Accounting for Whole-Life Carbon, the Time Value of Carbon, and Grid Decarbonization in Cost–Benefit Analyses of Residential Retrofits
Abstract
:1. Introduction
Project Scope
2. Materials and Methods
2.1. Translating the Prototype Model to the Base Case Model
2.1.1. Prototype Building Assumptions
2.1.2. Energy Model Calibration Between EnergyPlus and DesignBuilder
2.1.3. Base Case Development
2.2. Operational Energy
2.2.1. Overview: Estimating Operational Energy Reductions
2.2.2. Electrification Retrofit, Operational Energy Assumptions
2.2.3. Shallow Envelope Retrofit, Operational Energy Assumptions
2.2.4. Deep Envelope Retrofit, Operational Energy Assumptions
2.2.5. Renewable Energy Retrofit, Operational Energy Assumptions
2.2.6. Energy Simulation
2.3. Whole-Life Carbon
2.3.1. Overview: Estimating Whole-Life Carbon Reductions
2.3.2. Base Case, Whole-Life Carbon Assumptions
2.3.3. Electrification Retrofit, Whole-Life Carbon Assumptions
2.3.4. Envelope Retrofit, Whole-Life Carbon Assumptions
2.3.5. Renewable Energy Retrofit, Whole-Life Carbon Assumptions
2.3.6. Whole-Life Carbon Analysis
2.4. Life Cycle Cost
2.5. Decarbonization of the Electric Grid
- Retrofits’ carbon emissions are estimated at Houston’s current grid intensity (0.393 kgCO2e/kWh).
- Houston’s grid is assumed to be as carbon intensive as California’s current grid (0.247 kgCO2e/kWh).
- Houston’s grid is assumed to be as carbon intensive as New York’s current grid (0.112 kgCO2e/kWh).
- Houston’s grid is assumed to have net-zero emissions.
2.6. Alternative Policy Pathways
- The “Mid-Case with no Inflation Reduction Act (IRA) or Clean Air Act Section 111 (CAA) Scenario” does not include IRA electric sector tax credits nor the updated CAA rules.
- The “Mid-Case Scenario” has median values for inputs like technology and fuel prices, resource availability, demand growth, availability of nascent technologies, and the future policy environment.
- The “High Natural Gas Cost Scenario” assumes higher natural gas costs than median projections.
2.7. The Time Value of Carbon
3. Results
3.1. Ranking of Retrofit Interventions as the Electrical Grid Decarbonizes
3.2. Retrofit Rankings Under Alternative Policy Pathways
3.3. Retrofit Rankings Accounting for the Time Value of Carbon
3.4. Carbon Emissions and Associated Costs
3.5. Carbon Emissions over Time
4. Discussion
4.1. Contributions
4.2. Limitations
4.3. Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviations | Meaning |
AC | Air conditioning |
ACH | Air changes per hour |
ACH50 | Air changes per hour at 50 Pascals of pressure differential |
ACHnat | Air changes per hour under natural, or normal, operating conditions |
ASHP | Air-source heat pump |
ASHRAE | The American Society of Heating, Refrigerating and Air-Conditioning Engineers in America |
CAA | Clean Air Act Section 111 |
CAMX | The eGRID sub-region for most of California |
COP | Coefficient of Performance |
DC | Direct current |
DOE | Department of Energy |
EC | Embodied carbon |
eGRID | Emissions and Generation Resource Integrated Database |
EIA | U.S. Energy Information Administration |
EN 15978 | European Standard 15978 |
EOL | End of life |
EP | EnergyPlus |
EPA | Environmental Protection Agency |
ERCT | The eGRID sub-region for most of Texas |
ERV | Energy Recovery Ventilator |
GHG | Greenhouse gas |
GWP | Global warming potential |
IDF | EnergyPlus input file |
IECC | International Energy Conservation Code |
IRA | Inflation Reduction Act |
IRC | International Residential Code |
ISO 21930-2017 | International Organization for Standardization Standard 21930-2017 |
LCA | Life Cycle Assessment |
LCC | Life Cycle Cost |
LCI | Life Cycle Inventory |
NREL | National Renewable Energy Laboratory |
NYUP | The eGRID sub-region for most of New York |
OC | Operational carbon |
Polyiso | Polyisocyanurate |
PV | Photovoltaic |
RFCW | The eGRID sub-region that includes Chicago, Illinois |
SCC | Social Cost of Carbon |
SHGC | Solar Heat Gain Coefficient |
SEER | Seasonal Energy Efficiency Ratio |
TVC | Time value of carbon |
U.S., USA | United States of America |
U-value | The metric for thermal transmittance, measured in W/m2K |
VT | Visible Transmittance |
WH | Water heater |
References
- “2015 RECS Survey Data”, U.S. Energy Information Administration. Available online: https://www.eia.gov/consumption/residential/data/2015/ (accessed on 24 April 2022).
- “2018 CBECS Survey Data”, U.S. Energy Information Administration. Available online: https://www.eia.gov/consumption/commercial/data/2018/index.php?view=characteristics (accessed on 24 April 2022).
- “2018 MECS Survey Data”, U.S. Energy Information Administration. Available online: https://www.eia.gov/consumption/manufacturing/data/2018/ (accessed on 24 April 2022).
- “2015 RECS: Overview”, U.S. Energy Information Administration. Available online: https://www.eia.gov/consumption/residential/reports/2015/overview/index.php?src=%E2%80%B9%20Consumption%20%20%20%20%20%20Residential%20Energy%20Consumption%20Survey%20(RECS)-f6 (accessed on 24 April 2022).
- Pombo, O.; Rivela, B.; Neila, J. Life cycle thinking toward sustainable development policy-making: The case of energy retrofits. J. Clean. Prod. 2019, 206, 267–281. [Google Scholar] [CrossRef]
- Rosner, M. Why Did Renewables Become So Cheap So Fast? Our World in Data. Available online: https://ourworldindata.org/cheap-renewables-growth (accessed on 18 April 2022).
- Cluett, R.; Amann, J. Residential Deep Energy Retrofits. ACEEE, A1401. March 2014. Available online: https://www.aceee.org/research-report/a1401 (accessed on 25 April 2022).
- Polly, B.; Gestwick, M.; Bianchi, M.; Anderson, R.; Horowitz, S.; Christensen, C.; Judkoff, R. Method for Determining Optimal Residential Energy Efficiency Retrofit Packages; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2011. [Google Scholar] [CrossRef]
- Less, B.; Walker, I. A Meta-Analysis of Single-Family Deep Energy Retrofit Performance in the U.S.; Lawrence Berkeley National Lab. (LBNL): Berkeley, CA, USA, 2014. [Google Scholar] [CrossRef]
- “DesignBuilder CO2 Emissions”, DesignBuilder. Available online: https://designbuilder.co.uk/helpv7.0/Content/Legislative_Region_Templates_-_Emissions.htm (accessed on 12 May 2024).
- “Input Output Reference—EnergyPlus 9.4”, Big Ladder Software. Available online: https://bigladdersoftware.com/epx/docs/9-4/input-output-reference/input-for-output.html#fuelfactors (accessed on 12 May 2024).
- Wu, R.; Mavromatidis, G.; Orehounig, K.; Carmeliet, J. Multiobjective optimisation of energy systems and building envelope retrofit in a residential community. Appl. Energy 2017, 190, 634–649. [Google Scholar] [CrossRef]
- Ali, U.; Shamsi, M.H.; Bohacek, M.; Hoare, C.; Purcell, K.; Mangina, E.; O’Donnell, J. A data-driven approach to optimize urban scale energy retrofit decisions for residential buildings. Appl. Energy 2020, 267, 114861. [Google Scholar] [CrossRef]
- Streicher, K.N.; Mennel, S.; Chambers, J.; Parra, D.; Patel, M.K. Cost-effectiveness of large-scale deep energy retrofit packages for residential buildings under different economic assessment approaches. Energy Build. 2020, 215, 109870. [Google Scholar] [CrossRef]
- Akbarnezhad, A.; Xiao, J. Estimation and Minimization of Embodied Carbon of Buildings: A Review. Buildings 2017, 7, 5. [Google Scholar] [CrossRef]
- Röck, M.; Saade, M.R.M.; Balouktsi, M.; Rasmussen, F.N.; Birgisdottir, H.; Frischknecht, R.; Habert, G.; Lützkendorf, T.; Passer, A. Embodied GHG emissions of buildings—The hidden challenge for effective climate change mitigation. Appl. Energy 2020, 258, 114107. [Google Scholar] [CrossRef]
- González-Prieto, D.; Fernández-Nava, Y.; Marañón, E.; Prieto, M.M. Environmental life cycle assessment based on the retrofitting of a twentieth-century heritage building in Spain, with electricity decarbonization scenarios. Build. Res. Inf. 2021, 49, 859–877. [Google Scholar] [CrossRef]
- “EPA Fact Sheet, Social Cost of Carbon”. United States Environmental Protection Agency. December 2016. Available online: https://www.epa.gov/sites/default/files/2016-12/documents/social_cost_of_carbon_fact_sheet.pdf (accessed on 24 April 2022).
- Rennert, K.; Kingdon, C. Social Cost of Carbon 101: A Review of the Social Cost of Carbon, from a Basic Definition to the History of Its Use in Policy Analysis. Resources for the Future. 1 August 2019. Available online: https://www.rff.org/publications/explainers/social-cost-carbon-101/ (accessed on 24 April 2022).
- Hyatt, A. Priorities in Building Decarbonization: Accounting for Total Carbon and the Time Value of Carbon in Cost-Benefit Analyses of Residential Retrofits; Harvard University Graduate School of Design: Cambridge, MA, USA, 2022. [Google Scholar]
- Department of Energy. “DOE Building Energy Codes Program Infographics”. Available online: https://www.energycodes.gov/infographics (accessed on 11 November 2024).
- “Prototype Building Models”, Building Energy Codes Program. Available online: https://www.energycodes.gov/prototype-building-models (accessed on 24 April 2022).
- Crawley, D.B.; Lawrie, L.K.; Winkelmann, F.C.; Buhl, W.F.; Huang, Y.J.; Pedersen, C.O.; Strand, R.K.; Liesen, R.J.; Fisher, D.E.; Witte, M.J.; et al. EnergyPlus: Creating a new-generation building energy simulation program. Energy Build. 2001, 33, 319–331. [Google Scholar] [CrossRef]
- Taylor, Z.; Mendon, V.; Fernandez, N. Methodology for Evaluating Cost-Effectiveness of Residential Energy Code Changes; Department of Energy: Washington, DC, USA, 2015. [Google Scholar]
- Isaacs, K.; Burke, J.; Smith, L.; Williams, R. Identifying housing and meteorological conditions influencing residential air exchange rates in the DEARS and RIOPA studies: Development of distributions for human exposure modeling. J. Expo. Sci. Environ. Epidemiol. 2013, 23, 248–258. [Google Scholar] [CrossRef] [PubMed]
- DesignBuilder, Version 7.0.0.116. DesignBuilder Software Ltd. Available online: https://designbuilder.co.uk/ (accessed on 7 February 2022).
- Fitzgerald-Redd, S. “Getting 3 ACH50 Without Breaking the Bank”, Insulation Institute Blog. Available online: https://information.insulationinstitute.org/blog/getting-3-ach50-without-breaking-the-bank (accessed on 18 February 2022).
- 2021 International Residential Code (IRC); International Code Council: Country Club Hills, IL, USA, 2021; Available online: https://codes.iccsafe.org/content/IRC2021P1 (accessed on 25 April 2022).
- “Criteria for the Passive House, EnerPHit, and PHI Low Energy Building Standard”, Passive House Institution, Darmstadt, Germany. 2018. Available online: https://passipedia.org/certification/enerphit (accessed on 10 November 2021).
- “PHIUS 2021: Emissions Down, Scale Up”, Passive House Institute United States. Available online: https://www.phius.org/phius-certification-for-buildings-products/project-certification/phius-2021-emissions-down-scale-up (accessed on 10 November 2021).
- Ramasamy, V.; Feldman, D.; Desai, J.; Margolis, R.U.S. Solar Photovoltaic System and Energy Storage Cost Benchmarks: Q1 2021. National Renewable Energy Laboratory (NREL). November 2021. Available online: https://www.nrel.gov/docs/fy22osti/80694.pdf (accessed on 2 November 2021).
- ISO 14040:2006; Environmental Management-Life Cycle Assessment-Priciples and Framework. ISO: Geneva, Switzerland, 2006. Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/03/74/37456.html (accessed on 25 April 2022).
- ISO 14044:2006; Environmental Management-Life Cycle Assessment-Requirements and Guidelines. ISO: Geneva, Switzerland, 2006. Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/03/84/38498.html (accessed on 25 April 2022).
- BS EN 15978:2011; Sustainability of Construction Works. Assessment of Environmental Performance of Buildings. Calculation Method. European Standards. Available online: https://www.en-standard.eu/bs-en-15978-2011-sustainability-of-construction-works-assessment-of-environmental-performance-of-buildings-calculation-method/ (accessed on 25 April 2022).
- “eGRID 2020 Summary Data”, United States Environmental Protection Agency. Available online: https://www.epa.gov/egrid/summary-data (accessed on 6 March 2022).
- Diem, A.; Quiroz, C. How to Use eGRID for Carbon Footprinting Electricity Purchases in Greenhouse Gas Emission Inventories, 2012. U.S. EPA. Available online: https://www3.epa.gov/ttnchie1/conference/ei20/session3/adiem.pdf (accessed on 25 April 2022).
- Abt Associates. “eGRID2020 Technical Guide”, United States Environmental Protection Agency. Available online: https://www.epa.gov/system/files/documents/2022-01/egrid2020_technical_guide.pdf (accessed on 8 March 2022).
- EPA. “Emission Factors for Greenhouse Gas Inventories”. Available online: https://www.epa.gov/system/files/documents/2023-04/emission-factors_sept2021.pdf (accessed on 11 November 2024).
- Gagnon, P.; Pham, A.; Cole, W.; Hamilton, A.; Awara, S.; Barlas, A.; Brown, M.; Brown, P.; Carag, V.; Cohen, S.; et al. Standard Scenarios Report: A U.S. Electricity Sector Outlook. National Renewable Energy Laboratory (NREL). 2024. Available online: https://www.nrel.gov/docs/fy25osti/92256.pdf (accessed on 28 February 2025).
- “When to Replace Appliances”, Erie Insurance. Available online: http://www.erieinsurance.com/blog/when-to-replace-appliances (accessed on 10 December 2021).
- Landi, D.; Consolini, A.; Germani, M.; Favi, C. Comparative life cycle assessment of electric and gas ovens in the Italian context: An environmental and technical evaluation. J. Clean. Prod. 2019, 221, 189–201. [Google Scholar] [CrossRef]
- Trinh, D. How Long Does a Water Heater Last? Water Tech Advice. Available online: https://watertechadvice.com/how-long-water-heaters-last/ (accessed on 10 December 2021).
- Piroozfar, P.; Pomponi, F.; Farr, E.R.P. Life cycle assessment of domestic hot water systems: A comparative analysis. Int. J. Constr. Manag. 2016, 16, 109–125. [Google Scholar] [CrossRef]
- “Why You Should Consider Switching to a Heat Pump Water Heater”, Water Heater Experts. Available online: https://waterheaters.com/heat-pump-water-heater-benefits/ (accessed on 10 December 2021).
- Li, M. Life Cycle Assessment of Residential Heating and Cooling Systems in Minnesota: A Comprehensive Analysis on Life Cycle Greenhouse Gas (GHG) Emissions and Cost-Costeffectiveness of Ground Source Heat Pump (GSHP) Systems Compared to the Conventional Gas Furnace and Air Conditioner System, January 2013. Available online: http://conservancy.umn.edu/handle/11299/146449 (accessed on 10 November 2021).
- Bachmann, T.M.; Carnicelli, F.; Preiss, P. Life cycle assessment of domestic fuel cell micro combined heat and power generation: Exploring influential factors. Int. J. Hydrogen Energy 2019, 44, 3891–3905. [Google Scholar] [CrossRef]
- Revit, Version 2021 (April 2020). Autodesk. Available online: https://blogs.autodesk.com/revit/2020/04/08/whats-new-in-revit-2021/ (accessed on 25 April 2022).
- Tally, Version 2022.04.08.01. (April 2022). Building Transparency. Available online: https://choosetally.com/download/ (accessed on 25 April 2022).
- SimaPro, Version 9.2.0.2. (July 2021). SimaPro. Available online: https://simapro.com/2021/simapro-9-2/ (accessed on 25 April 2022).
- Nyman, M.; Simonson, C.J. Life cycle assessment of residential ventilation units in a cold climate. Build. Environ. 2005, 40, 15–27. [Google Scholar] [CrossRef]
- “HRV/ERV Information”, Platinum Air Care. Available online: https://www.platinumaircare.ca/air-quality/hrv-erv-information (accessed on 25 April 2022).
- Kennedy, R. How Long Do Residential Solar Inverters Last? PV Magazine. 16 September 2021. Available online: https://www.pv-magazine.com/2021/09/16/how-long-do-residential-solar-inverters-last/ (accessed on 25 April 2022).
- Svarc, J. Detailed Home Battery Cost Guide, Clean Energy Reviews. Available online: https://www.cleanenergyreviews.info/blog/home-solar-battery-cost-guide (accessed on 9 April 2022).
- Clear Estimates. Clear Estimates. 2021. Available online: https://www.clearestimates.com/ (accessed on 25 April 2022).
- “Cost of Heat Pump Water Heaters—Types & Install Prices”. Available online: https://www.remodelingexpense.com/costs/cost-of-heat-pump-water-heaters/ (accessed on 11 November 2024).
- 2022 RSMeans Year 2022 Quarter 2, Version 8.7. Gordian. Available online: https://www.gordian.com/products/rsmeans-data-services/ (accessed on 25 April 2022).
- “Triple Pane Windows Guide”, Window World of Southern Nevada. Available online: https://www.windowworldsouthernnevada.com/article/triple-pane-windows-guide (accessed on 18 February 2022).
- “2022 Energy Recovery Ventilator Costs”, Inch Calculator. Available online: https://www.inchcalculator.com/energy-recovery-ventilator-cost-guide/ (accessed on 25 April 2022).
- “Energy Auditing/Blower Door Testing”, American Property Consultants, Inc. Available online: https://www.hudpass.com/energy_audits_residential.html (accessed on 25 April 2022).
- “Fixr.com|Air Sealing House Cost|House Sealing Prices”. Available online: https://www.fixr.com/costs/air-leaks-sealing (accessed on 5 August 2023).
- Rennert, K.; Prest, B.C.; Pizer, W.A.; Newell, R.G.; Anthoff, D.; Kingdon, C.; Rennels, L.; Cooke, R.; Raftery, A.E.; Ševčíková, H.; et al. “The Social Cost of Carbon: Advances in Long-Term Probabilistic Projections of Population, GDP, Emissions, and Discount Rates”. 9 September 2021. Available online: https://www.brookings.edu/bpea-articles/the-social-cost-of-carbon/ (accessed on 25 April 2022).
- O. US EPA, “Understanding Global Warming Potentials”. Available online: https://www.epa.gov/ghgemissions/understanding-global-warming-potentials (accessed on 23 July 2024).
- Sarofim, M.C.; Giordano, M.R. A quantitative approach to evaluating the GWP timescale through implicit discount rates. Earth Syst. Dyn. ESD 2018, 9, 1013–1024. [Google Scholar] [CrossRef]
- Wikoff, H.M.; Reese, S.B.; Reese, M.O. Embodied energy and carbon from the manufacture of cadmium telluride and silicon photovoltaics. Joule 2022, 6, 1710–1725. [Google Scholar] [CrossRef]
- ISO 21930:2017; Sustainability in Buildings and Civil Engineering Works—Core Rules for Environmental Product Declarations of Construction Products and Services. ISO: Geneva, Switzerland, 2017. Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/06/16/61694.html (accessed on 14 May 2022).
- Navarro, J.; Zhao, F. Life-Cycle Assessment of the Production of Rare-Earth Elements for Energy Applications: A Review. Front. Energy Res. 2014, 2, 1–17. Available online: https://www.frontiersin.org/article/10.3389/fenrg.2014.00045 (accessed on 27 April 2022).
- “An Emerging Push for Time-of-Use Rates Sparks New Debates About Customer and Grid Impacts”, Utility Dive. Available online: https://www.utilitydive.com/news/an-emerging-push-for-time-of-use-rates-sparks-new-debates-about-customer-an/545009/ (accessed on 27 April 2022).
- DesignBuilder Documentation: Ground Modelling—Standard Method. DesignBuilder. Available online: https://designbuilder.co.uk/helpv7.0/Content/Ground_Modelling.htm (accessed on 24 April 2022).
- Performance Curves: Engineering Reference—EnergyPlus 8.0. Available online: https://bigladdersoftware.com/epx/docs/8-0/engineering-reference/page-114.html (accessed on 25 April 2022).
- Ruhnau, O.; Hirth, L.; Praktiknjo, A. Time series of heat demand and heat pump efficiency for energy system modeling. Sci. Data 2019, 6, 189. [Google Scholar] [CrossRef] [PubMed]
- Schoenbauer, B.; Kessler, N.; Bohac, D.; Kushler, M. Field Assessment of Cold Climate Air Source Heat Pumps. Available online: https://www.aceee.org/files/proceedings/2016/data/papers/1_700.pdf (accessed on 8 April 2022).
- WINDOW, Version 7.7. Lawrence Berkeley National Laboratory. 2019. Available online: https://windows.lbl.gov/software/window (accessed on 25 April 2022).
Cooking | Water Heating | Space Heating | Space Cooling | |
---|---|---|---|---|
Prototype Equipment | Gas range | Gas boiler | Gas furnace | Air conditioner |
Prototype Specification | 2.5 W/m2 | 80% efficiency | 80% efficiency | 13 SEER |
Base Equipment | Gas range | Gas boiler | Gas furnace | Air conditioner |
System Specification | 2.5 W/m2 | 80% efficiency | 80% efficiency | 13 SEER |
Retrofit Equipment | Electric range | Heat pump water heater | Air-source heat pump | Air-source heat pump |
System Specification | 1.1 W/m2 | COP: 3.0 | COP: 2.9 | COP: 4.1 |
Windows U-Value (W/m2K) SHGC, VT | Ceiling Insulation U-Value (W/m2K) | Wall Insulation U-Value (W/m2K) | Infiltration Air Changes/Hour (ACH) | |
---|---|---|---|---|
Prototype Specification | U-4.3 | U-0.2 | U-2.6 | Calculated within EnergyPlus |
Base Specification | U-6.4 | U-0.3 | U-2.6 | 0.38 ACH(nat) |
Shallow Retrofit Specification | U-2.3 SHGC: 0.25, VT: 0.66 | U-0.3 | U-0.5 | 5 ACH50 |
Deep Retrofit Specification | U-1.05 SHGC: 0.25, VT: 0.66 | U-0.1 | U-0.2 | 0.6 ACH50 Energy Recovery Ventilator |
Renewable Energy | |
---|---|
Prototype Equipment | None modeled |
Base Equipment | None modeled |
Retrofit Equipment | DC PV System |
System Specification | 7.15 kW |
Retrofit Case | Heating | Cooling | Water Heating | Other Gas | Other Electric | Total Gas | Total Electric | Total Energy |
---|---|---|---|---|---|---|---|---|
Base | (G) 18,179 | (E) 4031 | (G) 4204 | (G) 3215 | (E) 10,991 | (G) 25,599 | (E) 15,021 | 40,620 |
Electric, all | (E) 5058 | (E) 4009 | (E) 1121 | (G) 1901 | (E) 11,594 | (G) 1901 | (E) 21,782 | 23,682 |
Electric heating | (E) 5020 | (E) 4031 | (G) 4204 | (G) 1901 | (E) 12,305 | (G) 6105 | (E) 21,356 | 27,461 |
Electric cooking | (G) 18,317 | (E) 4009 | (G) 4204 | (G) 1901 | (E) 11,593 | (G) 24,422 | (E) 15,602 | 40,024 |
Electric water heat | (G) 18,179 | (E) 4031 | (E) 1121 | (G) 3215 | (E) 10,990 | (G) 21,394 | (E) 16,142 | 37,536 |
Shallow, all | (G) 5317 | (E) 3518 | (G) 4202 | (G) 3215 | (E) 10,991 | (G) 12,736 | (E) 14,509 | 27,245 |
Shallow ceiling | (G) 18,048 | (E) 4030 | (G) 4202 | (G) 3215 | (E) 10,991 | (G) 25,468 | (E) 15,021 | 40,489 |
Shallow envelope | (G) 7121 | (E) 3700 | (G) 4204 | (G) 3215 | (E) 10,991 | (G) 14,541 | (E) 14,691 | 29,232 |
Shallow infiltration | (G) 17,482 | (E) 3929 | (G) 4204 | (G) 3215 | (E) 10,990 | (G) 24,901 | (E) 14,919 | 39,820 |
Shallow wall | (G) 7914 | (E) 3820 | (G) 4204 | (G) 3215 | (E) 10,991 | (G) 15,334 | (E) 14,811 | 30,145 |
Shallow window | (G) 16,494 | (E) 3959 | (G) 4204 | (G) 3215 | (E) 10,990 | (G) 23,913 | (E) 14,949 | 38,862 |
Deep, all | (G) 1364 | (E) 2910 | (G) 4204 | (G) 3215 | (E) 10,991 | (G) 8738 | (E) 13,901 | 22,684 |
Deep ceiling | (G) 17,370 | (E) 4022 | (G) 4204 | (G) 3215 | (E) 10,991 | (G) 24,789 | (E) 15,013 | 39,802 |
Deep envelope | (G) 3748 | (E) 3172 | (G) 4204 | (G) 3215 | (E) 10,990 | (G) 11,168 | (E) 14,162 | 25,330 |
Deep wall | (G) 6325 | (E) 3783 | (G) 4204 | (G) 3215 | (E) 10,990 | (G) 13,745 | (E) 14,773 | 28,518 |
Deep window | (G) 15,544 | (E) 4002 | (G) 4204 | (G) 3215 | (E) 10,991 | (G) 22,964 | (E) 14,993 | 37,957 |
PV | (G) 18,179 | (E) 4031 | (G) 4204 | (G) 3215 | (E) 10,991 | (G) 25,599 | (E) 8187 | 33,785 |
Grid | Electricity | Natural Gas | ||
---|---|---|---|---|
Generation-Based Output Emission Rate, ERg (kgCO2e/kWh) [35] | Grid Gross Loss Factor, GGL [37] | Emission Rate, ERc (kgCO2e/kWh) | Emission Rate (kgCO2e/kWh) [38] | |
Houston | 0.37 | 0.05 | 0.39 | 0.18 |
Los Angeles | 0.23 | 0.05 | 0.25 | 0.18 |
Chicago | 0.45 | 0.05 | 0.48 | 0.18 |
New York | 0.11 | 0.05 | 0.11 | 0.18 |
Zero-emission | 0.00 | Not applicable | 0.00 | 0.18 |
Year | Electricity Grid Emission Rate by Policy Pathway (kgCO2e/kWh) | ||
---|---|---|---|
Mid-Case, no IRA or CAA | Mid-Case, Current Policies | High Natural Gas Prices | |
2032 | 0.50 | 0.21 | 0.16 |
2050 | 0.29 | 0.17 | 0.21 |
Embodied Carbon | Lifespan | GWP 1 | Total Quantity | Total GWP 2 |
---|---|---|---|---|
(yrs) | (kgCO2e/Product) | (Number of Products over 30 yrs) | (kgCO2e over 30 yrs) | |
COOKING | ||||
Gas stove | 19 [40] | 209.0 [41] | 2 | 418.0 |
Electric stove | 17 [40] | 199.0 [41] | 2 | 398.0 |
WATER HEATING | ||||
Gas boiler water heater | 12 [42] | 1694.5 [43] | 3 | 5083.6 |
Heat pump water heater | 14 [44] | 2835.6 [43] | 3 | 8506.7 |
HEATING | ||||
Gas furnace and air conditioning | 20 [45] | 1500.0 [45] | 2 | 3000.0 |
Air-source heat pump | 20 [46] | 6252.6 [46] | 2 | 12,504.8 |
Cooking | Water Heating | Space Heating | Space Cooling | |
---|---|---|---|---|
Base Equipment | Gas range | Gas tank WH | Gas furnace | Gas furnace |
System Specification | 68 lit (18 gal) | 151 lit (40 gal) | 22 kW (75 kBtu) | 22 kW (75 kBtu) |
Retrofit Equipment | Electric range | Heat pump WH | Air-source heat pump | Air-source heat pump |
System Specification | 64 lit (17 gal) | 151 lit (40 gal) | 18 kW (60 kBtu) | 18 kW (60 kBtu) |
WindowsU-Value (W/m2K) SHGC, VT | Ceiling Insulation U-Value (W/m2K) | Wall Insulation U-Value (W/m2K) | Infiltration Air Changes/Hour (ACH) | |
---|---|---|---|---|
Base Specification | Single pane | Existing loose fill | None | 0.38 ACH(nat) |
Shallow Retrofit Specification | Double pane Fiberglass frame | 38 mm cellulose 1 (1.5 in) | 4″ cellulose | One blower door test 2 |
Deep Retrofit Specification | Triple pane Fiberglass frame | 38 mm cellulose 1 (1.5 in)203 mm polyiso (8 in) | 4″ cellulose 3″ polyiso 5″ sheathing Stucco finish | Two blower door tests 2 Energy Recovery Ventilator |
Renewable Energy | |
---|---|
Base Equipment | None modeled |
Retrofit Equipment | DC PV System |
System Specification | 23 mono panels |
Retrofit Case | Annual Gas Demand | Annual Electric Demand | Embodied Carbon, MFR 1 | Embodied Carbon, Use 2 | Whole-Life Carbon, Total | Upfront Cost 4 | Life Cycle Cost (LCC) |
---|---|---|---|---|---|---|---|
(kWh/yr) | (kWh/yr) | (kgCO2e) | (kgCO2e) | (kgCO2e) | ($) | ($) | |
Base | 25,599 | 15,021 | 8502 [41,43,45] | 316,417 | 324,919 | 3660 [54] | 5558 |
Electric, all | 1901 | 21,782 | 21,409 | 267,339 | 288,749 | 10,617 | 18,988 |
Electric heating | 6105 | 21,356 | 12,505 [46] | 285,174 | 297,679 | 6863 [54] | 11,311 |
Electric cooking | 24,422 | 15,602 | 398 [41] | 316,877 | 317,275 | 984 [54] | 1882 |
Electric water heat | 21,394 | 16,142 | 8507 [43] | 306,787 | 315,293 | 2770 [55] | 5795 |
Shallow, all | 12,736 | 14,509 | 647 | 240,439 | 241,086 | 18,210 | 11,962 |
Shallow ceiling | 25,468 | 15,021 | −234 | 315,705 | 315,470 | 309 | 175 |
Shallow envelope | 14,541 | 14,691 | −1232 | 252,396 | 251,164 | 3697 | −4133 |
Shallow infiltration | 24,901 | 14,919 | Unknown 3 | 311,425 | 311,425 | 2300 | 1263 |
Shallow wall | 15,334 | 14,811 | −999 | 258,127 | 257,128 | 1088 | −5571 |
Shallow window | 23,913 | 14,949 | 1880 | 306,404 | 308,284 | 14,513 | 16,096 |
Deep, all | 8738 | 13,901 | 16,943 | 211,775 | 228,718 | 42,282 | 31,647 |
Deep ceiling | 24,789 | 15,013 | 1864 | 311,919 | 313,783 | 309 | −241 |
Deep envelope | 11,168 | 14,162 | 14,616 [50] | 227,823 | 242,439 | 26,005 | 13,928 |
Deep wall | 13,745 | 14,773 | 11,878 | 249,043 | 260,921 | 18,196 | 7357 |
Deep window | 22,964 | 14,993 | 2327 | 301,762 | 304,088 | 16,277 | 17,718 |
PV | 25,599 | 8187 | 10,700 [31] | 235,773 | 246,473 | 18,948 [31] | 7771 |
Retrofit Case | Reduced kWh/$ (Ranking) | Reduced kgCO2e/$ (Ranking) | Reduced kgCO2e/$ (Ranking) | Reduced kgCO2e/$ (Ranking) | Reduced kgCO2e/$ (Ranking) |
---|---|---|---|---|---|
Under Houston’s Electrical Grid Emission Rate | Under California’s Electrical Grid Emission Rate | Under New York’s Electrical Grid Emission Rate | Under a Zero-Emission Electrical Grid | ||
Deep ceiling | −112.6 (1) 1 | −10.9 (2) 1 | −10.8 (2) 1 | −10.6 (2) 1 | −10.5 (2) 1 |
Shallow envelope | −94.6 (2) 1 | −15.8 (1) 1 | −15.4 (1) 1 | −15.1 (1) 1 | −14.8 (1) 1 |
Shallow wall | −63.5 (3) 1 | −10.6 (3) 1 | −10.5 (3) 1 | −10.3 (3) 1 | −10.2 (3) 1 |
PV | 83.6 (4) 2 | 9.0 (4) 2 | 5.1 (7) 2 | 1.6 (14) 2 | −1.4 (16) 1 |
Deep wall | 55.6 (5) 2 | 7.5 (5) 2 | 7.4 (4) 2 | 7.3 (4) 2 | 7.1 (5) 2 |
Deep envelope | 39.6 (6) 2 | 5.3 (8) 2 | 5.0 (8) 2 | 4.8 (8) 2 | 4.6 (9) 2 |
Shallow, all | 39.0 (7) 2 | 6.3 (6) 2 | 6.1 (5) 2 | 5.9 (6) 2 | 5.8 (7) 2 |
Shallow infiltration | 25.6 (8) 2 | 3.9 (9) 2 | 3.6 (10) 2 | 3.3 (10) 2 | 3.0 (11) 2 |
Shallow ceiling | 24.5 (9) 2 | 5.4 (7) 2 | 5.4 (6) 2 | 5.4 (7) 2 | 5.4 (8) 2 |
Deep, all | 20.6 (10) 2 | 2.8 (10) 2 | 2.6 (12) 2 | 2.5 (12) 2 | 2.4 (12) 2 |
Electric, all | 6.8 (11) 2 | 1.9 (12) 2 | 3.5 (11) 2 | 4.5 (9) 2 | 6.1 (6) 2 |
Electric water heat | 5.2 (12) 2 | 1.1 (13) 2 | 1.9 (13) 2 | 2.7 (11) 2 | 3.4 (10) 2 |
Deep window | 5.0 (13) 2 | 0.7 (14) 2 | 0.7 (15) 2 | 0.7 (15) 2 | 0.7 (13) 2 |
Shallow window | 3.8 (14) 2 | 0.5 (15) 2 | 0.5 (16) 2 | 0.5 (16) 2 | 0.5 (14) 2 |
Electric heating | 2.8 (15) 2 | 1.9 (11) 2 | 4.4 (9) 2 | 6.6 (5) 2 | 8.5 (4) 2 |
Electric cooking | −9.0 (16) 4 | −0.2 (16) 4 | 1.1 (14) 2 | 2.4 (13) 2 | −0.7 (15) 4 |
Retrofit Case | Reduced kgCO2e/$ (Ranking) | Reduced kgCO2e/$ (Ranking) | Reduced kgCO2e/$ (Ranking) |
---|---|---|---|
Under Mid-Case with no IRA or CAA 111 Scenario | Under Mid-Case Scenario | Under High Natural Gas Prices Scenario | |
Shallow envelope, 2032 | −16.0 (1) 1 | −15.3 (1) 1 | −15.2 (1) 1 |
Shallow envelope, 2050 | −15.5 (1) 1 | −15.3 (1) 1 | −15.4 (1) 1 |
Deep ceiling, 2032 | −11.1 (2) 1 | −10.7 (2) 1 | −10.7 (2) 1 |
Deep ceiling, 2050 | −10.8 (2) 1 | −10.7 (2) 1 | −10.8 (2) 1 |
Shallow wall, 2032 | −10.8 (3) 1 | −10.4 (3) 1 | −10.4 (3) 1 |
Shallow wall, 2050 | −10.5 (3) 1 | −10.4 (3) 1 | −10.4 (3) 1 |
Deep wall, 2032 | 7.7 (5) 2 | 7.4 (4) 2 | 7.3 (4) 2 |
Deep wall, 2050 | 7.4 (4) 2 | 7.3 (4) 2 | 7.4 (4) 2 |
Shallow all, 2032 | 6.4 (6) 2 | 6.1 (5) 2 | 6.0 (5) 2 |
Shallow all, 2050 | 6.2 (6) 2 | 6.0 (5) 2 | 6.1 (5) 2 |
Electric heating, 2032 | 0.1 (15) 2 | 5.0 (7) 2 | 5.9 (6) 2 |
Electric heating, 2050 | 3.7 (10) 2 | 5.7 (6) 2 | 5.0 (7) 2 |
Shallow ceiling, 2032 | 5.4 (8) 2 | 5.4 (6) 2 | 5.4 (7) 2 |
Shallow ceiling, 2050 | 5.4 (7) 2 | 5.4 (7) 2 | 5.4 (6) 2 |
Deep envelope, 2032 | 5.5 (7) 2 | 5.0 (8) 2 | 4.9 (8) 2 |
Deep envelope, 2050 | 5.1 (8) 2 | 4.9 (8) 2 | 5.0 (8) 2 |
Electric, all, 2032 | 0.7 (11) 2 | 3.9 (10) 2 | 4.4 (9) 2 |
Electric, all, 2050 | 3.0 (11) 2 | 4.3 (9) 2 | 3.9 (10) 2 |
Shallow infiltration, 2032 | 4.2 (9) 2 | 3.5 (11) 2 | 3.4 (10) 2 |
Shallow infiltration, 2050 | 3.7 (9) 2 | 3.4 (10) 2 | 3.5 (11) 2 |
PV, 2032 | 11.9 (4) 2 | 4.1 (9) 2 | 2.8 (11) 2 |
PV, 2050 | 6.3 (5) 2 | 3.1 (11) 2 | 4.2 (9) 2 |
Deep, all, 2032 | 2.9 (10) 2 | 2.6 (12) 2 | 2.5 (12) 2 |
Deep, all, 2050 | 2.7 (12) 2 | 2.5 (12) 2 | 2.6 (12) 2 |
Electric water heat, 2032 | 0.4 (14) 2 | 2.1 (13) 2 | 2.4 (13) 2 |
Electric water heat, 2050 | 1.7 (13) 2 | 2.4 (13) 2 | 2.1 (13) 2 |
Electric cooking, 2032 | −1.2 (16) 4 | 1.5 (14) 2 | 2.0 (14) 2 |
Electric cooking, 2050 | 0.7 (14) 2 | 1.8 (14) 2 | 1.5 (14) 2 |
Deep window, 2032 | 0.7 (12) 2 | 0.7 (15) 2 | 0.7 (15) 2 |
Deep window, 2050 | 0.7 (15) 2 | 0.7 (15) 2 | 0.7 (15) 2 |
Shallow window, 2032 | 0.5 (13) 2 | 0.5 (16) 2 | 0.5 (16) 2 |
Shallow window, 2050 | 0.5 (16) 2 | 0.5 (16) 2 | 0.5 (16) 2 |
Retrofit Case | Reduced kgCO2e/$ (Ranking) | Reduced kgCO2e/$ (Ranking) | Reduced kgCO2e/$ (Ranking) |
---|---|---|---|
No Discount Rate | 3% Discount Rate | 7% Discount Rate | |
Shallow envelope | −15.8 (1) 1 | −10.7 (1) 1 | −7.2 (1) 1 |
Deep ceiling | −10.9 (2) 1 | −4.8 (3) 1 | −0.5 (3) 1 |
Shallow wall | −10.6 (3) 1 | −7.2 (2) 1 | −4.8 (2) 1 |
PV | 9.0 (4) 2 | 5.6 (4) 2 | 3.2 (4) 2 |
Deep wall | 7.5 (5) 2 | 4.5 (5) 2 | 2.4 (7) 2 |
Shallow, all | 6.3 (6) 2 | 4.2 (6) 2 | 2.8 (6) 2 |
Shallow ceiling | 5.4 (7) 2 | 4.1 (8) 2 | 3.1 (5) 2 |
Deep envelope | 5.3 (8) 2 | 4.2 (7) 2 | 2.3 (8) 2 |
Shallow infiltration | 3.9 (9) 2 | 2.7 (9) 2 | 1.8 (9) 2 |
Deep, all | 2.8 (10) 2 | 1.7 (10) 2 | 0.9 (10) 2 |
Electric heating | 1.9 (11) 2 | 1.2 (12) 2 | 0.7 (12) 2 |
Electric, all | 1.9 (12) 2 | 1.2 (11) 2 | 0.7 (11) 2 |
Electric water heat | 1.1 (13) 2 | 0.7 (13) 2 | 0.5 (13) 2 |
Deep window | 0.7 (14) 2 | 0.4 (14) 2 | 0.2 (14) 2 |
Shallow window | 0.5 (15) 2 | 0.3 (15) 2 | 0.2 (15) 2 |
Electric cooking | −0.2 (16) 4 | −0.2 (16) 4 | −0.1 (16) 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hyatt, A.; Samuelson, H.W. Accounting for Whole-Life Carbon, the Time Value of Carbon, and Grid Decarbonization in Cost–Benefit Analyses of Residential Retrofits. Sustainability 2025, 17, 2935. https://doi.org/10.3390/su17072935
Hyatt A, Samuelson HW. Accounting for Whole-Life Carbon, the Time Value of Carbon, and Grid Decarbonization in Cost–Benefit Analyses of Residential Retrofits. Sustainability. 2025; 17(7):2935. https://doi.org/10.3390/su17072935
Chicago/Turabian StyleHyatt, Allison, and Holly W. Samuelson. 2025. "Accounting for Whole-Life Carbon, the Time Value of Carbon, and Grid Decarbonization in Cost–Benefit Analyses of Residential Retrofits" Sustainability 17, no. 7: 2935. https://doi.org/10.3390/su17072935
APA StyleHyatt, A., & Samuelson, H. W. (2025). Accounting for Whole-Life Carbon, the Time Value of Carbon, and Grid Decarbonization in Cost–Benefit Analyses of Residential Retrofits. Sustainability, 17(7), 2935. https://doi.org/10.3390/su17072935