mx/cms/uploads/attachment/file/231856/Las_variedades_del_chayote_mexicano.pdf (accessed on 15 March 2025).
- Arroyo-Herrera, I.; Román-Ponce, B.; Reséndiz-Martínez, A.L.; Santos, P.E.L.; Wang, E.T.; Vásquez-Murrieta, M.S. Heavy-metal resistance mechanisms developed by bacteria from Lerma–Chapala basin. Arch. Microbiol. 2021, 203, 1807–1823. [Google Scholar] [CrossRef]
- Sedeño-Díaz, J.E.; López-López, E. Water Quality in the Río Lerma, Mexico: An Overview of the Last Quarter of the Twentieth Century. Water Resour. Manag. 2007, 21, 1797–1812. [Google Scholar] [CrossRef]
- Ontiveros-Cuadras, J.F.; Ruiz-Fernández, A.C.; Sanchez-Cabeza, J.; Sericano, J.; Pérez-Bernal, L.H.; Páez-Osuna, F.; Dunbar, R.B.; Mucciarone, D.A. Recent history of persistent organic pollutants (PAHs, PCBs, PBDEs) in sediments from a large tropical lake. J. Hazard. Mater. 2019, 368, 264–273. [Google Scholar] [CrossRef]
- Oregel-Zamudio, E.; Alvarez-Bernal, D.; Franco-Hernandez, M.O.; Buelna-Osben, H.R.; Mora, M. Bioaccumulation of PCBs and PBDEs in Fish from a Tropical Lake Chapala, Mexico. Toxics 2021, 9, 241. [Google Scholar] [CrossRef] [PubMed]
- Silva-Madera, R.J.; Salazar-Flores, J.; Peregrina-Lucano, A.A.; Mendoza-Michel, J.; Ceja-Gálvez, H.R.; Rojas-Bravo, D.; Reyna-Villela, M.Z.; Torres-Sánchez, E.D. Pesticide Contamination in Drinking and Surface Water in the Cienega, Jalisco, Mexico. Water Air Soil Pollut. 2021, 232, 43. [Google Scholar] [CrossRef]
- Brito, E.M.; De la Cruz Barrón, M.; Caretta, C.A.; Goñi-Urriza, M.; Andrade, L.H.; Cuevas-Rodríguez, G.; Malm, O.; Torres, J.P.; Simon, M.; Guyoneaud, R. Impact of hydrocarbons, PCBs and heavy metals on bacterial communities in Lerma River, Salamanca, Mexico: Investigation of hydrocarbon degradation potential. Sci. Total Environ. 2015, 521, 1–10. [Google Scholar] [CrossRef]
- Balkhair, K.S.; Ashraf, M.A. Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia. Saudi J. Biol. Sci. 2015, 23, S32–S44. [Google Scholar] [CrossRef]
- Khan, S.; Cao, Q.; Zheng, Y.; Huang, Y.; Zhu, Y. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ. Pollut. 2007, 152, 686–692. [Google Scholar] [CrossRef]
- Cervantes-Trejo, A.; Leal, L.O. Dynamics of Major and Trace Elements in Water–Soil–Tree Interaction: Translocation in Pyrus malus in Chihuahua, Mexico Using ICP-OES and Its Health Risk Implications. Int. J. Environ. Res. Public Health 2022, 19, 12032. [Google Scholar] [CrossRef]
- FAO/WHO. WHO Food Standards Programme Codex Committee on Contaminants in Foods. Fifth Session. 2011. Available online: www.fao.org/tempref/codex/Meetings/CCCF/CCCF5/cf05_INF.pdf (accessed on 15 March 2025).
- Instituto de Información Estadística y Geográfica de Jalisco. IIEG, Poncitlán Diagnóstico del Municipio Agosto 2024. Available online: https://iieg.gob.mx/ns/wp-content/uploads/2024/08/Poncitl%C3%A1n.pdf (accessed on 3 January 2025).
- Li, W.; Simmons, P.; Shrader, D.; Herrman, T.J.; Dai, S.Y. Microwave plasma-atomic emission spectroscopy as a tool for the determination of copper, iron, manganese and zinc in animal feed and fertilizer. Talanta 2013, 112, 43–48. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Risk Assessment Guidance for Superfund. Volume III—Part A, Process for Conducting Probabilistic Risk Assessment. 2001. Available online: https://semspub.epa.gov/work/HQ/134487.pdf (accessed on 15 March 2025).
- Rattan, R.K.; Datta, S.P.; Chhonkar, P.K.; Suribabu, K.; Singh, A.K. Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater—A case study. Agric. Ecosyst. Environ. 2005, 109, 310–322. [Google Scholar] [CrossRef]
- Arévalo-Galarza, M.; Cadena-Iñiguez, J.; Romero-Velazquez, S.D.; Tlapal-Bolaños, B. Rescatando y Aprovechando los Recursos Fitogenéticos de Mesoamérica Volumen 3: Chayote: Manejo Postcosecha. Colegio de Postgraduados. In Grupo Interdisciplinario de Investigación en Sechium edule en México; El Colegio de México, A.C.: Mexico City, Mexico, 2011; ISBN 978-607-715-022-0. Available online: https://www.gob.mx/cms/uploads/attachment/file/231852/El_chayote_volumen_3.pdf (accessed on 16 March 2025).
- INEGI. Instituto Nacional de Estadística y Geografía. Mujeres y Hombres en México 2021–2022. Available online: https://www.inegi.org.mx/contenido/productos/prod_serv/contenidos/espanol/bvinegi/productos/nueva_estruc/702825189990.pdf (accessed on 15 January 2024).
- CANAIVE. Cámara Nacional de la Industria del Vestido. ¿Cuánto Mide México? El Tamaño sí Importa. Available online: http://www.canaive.org.mx/detalleNoticias.php? (accessed on 4 January 2025).
- IRIS. Toxicological Review of Hexavalent Chromium [Cr(VI)]. CASRN 18540-29-9. 2024. Available online: https://iris.epa.gov/static/pdfs/0144_summary.pdf (accessed on 16 March 2025).
- Ghosh, J.; Islam, I.; Murad, M. Heavy metal contamination and potential health risk assessment associated with selected farmed fish in Rajshahi, Bangladesh. Jordan J. Biol. Sci. 2023, 16, 467–475. [Google Scholar] [CrossRef]
- Creswell, J.W. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches, 4th ed.; SAGE Publications, Inc.: London, UK, 2013. [Google Scholar]
- Cuellar, M.; Baroni, V.; Pfaffen, V.; Griboff, J.; Ortiz, P.; Monferrán, M.V. Uptake and accumulation of Cr in edible parts of Eruca sativa from irrigation water. Effects on polyphenol profile and antioxidant capacity. Heliyon 2021, 7, e06086. [Google Scholar] [CrossRef]
- GB 2762-2017; National Food Safety Standard for Maximum Levels of Contaminants in Foods. China National Standardization Management Committee: Beijing, China, 2017. Available online: https://www.fsis.usda.gov/sites/default/files/media_file/2021-02/GB-2762-2017.pdf (accessed on 15 March 2025).
- Sharma, P.; Singh, S.P.; Parakh, S.K.; Tong, Y.W. Health hazards of hexavalent chromium (Cr (VI)) and its microbial reduction. Bioengineered 2022, 13, 4923–4938. [Google Scholar] [CrossRef]
- Xu, S.; Yu, C.; Wang, Q.; Liao, J.; Liu, C.; Huang, L.; Liu, Q.; Wen, Z.; Feng, Y. Chromium Contamination and Health Risk Assessment of Soil and Agricultural Products in a Rural Area in Southern China. Toxics 2022, 11, 27. [Google Scholar] [CrossRef]
- Tumolo, M.; Ancona, V.; De Paola, D.; Losacco, D.; Campanale, C.; Massarelli, C.; Uricchio, V.F. Chromium Pollution in European Water, Sources, Health Risk, and Remediation Strategies: An Overview. Int. J. Environ. Res. Public Health 2020, 17, 5438. [Google Scholar] [CrossRef]
- Independent Environmental Technical Evaluation Group (IETEG). Chromium(VI) Handbook; Guertin, J., Jacobs, J.A., Avakian, C.P., Eds.; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar] [CrossRef]
- Khezami, L.; Capart, R. Removal of chromium(VI) from aqueous solution by activated carbons: Kinetic and equilibrium studies. J. Hazard. Mater. 2005, 123, 223–231. [Google Scholar] [CrossRef]
- Kakavandi, B.; Kalantary, R.R.; Farzadkia, M.; Mahvi, A.H.; Esrafili, A.; Azari, A.; Yari, A.R.; Javid, A.B. Enhanced chromium (VI) removal using activated carbon modified by zero valent iron and silver bimetallic nanoparticles. J. Environ. Health Sci. Eng. 2014, 12, 115. [Google Scholar] [CrossRef]
- Gezahegn, A.M.; Feyessa, F.F.; Tekeste, E.A.; Beyene, E.M. Chromium Laden Soil, Water, and Vegetables nearby Tanning Industries: Speciation and Spatial Distribution. J. Chem. 2021, 2021, 5531349. [Google Scholar] [CrossRef]
- Constantin, C.G.; Dobrin, A.; Moţ, A.; Cîmpeanu, C.; Paraschiv, M.; Bădulescu, L. The presence of chromium in agricultural systems. A comprehensive review. Sci. Pap. Ser. B Hortic. 2021, 65, 236–244. [Google Scholar]
- Zulfiqar, U.; Haider, F.U.; Ahmad, M.; Hussain, S.; Maqsood, M.F.; Ishfaq, M.; Shahzad, B.; Waqas, M.M.; Ali, B.; Tayyab, M.N.; et al. Chromium toxicity, speciation, and remediation strategies in soil-plant interface: A critical review. Front. Plant Sci. 2023, 13, 1081624. [Google Scholar] [CrossRef]
- Ullah, S.; Liu, Q.; Wang, S.; Jan, A.U.; Sharif, H.M.A.; Ditta, A.; Wang, G.; Cheng, H. Sources, impacts, factors affecting Cr uptake in plants, and mechanisms behind phytoremediation of Cr-contaminated soils. Sci. Total Environ. 2023, 899, 165726. [Google Scholar] [CrossRef]
- Mouli, J.B.C.M.; Madhu, C.; Reddy, K.R.; Omar, M. Estimation of Metals in Herbal Leaves by Ash Extracts by using ICPOES and Flame Photometer. Asian J. Pharm. Anal. 2019, 9, 82. [Google Scholar] [CrossRef]
- Sonone, S.; Jadhav, S.; Sankhla, M.; Kumar, R. Water Contamination by Heavy Metals and their Toxic Effect on Aquaculture and Human Health through Food Chain. Lett. Appl. NanoBioScience 2020, 10, 2148–2166. [Google Scholar] [CrossRef]
- Chen, F.; Ma, J.; Akhtar, S.; Khan, Z.I.; Ahmad, K.; Ashfaq, A.; Nawaz, H.; Nadeem, M. Assessment of chromium toxicity and potential health implications of agriculturally diversely irrigated food crops in the semi-arid regions of South Asia. Agric. Water Manag. 2022, 272, 107833. [Google Scholar] [CrossRef]
- Mitra, S.; Chakraborty, A.J.; Tareq, A.M.; Emran, T.B.; Nainu, F.; Khusro, A.; Idris, A.M.; Khandaker, M.U.; Osman, H.; Alhumaydhi, F.A.; et al. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J. King Saud. Univ. Sci. 2022, 34, 101865. [Google Scholar] [CrossRef]
- Radwan, M.A.; Salama, A.K. Market basket survey for some heavy metals in Egyptian fruits and vegetables. Food Chem. Toxicol. 2006, 44, 1273–1278. [Google Scholar] [CrossRef]
- Ramírez-Sánchez, H.U.; Fajardo-Montiel, A.L. Assessment of Water Quality, Ecological and Health Risks of Inland Water Bodies in Mexico: A Case Study of Lake Chapala. Asian J. Environ. Ecol. 2024, 23, 91–108. [Google Scholar] [CrossRef]
- Trasande, L.; Cortes, J.E.; Landrigan, P.J.; Abercrombie, M.I.; Bopp, R.F.; Cifuentes, E. Methylmercury exposure in a subsistence fishing community in Lake Chapala, Mexico: An ecological approach. Environ. Health 2010, 9, 1. [Google Scholar] [CrossRef]
- Carrera-Hernandez, J.J. A tale of Mexico’s most exploited—And connected—Watersheds: The Basin of Mexico and the Lerma-Chapala Basin. Wiley Interdiscip. Rev. Water 2018, 5, e1247. [Google Scholar] [CrossRef]
- Cotler-Ávalos, H.; De Anda Sánchez, J.; Mazari Hiriart, M. Atlas de la Cuenca Lerma-Chapala: Construyendo una Visión Conjunta; Instituto Nacional de Ecología: Mexico City, Mexico, 2006; Available online: https://agua.org.mx/wp-content/uploads/2011/09/AtlasCuencaLermaChapala.pdf (accessed on 24 January 2025).
- CONAGUA (Comisión Nacional del Agua). Lerma–Chapala Basin Case Study: A Fruitful Sustainable Water Management Experience. Available online: http://www.conagua.gob.mx/CONAGUA07/Contenido/Documentos/LermaChapalaBasinCase.pdf (accessed on 20 December 2024).
- CONAGUA (Comisión Nacional del Agua). Programa Hídrico Regional Visión 2030: Región Hidrológico-Administrativa VIII Lerma-Santiago-Pacífico; Comisión Nacional del Agua: Coyoacán, Mexico, 2012. [Google Scholar]
- McCulligh, C.; Arellano-García, L.; Casas-Beltrán, D. Unsafe waters: The hydrosocial cycle of drinking water in Western Mexico. Local Environ. 2020, 25, 576–596. [Google Scholar] [CrossRef]
- Murillo-Delgado, J.O.; Jimenez-Torres, H.D.; Alvarez-Bobadilla, J.I.; Gutierrez-Ortega, J.A.; Camacho, J.B.; Valle, P.F.Z.; Barcelo-Quintal, I.D.; Delgado, E.R.; Gomez-Salazar, S. Chemical speciation of selected toxic metals and multivariate statistical techniques used to assess water quality of tropical Mexican Lake Chapala. Environ. Monit. Assess. 2021, 193, 418. [Google Scholar] [CrossRef]
- Covarrubias-Villa, F.; Ojeda-Sampson, A.; Arceo-Ortega, M.G. Los Condicionantes del Desarrollo Turístico del Lago de Chapala y su Ribera. Quivera. 2007; Universidad Autónoma del Estado de México: Toluca, México, 2007; Volume 9, pp. 195–229. Available online: https://www.redalyc.org/pdf/401/40190208.pdf (accessed on 16 March 2025).
- Valdivia Alvarado, A.T.; Gámez, A.E.; Beltrán Morales, L.F.; Ortega-Rubio, A. Mexico’s Legal Framework Regarding Wastewater Management: A Case Study of Baja California Sur. Mex. Law. Rev. 2021, 13, 115–150. [Google Scholar] [CrossRef]
- Trujillo-Cárdenas, J.; Saucedo-Torres, N.P.; Zárate del Valle, P.F.; Rios-Donato, D.; Mendizábal, E.; Gómez-Salazar, S. Speciation and Sources of Toxic Metals in Sediments of Lake Chapala, Mexico. J. Mex. Chem. Soc. 2010, 54, 79–87. [Google Scholar] [CrossRef]
- NOM-001-SEMARNAT-2021; Mexican Official Standard. Environmental protection–Maximum permissible limits of pollutants in treated wastewater that must be discharged into national waters. Ministry of Environmental and Natural Resources (SEMARNAT): Mexico City, Mexico, 2021.
- De la Mora-Orozco, C.; Flores-Garnica, J.G.; Ruiz Corral, J.A.; Velasco, J.G. Stochastic modelling of spatial variability of water quality in a lacustrine ecosystem. Rev. Int. Contam. Ambient. 2004, 20, 99–108. [Google Scholar]
- Zaragoza, V.M.D.; Luisa, L.M.; Violeta, C.H.; Sabrina, P.H.V. Pb and Cr Content in an Agricultural Soil Irrigated with Wastewater and Their Bioaccumulation in Alfalfa. Gene Expr. Patterns 2023, 11, 116. [Google Scholar] [CrossRef]
- Loredo-Tovías, M.; Alcalá-Jáuregui, J.A.; García-Arreola, M.E.; De Jesús Carballo-Méndez, F.; Rodríguez-Fuentes, H.; Buendía-García, A.; Rodríguez-Ortiz, J.C. Concentración y transferencia de metales pesados en lechuga (Lactuca sativa L.) irrigadas con aguas tratadas. Terra Latinoam. 2022, 40, 1–12. [Google Scholar] [CrossRef]
- Cervantes-Trejo, A.; Pinedo-Álvarez, C.; Santellano-Estrada, E.; Cortes-Palacios, L.; Rentería-Villalobos, M. Distribution of Chemical Species in the Water-Soil-Plant (Carya illinoiensis) System near a Mineralization Area in Chihuahua, Mexico—Health Risk Implications. Int. J. Environ. Res. Public Health 2018, 15, 1393. [Google Scholar] [CrossRef]
- Rayas-Amor, A. Quantification of heavy metals in the cultivation of strawberry (Fragaria ananassa Duch. var. festival) in Tenancingo and Villa Guerrero, Estado de México. Agroproductividad 2017, 10, 29–33. Available online: https://revista-agroproductividad.org/index.php/agroproductividad/article/view/92 (accessed on 5 February 2025).
- Esparza-Aguilar, M.; Del Carmen Ochoa-Esquivel, R.; Barajas-González, A.; Ávila-Rosas, H.; En, M.; Médicas, C.; De Geografía, P.; Físico, A.; Rc, O. Barajas Mortalidad en México por enfermedad renal crónica en menores de 20 años de edad, 2000–2014. Rev. Mex. Pediatría 2019, 86, 58–64. [Google Scholar]
- Juárez Aguilar, A.; López Gómez, L. S3.C1 Las complejidades del Lago Chapala: Características, importancia, gobernanza y retos futuros. In Crisis Sociohídrica en la Ribera del Lago de Chapala; Instituto Tecnológico y de Estudios Superiores de Occidente: Guadalajara, Mexico, 2024; pp. 41–59. [Google Scholar] [CrossRef]
- Chowdhury, A.I.; Shill, L.C.; Raihan, M.M.; Rashid, R.; Bhuiyan, M.N.H.; Reza, S.; Alam, M.R. Human health risk assessment of heavy metals in vegetables of Bangladesh. Sci. Rep. 2024, 14, 15616. [Google Scholar] [CrossRef]
- Woldetsadik, D.; Drechsel, P.; Keraita, B.; Itanna, F.; Gebrekidan, H. Farmers’ perceptions on irrigation water contamination, health risks and risk management measures in prominent wastewater-irrigated vegetable farming sites of Addis Ababa, Ethiopia. Environ. Syst. Decis. 2018, 38, 52–64. [Google Scholar] [CrossRef]
- Deng, X.; Zhang, L.; Xu, R.; Zeng, M.; He, Q.; Xu, D.; Qi, Y. Do Cooperatives Affect Groundwater Protection? Evidence from Rural China. Agriculture 2022, 12, 1016. [Google Scholar] [CrossRef]
- Withanachchi, S.S.; Kunchulia, I.; Ghambashidze, G.; Sidawi, R.A.; Urushadze, T.; Ploeger, A. Farmers’ Perception of Water Quality and Risks in the Mashavera River Basin, Georgia: Analyzing the Vulnerability of the Social-Ecological System through Community Perceptions. Sustainability 2018, 10, 3062. [Google Scholar] [CrossRef]
- Yalin, D.; Craddock, H.A.; Assouline, S.; Ben Mordechay, E.; Ben-Gal, A.; Bernstein, N.; Chaudhry, R.M.; Chefetz, B.; Fatta-Kassinos, D.; Gawlik, B.M.; et al. Mitigating risks and maximizing sustainability of treated wastewater reuse for irrigation. Water Res. X 2023, 21, 100203. [Google Scholar] [CrossRef]
- Núñez-Razo, I.; De Anda, J.; Barrios-Piña, H.; Olvera-Vargas, L.A.; García-Ruíz-García, M.; Hernández-Morales, S. Development of a Watershed Sustainability Index for the Santiago River Basin, Mexico. Sustainability 2023, 15, 8428. [Google Scholar] [CrossRef]
Site | Identifier | Coordinates |
---|---|---|
Confluence zone (Lake Chapala-Santiago River) | S1 | 20°19′59.42″ N, 102°47′80.41″ W |
Site 1 | S2 | 20°19′20.99″ N, 102°47′49.59″ W |
Site 2 | S3 | 20°18′39.90″ N, 102°48′23.88″ W |
Site 3 | S4 | 20°18′37.76″ N, 102°48′27.56″ W |
S1 | S2 | S3 | S4 | Average | |
---|---|---|---|---|---|
Women | 0.000298 | 0.000291 | 0.000449 | 0.000465 | 0.000376 |
Men | 0.000267 | 0.000261 | 0.000403 | 0.000418 | 0.000337 |
S1 | S2 | S3 | S4 | Average | ||
---|---|---|---|---|---|---|
THQ | Women | 0.33063 | 0.32307 | 0.49835 | 0.51691 | 0.41724 |
Men | 0.29691 | 0.29012 | 0.44753 | 0.46420 | 0.37469 | |
TCR | Women | 4.76 × 10−5 | 4.65 × 10−5 | 7.17 × 10−5 | 7.44 × 10−5 | 6.00 × 10−5 |
Men | 4.27 × 10−5 | 4.17 × 10−5 | 6.44 × 10−5 | 6.68 × 10−5 | 5.39 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maldonado-Villegas, M.M.; Gutiérrez-Martínez, P.B.; Ramírez-Hernández, B.C.; García de Alba Verduzco, J.E.; Becerril-Espinosa, A.; Ocampo-Álvarez, H.; García-Velasco, J. Chromium Contamination in Chayote (Sechium edule (Jacq.) Sw.): Health Risk Assessment, Producer Perceptions, and Sustainability Perspectives. Sustainability 2025, 17, 3120. https://doi.org/10.3390/su17073120
Maldonado-Villegas MM, Gutiérrez-Martínez PB, Ramírez-Hernández BC, García de Alba Verduzco JE, Becerril-Espinosa A, Ocampo-Álvarez H, García-Velasco J. Chromium Contamination in Chayote (Sechium edule (Jacq.) Sw.): Health Risk Assessment, Producer Perceptions, and Sustainability Perspectives. Sustainability. 2025; 17(7):3120. https://doi.org/10.3390/su17073120
Chicago/Turabian StyleMaldonado-Villegas, Marcela Mariel, Paulina Beatriz Gutiérrez-Martínez, Blanca Catalina Ramírez-Hernández, Javier Eugenio García de Alba Verduzco, Amayaly Becerril-Espinosa, Héctor Ocampo-Álvarez, and Javier García-Velasco. 2025. "Chromium Contamination in Chayote (Sechium edule (Jacq.) Sw.): Health Risk Assessment, Producer Perceptions, and Sustainability Perspectives" Sustainability 17, no. 7: 3120. https://doi.org/10.3390/su17073120
APA StyleMaldonado-Villegas, M. M., Gutiérrez-Martínez, P. B., Ramírez-Hernández, B. C., García de Alba Verduzco, J. E., Becerril-Espinosa, A., Ocampo-Álvarez, H., & García-Velasco, J. (2025). Chromium Contamination in Chayote (Sechium edule (Jacq.) Sw.): Health Risk Assessment, Producer Perceptions, and Sustainability Perspectives. Sustainability, 17(7), 3120. https://doi.org/10.3390/su17073120