Evaluating Food Resilience Initiatives Through Urban Agriculture Models: A Critical Review
Abstract
:1. Introduction
1.1. Theoretical Framework
1.2. Agricultural Model
1.3. Systematic Problems in Urban Agriculture
1.4. Food Resilience
1.5. Food Resilience Challenges
1.5.1. Climate Change and Natural Disasters
1.5.2. Policy Instability and Economic Crisis
1.6. Food Resilience Initiative
1.7. Relationship Between Food Resilience Initiatives and Urban Agriculture
2. Methodology
2.1. Literature Search Strategy
2.2. Study Selection and Screening
2.3. Data Extraction and Categorization
2.4. Main Articles
3. Results
3.1. Global Situation
3.2. Rising Interest in Food Resilience
3.3. Leading Countries in Food Resilience Projects
3.4. Notable Projects in Food Resilience
3.5. Global Trends in Food Resilience Projects
3.6. Promoting Social Sustainability and Policy Initiatives
4. Discussion
4.1. Environmental Impact
4.2. Food Chain Impact
4.3. Population Impact
4.4. Limits and Costs Associated with Urban Initiatives
4.5. Status of Initiatives in Latin America
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2024; FAO: Rome, Italy, 2024. [Google Scholar] [CrossRef]
- Lichter, D.T.; Johnson, K.M. Urbanization and the Paradox of Rural Population Decline: Racial and Regional Variation. Socius 2023, 9, 23780231221149896. [Google Scholar] [CrossRef]
- Mengesha, E.H. Food security: What does gender have to do with it? Agenda 2016, 30, 25–35. [Google Scholar] [CrossRef]
- Garnett, K.; Delgado, J.; Lickorish, F.A.; Pollard, S.J.; Medina-Vaya, A.; Magan, N.; Leinster, P.; Terry, L.A. Future foods: Morphological scenarios to explore changes in the UK food system with implications for food safety across the food chain. Futures 2023, 149, 103140. [Google Scholar] [CrossRef]
- Holling, C.S. Resilience and stability of ecological systems. In The Future of Nature: Documents of Global Change; Annual Reviews: Palo Alto, CA, USA, 2013; Volume 4, pp. 245–256. [Google Scholar] [CrossRef]
- Zhu, Z.; Duan, J.; Dai, Z.; Feng, Y.; Yang, G. Seeking sustainable solutions for human food systems. Geogr. Sustain. 2023, 4, 183–187. [Google Scholar] [CrossRef]
- Sociedad de Agricultores de Colombia. Revista Nacional de Agricultura–Edición 1010. Available online: https://sac.org.co/revista-nacional-de-agricultura-edicion-1034-marzo-2023 (accessed on 13 June 2023).
- Ujjwal, K.C.; Campbell-Ross, H.; Godde, C.; Friedman, R.; Lim-Camacho, L.; Crimp, S. A systematic review of the evolution of food system resilience assessment. Glob. Food Secur. 2024, 40, 100744. [Google Scholar] [CrossRef]
- America, L. Latin America and the Caribbean—Regional Overview of Food Security and Nutrition 2021; FAO: Santiago, Chile, 2021. [Google Scholar] [CrossRef]
- Wortman, S.E.; Lovell, S.T. Environmental Challenges Threatening the Growth of Urban Agriculture in the United States. J. Environ. Qual. 2013, 42, 1283–1294. [Google Scholar] [CrossRef]
- Grewal, S.S.; Grewal, P.S. Can cities become self-reliant in food? Cities 2012, 29, 1–11. [Google Scholar] [CrossRef]
- Rut, M.; Davies, A.R. Food sharing in a pandemic: Urban infrastructures, prefigurative practices and lessons for the future. Cities 2024, 145, 104609. [Google Scholar] [CrossRef]
- Cruz, J.L.; González-Azcárate, M.; Hernández-Jiménez, R.J.H.; Bardají, I. COVID and consumers’ food strategies in Madrid, Spain: Towards a resilient city-region food system approach. Heliyon 2024, 10, e40565. [Google Scholar] [CrossRef]
- Gitz, V.; Meybeck, A.; Lipper, L.; Young, C.; Braatz, S. Climate change and food security: Risks and responses. Food Agric. Organ. United Nations FAO Rep. 2016, 110, 3–36. [Google Scholar]
- Goldstein, B.; Hauschild, M.; Fernández, J.; Birkved, M. Testing the environmental performance of urban agriculture as a food supply in northern climates. J. Clean. Prod. 2016, 135, 984–994. [Google Scholar] [CrossRef]
- Salmoral, G.; Yan, X. Food-energy-water nexus: A life cycle analysis on virtual water and embodied energy in food consumption in the Tamar catchment, UK. Resour. Conserv. Recycl. 2018, 133, 320–330. [Google Scholar] [CrossRef]
- Tendall, D.; Joerin, J.; Kopainsky, B.; Edwards, P.; Shreck, A.; Le, Q.; Kruetli, P.; Grant, M.; Six, J. Food system resilience: Defining the concept. Glob. Food Secur. 2015, 6, 17–23. [Google Scholar] [CrossRef]
- Feenstra, G. Creating space for sustainable food systems: Lessons from the field. Agric. Hum. Values 2002, 19, 99–106. [Google Scholar] [CrossRef]
- Galychyn, O.; Fath, B.D.; Shah, I.H.; Buonocore, E.; Franzese, P.P. A multi-criteria framework for assessing urban socio-ecological systems: The emergy nexus of the urban economy and environment. Clean. Environ. Syst. 2022, 5, 100080. [Google Scholar] [CrossRef]
- Benke, K.; Tomkins, B. Future food-production systems: Vertical farming and controlled-environment agriculture. Sustain. Sci. Pract. Policy 2017, 13, 13–26. [Google Scholar] [CrossRef]
- Jiang, Y.; Timpe, A.; Lohrberg, F. Identifying Urban Agriculture as Heritage: Traditional Urban Grape Gardens in the Ancient City of Xuanhua, China. J. Urban Hist. 2022, 49, 1199–1218. [Google Scholar] [CrossRef]
- Marini, M.; Caro, D.; Thomsen, M. Investigating local policy instruments for different types of urban agriculture in four European cities: A case study analysis on the use and effectiveness of the applied policy instruments. Land. Use Policy 2023, 131, 106695. [Google Scholar] [CrossRef]
- Schibba, I.; Ogden, K.; Smith, M.; Heneghan, E.; Terki, F.; Stevens, B. Unlocking the Hidden Hunger Crises: The Power of Public-Private Partnerships. World Rev. Nutr. Diet. 2020, 121, 16–20. [Google Scholar] [CrossRef]
- Pradhan, P.; Callaghan, M.; Hu, Y.; Dahal, K.; Hunecke, C.; Reusswig, F.; Lotze-Campen, H.; Kropp, J.P. A systematic review highlights that there are multiple benefits of urban agriculture besides food. Glob. Food Secur. 2023, 38, 100700. [Google Scholar] [CrossRef]
- Kalantari, F.; Tahir, O.M.; Lahijani, A.M.; Kalantari, S. A Review of Vertical Farming Technology: A Guide for Implementation of Building Integrated Agriculture in Cities. Adv. Eng. Forum 2017, 24, 76–91. [Google Scholar] [CrossRef]
- Malone, M. Seeking justice, eating toxics: Overlooked contaminants in urban community gardens. Agric. Hum. Values 2022, 39, 165–184. [Google Scholar] [CrossRef]
- Clay, N.; Zimmerer, K.S. Who is resilient in Africa’s Green Revolution? Sustainable intensification and Climate Smart Agriculture in Rwanda. Land Use Policy 2020, 97, 104558. [Google Scholar] [CrossRef] [PubMed]
- Dorr, E.; Goldstein, B.; Horvath, A.; Aubry, C.; Gabrielle, B. Environmental impacts and resource use of urban agriculture: A systematic review and meta-analysis. Environ. Res. Lett. 2021, 16, 093002. [Google Scholar] [CrossRef]
- Ebissa, G.; Desta, H.; Fetene, A. The nexus of urban agriculture and health resilience: Insights from Addis Ababa, Ethiopia. Urban Agric. Reg. Food Syst. 2024, 9, e20069. [Google Scholar] [CrossRef]
- FAO. The State of Food Security and Nutrition in the World 2022; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Guan, J.; Wang, R.; Van Berkel, D.; Liang, Z. How spatial patterns affect urban green space equity at different equity levels: A Bayesian quantile regression approach. Landsc. Urban Plan. 2023, 233, 104709. [Google Scholar] [CrossRef]
- Castellarini, F. Urban Agriculture in Latin America: A Green Culture Beyond Growing and Feeding. Front. Sustain. Cities 2022, 3, 792616. [Google Scholar] [CrossRef]
- Béné, C. Resilience of local food systems and links to food security—A review of some important concepts in the context of COVID-19 and other shocks. Food Secur. 2020, 12, 805–822. [Google Scholar]
- Clapp, J.; Moseley, W.G. This food crisis is different: COVID-19 and the fragility of the neoliberal food security order. J. Peasant Stud. 2020, 47, 1393–1417. [Google Scholar] [CrossRef]
- Mulya, S.P.; Putro, H.P.H.; Hudalah, D. Review of peri-urban agriculture as a regional ecosystem service. Geogr. Sustain. 2023, 4, 244–254. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Liu, H.; Gao, L.; Wang, W.; Wang, Z.; Zhou, T.; Wang, Q. Climate change impacts on wastewater infrastructure: A systematic review and typological adaptation strategy. Water Res. 2023, 242, 120282. [Google Scholar] [CrossRef]
- Ainehvand, S.; Raeissi, P.; Ravaghi, H.; Maleki, M. Natural disasters and challenges toward achieving food security response in Iran. J. Educ. Health Promot. 2019, 8, 51. [Google Scholar] [CrossRef]
- Aldaco, R.; Hoehn, D.; Laso, J.; Margallo, M.; Ruiz-Salmón, J.; Cristobal, J.; Kahhat, R.; Villanueva-Rey, P.; Bala, A.; Batlle-Bayer, L.; et al. Food waste management during the COVID-19 outbreak: A holistic climate, economic and nutritional approach. Sci. Total Environ. 2020, 742, 140524. [Google Scholar] [CrossRef]
- Winstead, D.J.; Jacobson, M.G. Food resilience in a dark catastrophe: A new way of looking at tropical wild edible plants. Ambio 2022, 51, 1949–1962. [Google Scholar] [CrossRef]
- OPS. Monitoreo de Desastres Naturales–20 de Octubre de 2020. Available online: https://www.paho.org/es/monitoreo-desastres-naturales/monitoreo-desastres-naturales-20-octubre-2020 (accessed on 2 September 2023).
- Kaufman, D.; Kraay, A. Worldwide Governance Indicators|DataBank. The Worldwide Governance Indicators: Methodology and Analytical Issues. World Bank. Policy Research Working Paper No. 5430. Available online: https://databank.worldbank.org/source/worldwide-governance-indicators (accessed on 22 June 2023).
- Word Bank. World Bank Open Data. World Bank. Available online: https://datos.bancomundial.org (accessed on 29 July 2024).
- Liu, S.; Li, Y.; Fu, S.; Liu, X.; Liu, T.; Fan, H.; Cao, C. Establishing a Multidisciplinary Framework for an Emergency Food Supply System Using a Modified Delphi Approach. Foods 2022, 11, 1054. [Google Scholar] [CrossRef] [PubMed]
- Mullender, S.M.; Sandor, M.; Pisanelli, A.; Kozyra, J.; Borek, R.; Ghaley, B.B.; Gliga, A.; von Oppenkowski, M.; Roesler, T.; Salkanovic, E.; et al. A delphi-style approach for developing an integrated food/non-food system sustainability assessment tool. Environ. Impact Assess. Rev. 2020, 84, 106415. [Google Scholar] [CrossRef]
- World Food Programme. Global Report on Food Crises—2022|World Food Programme. Available online: https://www.wfp.org/publications/global-report-food-crises-2022 (accessed on 22 June 2023).
- Vandermeer, J.; Aga, A.; Allgeier, J.; Badgley, C.; Baucom, R.; Blesh, J.; Shapiro, L.F.; Jones, A.D.; Hoey, L.; Jain, M.; et al. Feeding Prometheus: An Interdisciplinary Approach for Solving the Global Food Crisis. Front. Sustain. Food Syst. 2018, 2, 39. [Google Scholar] [CrossRef]
- Glauben, T.; Svanidze, M.; Götz, L.; Prehn, S.; Jaghdani, T.J.; Đurić, I.; Kuhn, L. The War in Ukraine, Agricultural Trade and Risks to Global Food Security. Intereconomics 2022, 57, 157–163. [Google Scholar] [CrossRef]
- Barroetaveña, C.; Pildain, M.B. Edible fungi for local and sustainable development in the Patagonian Andes forests of Argentina: A review. For. Syst. 2022, 31, eR01. [Google Scholar] [CrossRef]
- Frost & Sullivan. Global Sustainable Agriculture Growth Opportunities. 2023. Available online: https://www.tcpdf.org (accessed on 1 December 2024).
- Lombardía, A.; Gómez-Villarino, M.T. Green infrastructure in cities for the achievement of the un sustainable development goals: A systematic review. Urban Ecosyst. 2023, 26, 1693–1707. [Google Scholar] [CrossRef]
- Mancini, L.; Valente, A.; Vignola, G.B.; Mengual, E.S.; Sala, S. Social footprint of European food production and consumption. Sustain. Prod. Consum. 2023, 35, 287–299. [Google Scholar] [CrossRef]
- IPBES. The Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on Pollinators, Pollination and Food Production. 2016. Available online: https://zenodo.org/records/3402857 (accessed on 4 December 2024).
- Altdorff, D.; Borchard, N.; Young, E.H.; Galagedara, L.; Sorvali, J.; Quideau, S.; Unc, A. Agriculture in boreal and Arctic regions requires an integrated global approach for research and policy. Agron. Sustain. Dev. 2021, 41, 23. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, B.; Xu, N.; Zhou, J.; Shi, J.; Diao, Z. Vision-based navigation and guidance for agricultural autonomous vehicles and robots: A review. Comput. Electron. Agric. 2023, 205, 107584. [Google Scholar] [CrossRef]
- Ou, J.; Hong, S.H.; Ziehl, P.; Wang, Y. GPU-based Global Path Planning Using Genetic Algorithm with Near Corner Initialization. J. Intell. Robot. Syst. Theory Appl. 2022, 104, 1–17. [Google Scholar] [CrossRef]
- Cramer, J. How circular economy and digital technologies can support the building sector to cope with its worldwide environmental challenge? NPJ Urban Sustain. 2023, 3, 28. [Google Scholar] [CrossRef]
- Kuckertz, A.; Block, J. Reviewing systematic literature reviews: Ten key questions and criteria for reviewers. Manag. Rev. Q. 2021, 71, 519–524. [Google Scholar] [CrossRef]
- Chen, C. Science Mapping: A Systematic Review of the Literature. J. Data Inf. Sci. 2017, 2, 1–40. [Google Scholar] [CrossRef]
- Piccarozzi, M.; Silvestri, C.; Aquilani, B.; Silvestri, L. Is this a new story of the ‘Two Giants’? A systematic literature review of the relationship between industry 4.0, sustainability and its pillars. Technol. Forecast. Soc. Change 2022, 177, 121511. [Google Scholar] [CrossRef]
- Nagib, G.; Nakamura, A.C. Urban agriculture in the city of São Paulo: New spatial transformations and ongoing challenges to guarantee the production and consumption of healthy food. Glob. Food Secur. 2020, 26, 100378. [Google Scholar] [CrossRef]
- de Souza, A.O.; de Carvalho Feitoza, M.; Borsatto, R.S.; Coffani-Nunes, J.V.; Nascimento, A.P.B.D. Urban gardens: Contribution of small green spaces to sustainable drainage. Periód. Eletrônico Fórum Ambient. Alta Paul. 2022, 18, 2022. [Google Scholar] [CrossRef]
- Bustamante, R.G.; Gracia, A. Construyendo resiliencia alimentaria local. Experiencias de circuitos cortos en el centro y sureste de México. Agric. Soc. Desarro. 2022, 18, 391–412. [Google Scholar] [CrossRef]
- Mercado, G.; Hjortsø, C.N.; Honig, B. Decoupling from international food safety standards: How small-scale indigenous farmers cope with conflicting institutions to ensure market participation. Agric. Hum. Values 2018, 35, 651–669. [Google Scholar] [CrossRef]
- Merçon, J.; Escalona Aguilar, M.Á.; Noriega Armella, M.I.; Figueroa Núñez, I.I.; Atenco Sánchez, A.; González Méndez, E.D. Cultivando la Educación Agroecológica. El huerto colectivo urbano como espacio. Rev. Mex. Investig. Educ. 2023, 17, 1201–1224. Available online: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-66662012000400009&lng=es&nrm=iso&tlng=es (accessed on 28 June 2023).
- Patra, N.K.; Babu, S.C. Scope and Strategic Intervention for Climate-Smart Agriculture in North Eastern India. Glob. Clim. Change Resilient Smart Agric. 2020, 155–186. [Google Scholar] [CrossRef]
- Banco Mundial. Banco Mundial Espera un Crecimiento Global Silencioso, Liderado por el Mundo en Desarrollo. Available online: https://www.bancomundial.org/es/news/press-release/2013/06/12/world-bank-expects-muted-global-growth-led-by-developing-world (accessed on 3 September 2023).
- Krátký, V.; Petráček, P.; Báča, T.; Saska, M. An autonomous unmanned aerial vehicle system for fast exploration of large complex indoor environments. J. Field Robot. 2021, 38, 1036–1058. [Google Scholar] [CrossRef]
- Jansma, J.E.; Veen, E.J.; Müller, D. Beyond urban farm and community garden, a new typology of urban and peri-urban agriculture in Europe. Urban Agric. Reg. Food Syst. 2024, 9, e20056. [Google Scholar] [CrossRef]
- Clary, D.; Muller, A.; Tanner, A.; Bradley, L. Cultural Change Is the Key Ingredient in Building a Sustainable Food System at Austin Independent School District. In Trailblazers for Whole School Sustainability 2021; Routledge: Abingdon, UK, 2021; pp. 182–198. [Google Scholar] [CrossRef]
- Ghaffar, A.; Abbas, A.; Afzal, K.; Batool, K.; Nawaz, B.; Zafar, L.; Shaheen, H.; Sajid, S.A.; Yasin, R. Innovations in Aquaponics Technology and Building Sustainable Infrastructure for Agriculture. Indones. J. Agric. Environ. Anal. 2024, 3, 121–134. [Google Scholar] [CrossRef]
- Sapkale, H.C.; Sonawane, M.A. The Role of Urban Agriculture in Food Security: A Study on Entrepreneurial Strategies for Sustainable Food Systems. Int. J. Adv. Res. Commer. Manag. Soc. Sci. 2024, 07, 158–162. [Google Scholar] [CrossRef]
- Greeson, K.M.; Currey, R.C.D. Centering Justice in a Sustainable Food Systems Master’s Program. Front. Sustain. Food Syst. 2021, 5, 415. [Google Scholar] [CrossRef]
- Benedetti, R.; Bee, M.; Espa, G.; Piersimoni, F. Agricultural Survey Methods; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar] [CrossRef]
- Christmann, S.; Graf-Drasch, V.; Schäfer, R. Smart Urban Agriculture. Bus. Inf. Syst. Eng. 2024, 67, 247–264. [Google Scholar] [CrossRef]
- Wolf, J.; van Wijk, M.S.; Cheng, X.; Hu, Y.; van Diepen, C.A.; Jongbloed, A.W.; van Keulen, H.; Lu, C.H.; Roetter, R. Urban and peri-urban agricultural production in Beijing municipality and its impact on water quality. Environ. Urban 2003, 15, 141–156. [Google Scholar] [CrossRef]
- Ferroni, M.; Valdés, A. Introduction and overview: Agriculture in the Latin American open economy. Food Policy 1991, 16, 2–9. [Google Scholar] [CrossRef]
- Hamilton, K.A.; Ahmed, W.; Palmer, A.; Smith, K.; Toze, S.; Haas, C.N. Seasonal Assessment of Opportunistic Premise Plumbing Pathogens in Roof-Harvested Rainwater Tanks. Environ. Sci. Technol. 2017, 51, 1742–1753. [Google Scholar] [CrossRef]
- Chidamba, L.; Korsten, L. Microbiological Contamination of Roof-Harvested Rainwater in Rural and Urban Areas: A Systematic Review. Sci. Total Environ. 2022, 806 Pt 3, 150838. [Google Scholar]
- da Hora, J.; Cohim, E.B.; Sipert, S.; Leão, A. Quantitative Microbial Risk Assessment (QMRA) of Campylobacter for Roof-Harvested Rainwater Domestic Use. Proceedings 2018, 2, 185. [Google Scholar] [CrossRef]
- Das, K.; Ramaswami, A. Who Gardens and How in Urban USA: Informing Social Equity in Urban Agriculture Action Plans. Front. Sustain. Food Syst. 2022, 6, 923079. [Google Scholar] [CrossRef]
- Zuin, V.G.; de Souza, R.O.M.A. Green and Sustainable Chemistry in South America: What have been done and seen there? Curr. Opin. Green Sustain. Chem. 2020, 26, 100408. [Google Scholar] [CrossRef]
- Prezoto, F.; Maciel, T.T.; Detoni, M.; Mayorquin, A.Z.; Barbosa, B.C. Pest control potential of social wasps in small farms and urban gardens. Insects 2019, 10, 192. [Google Scholar] [CrossRef] [PubMed]
- Lebron, I.; Robinson, D.A.; Oatham, M.; Wuddivira, M.N. Soil water repellency and pH soil change under tropical pine plantations compared with native tropical forest. J. Hydrol. 2012, 414, 194–200. [Google Scholar] [CrossRef]
- Borsellino, V.; Ascani, M.; Martino, G.; Schimmenti, E. Practices of food democracy: A systematic review. Local Dev. Soc. 2024, 5, 268–297. [Google Scholar] [CrossRef]
- Wertheim-Heck, S.C.O.; Raneri, J.E. Food policy and the unruliness of consumption: An intergenerational social practice approach to uncover transforming food consumption in modernizing Hanoi, Vietnam. Glob. Food Secur. 2020, 26, 100418. [Google Scholar] [CrossRef]
- Peng, L.L.; Childress, A.; Dawson, J.; Jai, T.M.; Punyanunt-Carter, N.M.; Oldewage-Theron, W. Food Safety Education for Elementary School Students Worldwide. Int. J. Sch. Health 2021, 8, 3–13. [Google Scholar] [CrossRef]
- Biskupovic, C.; Maurines, B.; Carmona, R.; Canteros, E. Food democracy and sustainability in France and Chile: Community gardens promote ecological citizenship. Front. Sustain. Food Syst. 2022, 6, 379. [Google Scholar] [CrossRef]
- Schmitt, J.; Offermann, F.; Söder, M.; Frühauf, C.; Finger, R. Extreme weather events cause significant crop yield losses at the farm level in German agriculture. Food Policy 2022, 112, 102359. [Google Scholar] [CrossRef]
- S.S., V.C.; Hareendran, A.; Albaaji, G.F. Precision farming for sustainability: An agricultural intelligence model. Comput. Electron. Agric. 2024, 226, 109386. [Google Scholar] [CrossRef]
- Doernberg, A.; Horn, P.; Zasada, I.; Piorr, A. Urban food policies in German city regions: An overview of key players and policy instruments. Food Policy 2019, 89, 101782. [Google Scholar] [CrossRef]
- Lütke, P.; Jäger, E.M. Food Consumption in Cologne Ehrenfeld: Gentrification through Gastrofication? Urban Sci. 2021, 5, 26. [Google Scholar] [CrossRef]
- Galli, F.; Bartolini, F.; Brunori, G. Handling Diversity of Visions and Priorities in Food Chain Sustainability Assessment. Sustainability 2016, 8, 305. [Google Scholar] [CrossRef]
- De Haen, H.; Hemrich, G. The economics of natural disasters: Implications and challenges for food security. Agric. Econ. 2007, 37, 31–45. [Google Scholar] [CrossRef]
- Gerhold, L.; Seitz, J. Resilience of the German Food Chain. In Proceedings of the 9th Future Security, Security Research, Berlin, Germany, 16–18 September 2014. [Google Scholar]
- Gu, Y.; Sun, J.; Cai, J.; Xie, Y.; Guo, J. Urban Planning Perspective on Food Resilience Assessment and Practice in the Zhengzhou Metropolitan Area, China. Land 2024, 13, 1625. [Google Scholar] [CrossRef]
- Reynolds, K.; Gottfried, C.; Thomas, T. Racial equity and the USDA’s Office of Urban Agriculture granting program and urban offices. J. Agric. Food Syst. Community Dev. 2024, 14, 129–139. [Google Scholar] [CrossRef]
- Elzein, Z. Sustainable Built Environments and the Water, Energy, and Food Nexus: Toward an Interdisciplinary Approach to Urban Resilience. Chin. J. Urban Environ. Stud. 2024, 12, 2450004. [Google Scholar] [CrossRef]
- Castillo, M.; Pérez-Silva, R.; Chamorro, C.; Sepúlveda, M. Public policies, sustainability, and smallholder producers’ access to the market. The Productive Alliance Programme in Chile: A case study. Front. Sustain. Food Syst. 2022, 6, 448. [Google Scholar] [CrossRef]
- Shita, M.W.; Agegnehu, S.K.; Nurie, D.F.; Dires, T.; Navratil, G. Factors Affecting Food Security of Expropriated Peri-Urban Households in Ethiopia: The Case of the East Gojjam Administrative Zone. Land 2024, 13, 1779. [Google Scholar] [CrossRef]
- Suresh, A.; Viswanathan, P.K. Building climate resilience in Indian Farm households: An analysis of National and State Policies and Initiatives. Arab. Econ. Bus. J. 2022, 14, 62–69. [Google Scholar] [CrossRef]
- Roessler, R.; Mpouam, S.E.; Muchemwa, T.; Schlecht, E. Classification of Urban and Peri-Urban Livestock Farm Types in Ouagadougou and Tamale. In Proceedings of the Management of Land Use Systems for Enhanced Food Security: Conflicts, Controversies and Resolutions, Berlin, Germany, 16–18 September 2015. [Google Scholar]
- van Zonneveld, M.; Turmel, M.-S.; Hellin, J. Decision-Making to Diversify Farm Systems for Climate Change Adaptation. Front. Sustain. Food Syst. 2020, 4, 496852. [Google Scholar] [CrossRef]
- Ngo, V.M.; Kechadi, M.T. Electronic farming records—A framework for normalising agronomic knowledge discovery. Comput. Electron. Agric. 2021, 184, 106074. [Google Scholar] [CrossRef]
- Ghaffarpasand, O.; Talaie, M.R.; Ahmadikia, H.; TalaieKhozani, A.; Shalamzari, M.D.; Majidi, S. How does unsustainable urbanization affect driving behavior and vehicular emissions? Evidence from Iran. Sustain. Cities Soc. 2021, 72, 103065. [Google Scholar] [CrossRef]
- Xie, Q.; Lu, M. Measures of spatial and demographic disparities in access to urban green space in Harbin, China. Complexity 2020, 2020, 8832343. [Google Scholar] [CrossRef]
- Negri, F.; Fedeli, M.; Barbieri, M.; Manenti, F. A versatile modular plant for converting biogas into advanced biofuels. Invent. Discl. 2022, 2, 100008. [Google Scholar] [CrossRef]
- Young, L. Growing Food in the City: Urban Agriculture in Quito, Ecuador, through a Feminist Lens. J. Agric. Food Syst. Community Dev. 2019, 9, 151–158. [Google Scholar] [CrossRef]
- Camelo, R.S.d.S.; Hüther, C.M.; Pereira, C.R.; de Oliveira, E.; Machado, T.d.B. Effects and productive performance of urban agriculture on collective and environmental health in the city of Rio de Janeiro, Brazil. Ciênc. Saúde Coletiva 2023, 28, 2015–2024. [Google Scholar] [CrossRef]
- Sánchez, N.A.G.; Gómez, A.E.Y.C. La acuaponía urbana: Fomentando la agricultura sostenible en entornos urbanos. Rev. Nodo 2023, 18, 20–29. [Google Scholar] [CrossRef]
- Binner, H.; Sullivan, T.; Jansen, M.A.K.; McNamara, M.E. Metals in urban soils of Europe: A systematic review. Sci. Total Environ. 2023, 854, 158734. [Google Scholar] [CrossRef]
- Adewumi, J.; Ogundele, O.D. Hidden hazards in urban soils: A meta-analysis review of global heavy metal contamination (2010–2022), sources and its Ecological and health consequences. Sustain. Environ. 2024, 10, 2293239. [Google Scholar] [CrossRef]
- Alves, D.d.O.; de Oliveira, L. Commercial urban agriculture: A review for sustainable development. Sustain. Cities Soc. 2022, 87, 104185. [Google Scholar] [CrossRef]
- de Amorim, A.L.B.; Junior, J.R.S.R.; Bandoni, D.H. Programa Nacional de Alimentação Escolar: Estratégias para enfrentar a insegurança alimentar durante e após a COVID-19. Rev. Adm. Pública 2020, 54, 1134–1145. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
Available in Spanish, French, or English | Unavailable in Spanish, French, or English |
Indexed in Scopus® or Web of Science® or governmental reports or those of world organizations | Published as a generic blog or in Google Scholar without any kind of indexing |
Related to identified impact categories | Unrelated to identified impact categories |
Related to urban agriculture projects | Unrelated to urban agriculture projects |
Authors/Organization | Country/Region | Methodology | Key Findings | Source |
---|---|---|---|---|
Nagib and Nakamura (2020) | Brazil | Mixed methods (interviews, spatial analysis) | Urban agriculture improves access to healthy food but faces land-use conflicts and policy gaps. Highlights the role of community gardens in reducing food insecurity. | [60] |
García Bustamante and Gracia (2022) | Mexico | Case studies, participatory observation | Short supply chains enhance local resilience post-disaster (e.g., hurricanes). Seed exchange networks increased by 150%, preserving native crops and reducing dependency on external inputs. | [62] |
Mercado et al. (2018) | Ecuador | Ethnographic fieldwork, interviews | Small-scale indigenous farmers navigate conflicting regulations to maintain market access. Agroecological practices improve resilience but require institutional support. | [63] |
FAO (2021) | Latin America and Caribbean | Regional data analysis, policy review | Forty percent of the population faces moderate or severe food insecurity. Urban agriculture and agroecology are critical for reducing vulnerability, especially post-COVID-19. | [30] |
Souza et al. (2022) | Brazil | Quantitative analysis (soil permeability, water capture systems) | Urban gardens in São Paulo reduce stormwater runoff by 35% and enhance soil absorption. Rainwater harvesting systems improve irrigation sustainability in dense urban areas. | [61] |
Merçon et al. (2012) | Mexico | Participatory action research | School-based urban gardens increase student engagement in agroecology (85% participation rate) and foster intergenerational knowledge transfer. | [64] |
Patra and Babu (2020) | Cross-regional analysis | Comparative case studies, policy evaluation | Climate-smart practices (e.g., drought-resistant crops, organic nitrogen) adopted in India show potential for Latin America. Recommendations include integrating local knowledge into policy frameworks. | [65] |
Clay and Zimmerer (2020) | Rwanda/Latin America | Mixed methods (household surveys, spatial modeling) | Top-down agricultural intensification reduced climate resilience in Rwanda. Advocates for context-specific agroecology in Latin America to avoid similar pitfalls. | [27] |
2811 and EAN University | Colombia | Living labs, educational toolkits | School-based “living labs” in Bogotá and Manizales increased community participation by 60%. Toolkit adoption improved adaptive capacity to urban mobility challenges. | Academic–community partnership report |
Variable | Technician Urban Agriculture | Community Urban Agriculture |
---|---|---|
Initial cost (USD/m2) | 2500–4000 | 150–300 |
Energy use (kWh/m2/year) | 120–180 | 10–30 |
Community participation | 5–15% (token involvement) | 60–80% (decision making) |
Nutritional density * | 1.1× | 0.9× |
Carbon footprint (kg CO2/kg) | 2.3–4.1 | 0.5–1.2 |
Biodiversity support | Low (monoculture focus) | High (polycultures + pollinators) |
Resilience to shocks | Vulnerable to supply chain disruptions | High (localized networks) |
Waste recycling rate | 30–50% | 70–90% |
Accessibility to low-income groups | <10% reach | >65% reach |
Policy dependency | High (subsidies/tax breaks) | Low (self-organized) |
Jobs created per year | 5–8 | 12–18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopez-Muñoz, F.; Soto-Bruna, W.; Baptiste, B.L.G.; Leon-Pulido, J. Evaluating Food Resilience Initiatives Through Urban Agriculture Models: A Critical Review. Sustainability 2025, 17, 2994. https://doi.org/10.3390/su17072994
Lopez-Muñoz F, Soto-Bruna W, Baptiste BLG, Leon-Pulido J. Evaluating Food Resilience Initiatives Through Urban Agriculture Models: A Critical Review. Sustainability. 2025; 17(7):2994. https://doi.org/10.3390/su17072994
Chicago/Turabian StyleLopez-Muñoz, Federico, Waldo Soto-Bruna, Brigitte L. G. Baptiste, and Jeffrey Leon-Pulido. 2025. "Evaluating Food Resilience Initiatives Through Urban Agriculture Models: A Critical Review" Sustainability 17, no. 7: 2994. https://doi.org/10.3390/su17072994
APA StyleLopez-Muñoz, F., Soto-Bruna, W., Baptiste, B. L. G., & Leon-Pulido, J. (2025). Evaluating Food Resilience Initiatives Through Urban Agriculture Models: A Critical Review. Sustainability, 17(7), 2994. https://doi.org/10.3390/su17072994