Coupling Dynamics of Resilience and Efficiency in Sustainable Tourism Economies: A Case Study of the Beijing–Tianjin–Hebei Urban Agglomeration
Abstract
:1. Introduction
2. Literature Review
2.1. Tourism Economic Resilience
2.2. Tourism Economic Efficiency
2.3. The Coordinated Relationship Between Resilience and Efficiency
3. Methodology
3.1. Research Method
- (1)
- Improved CRITIC-Entropy Weighting Method
- (2)
- Super-Efficiency SBM Model
- (3)
- Coupling Coordination Degree Model
- (4)
- PVAR Model
3.2. Indicator System Construction
3.2.1. Measurement Indicator System for Tourism Economic Resilience
3.2.2. Measurement Indicator System for Tourism Economic Efficiency
3.3. Data Sources
4. Results
4.1. Analysis of Coupled Coordination Development of Tourism Economic Resilience and Efficiency in the Beijing–Tianjin–Hebei Urban Agglomeration
4.1.1. Temporal Evolution Characteristics of Coupling Coordination Degree
4.1.2. Spatial Evolution Characteristics of Coupling Coordination Degree
4.1.3. Dynamic Evolution Characteristics of Coupling Coordination Degree
4.2. Analysis of the Interactive Response Between Tourism Economic Resilience and Efficiency in the Beijing–Tianjin–Hebei Urban Agglomeration
4.2.1. Unit Root Test
4.2.2. Optimal Lag Order Selection
4.2.3. GMM Estimation Results
4.2.4. Impulse Response Analysis
4.2.5. Variance Decomposition
5. Conclusions and Discussion
5.1. Conclusions
5.2. Discussion
5.3. Limitations and Future Proposals
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, S.; Jiang, Y.; Cheng, B.; Scott, N. The effect of flight delay on customer loyalty intention: The moderating role of emotion regulation. J. Hosp. Tour. Manag. 2021, 47, 72–83. [Google Scholar] [CrossRef]
- Gössling, S.; Scott, D.; Hall, C.M. Pandemics, tourism and global change: A rapid assessment of COVID-19. J. Sustain. Tour. 2021, 29, 1–20. [Google Scholar] [CrossRef]
- Martin, R.; Sunley, P. On the notion of regional economic resilience: Conceptualization and explanation. J. Econ. Geogr. 2015, 15, 1–42. [Google Scholar] [CrossRef]
- Simmie, J.; Martin, R. The economic resilience of regions: Towards an evolutionary approach. Camb. J. Reg. Econ. Soc. 2010, 3, 27–43. [Google Scholar] [CrossRef]
- Sheng, Y.C.; Zhou, Y.; Xu, L.L. Spatial differences in the driving factors and mechanism of high-quality economic growth: An empirical study of the Yellow River Basin. Econ. Geogr. 2022, 42, 45–54. [Google Scholar]
- Hulke, C.; Kalvelage, L.; Kairu, J.; Diez, J.R.; Rutina, L. Navigating through the storm: Conservancies as local institutions for regional resilience in Zambezi, Namibia. Camb. J. Reg. Econ. Soc. 2022, 15, 305–322. [Google Scholar] [CrossRef]
- Yin, J.; Wei, D.; Qiu, Y.; Xinyuan, L.; Zhang, T. Strategies for enhancing tourism efficiency in Guizhou, China: Based on spatiotemporal dynamic analysis and driving force decomposition. Environ. Dev. Sustain. 2024, 1–33. [Google Scholar] [CrossRef]
- Boschma, R. Towards an Evolutionary Perspective on Regional Resilience. Reg. Stud. 2015, 49, 733–751. [Google Scholar] [CrossRef]
- Bristow, G.; Healy, A. Regional Resilience: An Agency Perspective. Reg. Stud. 2014, 48, 923–935. [Google Scholar] [CrossRef]
- Pike, A.; Dawley, S.; Tomaney, J. Resilience, adaptation and adaptability. Camb. J. Reg. Econ. Soc. 2010, 3, 59–70. [Google Scholar] [CrossRef]
- Holling, C.S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef]
- Tang, R.W.; Guo, W.J. Resilience of Rural Revitalization Evolution and Its Inherent Governance Logic. Reform 2018, 294, 64–72. [Google Scholar]
- Farrell, M.J. The measurement of productive efficiency. J. R. Stat. Soc. Ser. A (Gen.) 1957, 120, 253–290. [Google Scholar] [CrossRef]
- Barros, C.P.; Dieke, P.U.C. Measuring the economic efficiency of airports: A Simar-Wilson methodology analysis. Transp. Res. Part E-Logist. Transp. Rev. 2008, 44, 1039–1051. [Google Scholar] [CrossRef]
- Rose, A. Defining and measuring economic resilience to disasters. Disaster Prev. Manag. 2004, 13, 307–314. [Google Scholar] [CrossRef]
- Lew, A.A.; Ng, P.T.; Ni, C.C.; Wu, T.-C. Community sustainability and resilience: Similarities, differences and indicators. Tour. Geogr. 2016, 18, 18–27. [Google Scholar] [CrossRef]
- Hall, C.M. Crisis events in tourism: Subjects of crisis in tourism. Curr. Issues Tour. 2010, 13, 401–417. [Google Scholar] [CrossRef]
- Biggs, D.; Hall, C.M.; Stoeckl, N. The resilience of formal and informal tourism enterprises to disasters: Reef tourism in Phuket, Thailand. J. Sustain. Tour. 2012, 20, 645–665. [Google Scholar] [CrossRef]
- Sigala, M. Tourism and COVID-19: Impacts and implications for advancing and resetting industry and research. J. Bus. Res. 2020, 117, 312–321. [Google Scholar] [CrossRef]
- Liao, J.; Zou, Y.; Fang, Y.; Lei, Z.; Zhong, H. Measuring and Analysing the Impact Factors of China’s Tourism Economic Resilience in the Context of a Major Shock. J. Contingencies Crisis Manag. 2025, 33, e70024. [Google Scholar] [CrossRef]
- Dube, K.; Nhamo, G. Tourism resilience and challenges in Limpopo, South Africa: A post-COVID-19 analysis. Dev. South. Afr. 2024, 41, 686–703. [Google Scholar] [CrossRef]
- Sekreter, M.S.; Mert, M.; Cetin, M.K. The Impact of Tourism on the Resilience of the Turkish Economy: An Asymmetric Approach. Sustainability 2025, 17, 591. [Google Scholar] [CrossRef]
- Brandano, M.G.; Faggian, A.; Pinate, A.C. The impact of COVID-19 on the tourism sector in Italy: A regional spatial perspective. Tour. Econ. 2024, 30, 2181–2202. [Google Scholar] [CrossRef]
- Pérez-Granja, U.; Inchausti-Sintes, F. On the analysis of efficiency in the hotel sector: Does tourism specialization matter? Tour. Econ. 2023, 29, 92–115. [Google Scholar] [CrossRef]
- Gómez-Vega, M.; Herrero-Prieto, L.C.; López, M.V. Clustering and country destination performance at a global scale: Determining factors of tourism competitiveness. Tour. Econ. 2022, 28, 1605–1625. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. European. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Barros, C.P. Measuring efficiency in the hotel sector. Ann. Tour. Res. 2005, 32, 456–477. [Google Scholar] [CrossRef]
- Assaf, A.G.; Josiassen, A. Identifying and Ranking the Determinants of Tourism Performance: A Global Investigation. J. Travel Res. 2012, 51, 388–399. [Google Scholar] [CrossRef]
- Bai, S.; Wu, J.; Wang, Z. Coupling Coordination between Urban Resilience and Land Use Efficiency in Henan Province, China. Bull. Soil Water Conserv. 2022, 42, 308–316. [Google Scholar]
- Sun, C.; Meng, C. Evaluation of the synergistic development of regional water resource system resilience and efficiency in China. Sci. Geogr. Sin. 2020, 40, 2094–2104. [Google Scholar]
- Han, Z.L.; Zhu, W.C.; Li, B. China’s marine fishery economic resilience and efficiency co-evolution research. Geogr. Res. 2022, 41, 406–419. [Google Scholar]
- Guo, W.; Liu, T.T. Research on the Sustainable Development of Urban Tourism Economy: A Perspective of Resilience and Efficiency Synergies. Sage Open 2024, 14, 21582440241271326. [Google Scholar] [CrossRef]
- Lv, W.Q.; Fan, W.R.; Wang, Z.X. How to enhance the resilience of domestic tourism? J. Hosp. Tour. Manag. 2024, 61, 165–177. [Google Scholar] [CrossRef]
- Ma, H.Y.; Li, L.L. The coupling coordination relationship between sports industry agglomeration and economic resilience in the Yangtze River Delta region. PLoS ONE 2024, 19, e0302356. [Google Scholar] [CrossRef]
- Mandic, A.; Séraphin, H.; Vukovic, M. Engaging stakeholders in cultural tourism Living Labs: A pathway to innovation, sustainability, and resilience. Technol. Soc. 2024, 79, 102742. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Liu, Q.L.; Li, X.C. Coupling Coordination of Urban Resilience and New Urbanization in the Yangtze River Delta Urban Agglomeration. Urban Probl. 2022, 41, 17–27. [Google Scholar]
- Tone, K.; Toloo, M.; Izadikhah, M. A modified slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2020, 287, 560–571. [Google Scholar] [CrossRef]
- Wang, Z.F.; Li, J.Y. Verify and Study the Coupling Coordination Development and the Interactive Stress between Tourism and Eco-environment in the Yellow River Basin. Resour. Environ. Yangtze Basin 2022, 31, 447–460. [Google Scholar]
- Jia, J.C.; Kong, W.; Ren, L. Research on the coordinated development of tourism economy and ecological environment in the Northwest of Hebei province under the background of coordinated development of Beijing-Tianjin-Hebei. Chin. J. Agric. Resour. Reg. Plan. 2019, 40, 167–173. [Google Scholar]
- Tan, J.T.; Zhao, H.B.; Liu, W.X.; Zhang, P.Y.; Qiu, F.D. Analysis of characteristics and influencing factors of regional economic resilience in China. Geogr. Sci. 2020, 40, 173–181. [Google Scholar]
- Xie, C.W.; Lai, F.F.; Huang, R. Construction of Tourism Resilience System and High-Quality Development of Tourism under the Epidemic Crisis. Tour. Trib. 2022, 37, 3–5. [Google Scholar]
- Gao, L.T.; Meng, F.; Tian, Q.B. Study on the spatiotemporal evolution and influencing factors of China’s economic resilience based on digital finance perspective. Econ. Probl. Explor. 2022, 43, 57–74. [Google Scholar]
- Cui, D.; Li, Y.X.; Wu, D.Y. Spatiotemporal Evolution and Influencing Factors of Tourism Economic Growth in Beijing-Tianjin-Hebei Region. Acta Geogr. Sin. 2022, 77, 1391–1410. [Google Scholar]
- Cai, C.Y.; Tang, J.X.; He, Q. Research on the Relationship between Tourism Economic Resilience and Tourism Development Quality in China. J. Nat. Sci. Hunan Norm. Univ. 2024, 47, 42–53. [Google Scholar]
- Guo, W.; Zeng, X.; Yang, S. Study on the Spatio-temporal Dynamic Pattern and Spatial Spillover Effect of Coupling Coordination among Regional Economy, Human Settlement Environment and Tourism Industry. Ecol. Econ. 2021, 37, 117–124. [Google Scholar]
- Wang, Z.F.; Li, Q. Efficiency Evaluation and Spatiotemporal Dynamic Evolution of Tourism Industry in the Yangtze River Economic Belt. Resour. Environ. Yangtze Basin 2022, 31, 1895–1905. [Google Scholar]
- Jiang, H.; Zhang, C.; Jiang, H.P. Impact and mechanism of agricultural economic resilience on high-quality development of agriculture in China. Agric. Econ. Manag. 2022, 71, 20–32. [Google Scholar]
- Yang, L.; Chen, J.J.; Shi, P.F.; Huang, G.Q. Efficiency evaluation and influencing factors of red tourism development: A case study of red tourism areas in northern and western Guizhou. J. Nat. Resour. 2021, 36, 2763–2777. [Google Scholar] [CrossRef]
- Zheng, B.M.; Ming, Q.Z.; Liu, A.L.; Zhang, X. Coupling Coordination and Interactive Response between Tourism Economic Efficiency and Regional Economic Level in Western Provinces. World Reg. Stud. 2022, 31, 350–362. [Google Scholar]
- Hu, W.X.; Zhang, Y.F. Evaluation of tourism efficiency and analysis of influencing factors in the middle and lower reaches of the Yellow River. J. Arid Land Resour. Environ. 2022, 36, 187–193. [Google Scholar]
Coupling Coordination Degree D Interval | Coordination Level | Coordination Stage |
---|---|---|
[0.0~0.1) | Extreme Imbalance | Coordination Decline Stage |
[0.1~0.2) | Severe Imbalance | |
[0.2~0.3) | Moderate Imbalance | |
[0.3~0.4) | Mild Imbalance | |
[0.4~0.5) | On the Verge of Imbalance | Coordination Transition Stage |
[0.5~0.6) | Barely Coordinated | |
[0.6~0.7) | Primary Coordination | Coordination Development Stage |
[0.7~0.8) | Intermediate Coordination | |
[0.8~0.9) | Good Coordination | |
[0.9~1.0] | Excellent Coordination |
Target Layer | Rule Layer | Index Layer | Weight |
---|---|---|---|
Resilience of urban tourism economy | Resistance | X1 Gross Domestic Product of the region | 0.04705 |
X2 Per capita GDP | 0.03985 | ||
X3 Per capita disposable income of urban residents | 0.03185 | ||
X4 Domestic tourism income | 0.04635 | ||
X5 Inbound tourism income | 0.08400 | ||
X6 Total tourism income | 0.04710 | ||
X7 Number of A-grade scenic spots | 0.04245 | ||
X8 Abundance of tourism resources | 0.03245 | ||
Recovery | X9 GDP growth rate | 0.04020 | |
X10 Fiscal self-sufficiency level | 0.04625 | ||
X11 Total retail sales of consumer goods | 0.05350 | ||
X12 Total number of tourists received | 0.03955 | ||
X13 Per capita tourism consumption level | 0.02770 | ||
X14 Number of travel agencies | 0.05110 | ||
X15 Number of star-rated hotels | 0.05385 | ||
Recombination | X16 The proportion of the tertiary industry to GDP | 0.03350 | |
X17 The proportion of total tourism income to the gross regional product | 0.05380 | ||
X18 The proportion of total tourism income to the value-added of the tertiary industry | 0.05820 | ||
X19 The proportion of the total number of tourists received by the permanent population | 0.04475 | ||
X20 Per capita tourism income | 0.04610 | ||
X21 Number of tourism employees | 0.08040 |
Indicator Category | Primary Indicators | Secondary Indicators |
---|---|---|
Investment | Capital investment | Number of star-rated hotels |
Number of travel agencies | ||
A-level Scenic Area | ||
Manpower investment | Number of tourism practitioners | |
Produce | Expected output | Total tourism revenue |
Total number of tourists received |
Urban | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | Average |
---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | 0.736 | 0.832 | 0.850 | 0.818 | 0.847 | 0.894 | 0.929 | 0.949 | 0.958 | 0.657 | 0.847 |
Tianjin | 0.605 | 0.648 | 0.679 | 0.756 | 0.780 | 0.823 | 0.865 | 0.903 | 0.949 | 0.611 | 0.762 |
Shijiazhuang | 0.470 | 0.536 | 0.587 | 0.627 | 0.681 | 0.727 | 0.816 | 0.870 | 0.993 | 0.705 | 0.701 |
Tangshan | 0.466 | 0.522 | 0.562 | 0.585 | 0.608 | 0.681 | 0.768 | 0.845 | 0.967 | 0.688 | 0.669 |
Qinhuangdao | 0.507 | 0.536 | 0.584 | 0.594 | 0.631 | 0.724 | 0.848 | 0.862 | 0.983 | 0.580 | 0.685 |
Handan | 0.440 | 0.501 | 0.529 | 0.578 | 0.639 | 0.720 | 0.791 | 0.864 | 0.954 | 0.675 | 0.669 |
Xingtai | 0.473 | 0.534 | 0.578 | 0.619 | 0.667 | 0.814 | 0.797 | 0.879 | 0.970 | 0.727 | 0.706 |
Baoding | 0.468 | 0.510 | 0.533 | 0.591 | 0.657 | 0.711 | 0.747 | 0.817 | 0.966 | 0.679 | 0.668 |
Zhangjiakou | 0.427 | 0.492 | 0.542 | 0.597 | 0.644 | 0.853 | 0.809 | 0.874 | 0.984 | 0.554 | 0.678 |
Chengde | 0.466 | 0.518 | 0.560 | 0.613 | 0.647 | 0.745 | 0.806 | 0.869 | 0.986 | 0.605 | 0.682 |
Cangzhou | 0.546 | 0.824 | 0.687 | 0.672 | 0.696 | 0.825 | 0.808 | 0.855 | 0.979 | 0.713 | 0.761 |
Langfang | 0.483 | 0.445 | 0.561 | 0.585 | 0.640 | 0.723 | 0.874 | 0.867 | 0.977 | 0.653 | 0.681 |
Hengshui | 0.422 | 0.504 | 0.568 | 0.587 | 0.630 | 0.730 | 0.803 | 0.848 | 0.958 | 0.723 | 0.677 |
Average | 0.501 | 0.569 | 0.602 | 0.632 | 0.674 | 0.767 | 0.820 | 0.869 | 0.971 | 0.659 | 0.707 |
Year | Centroid Coordinates | Major Axis (km) | Minor Axis (km) | Azimuth (°) | Eccentricity | Area (10,000 km2) |
---|---|---|---|---|---|---|
2011 | (116°22′29.2″, 39°06′32.9″) | 2.376 | 1.249 | 46.903 | 0.474 | 9.326 |
2012 | (116°21′28.5″, 39°04′14.0″) | 2.354 | 1.259 | 46.095 | 0.465 | 9.311 |
2013 | (116°20′55.8″, 39°05′15.7″) | 2.376 | 1.261 | 46.372 | 0.470 | 9.410 |
2014 | (116°19′42.9″, 39°05′03.0″) | 2.389 | 1.267 | 46.121 | 0.470 | 9.510 |
2015 | (116°18′22.4″, 39°04′14.9″) | 2.398 | 1.268 | 45.996 | 0.471 | 9.548 |
2016 | (116°17′27.3″, 39°04′36.6″) | 2.399 | 1.306 | 45.390 | 0.456 | 9.844 |
2017 | (116°19′49.7″, 39°04′36.9″) | 2.425 | 1.278 | 46.495 | 0.473 | 9.738 |
2018 | (116°18′40.7″, 39°03′53.2″) | 2.437 | 1.283 | 46.152 | 0.474 | 9.817 |
2019 | (116°18′37.1″, 39°03′39.8″) | 2.442 | 1.287 | 46.529 | 0.473 | 9.873 |
2020 | (116°15′46.3″, 38°58′11.5″) | 2.434 | 1.234 | 46.120 | 0.493 | 9.438 |
Variable | LLC | ADF-Fisher | lPS | Conclusion |
---|---|---|---|---|
lnr | −8.1069 *** | 61.3718 *** | −3.1578 *** | Stationary |
lne | −11.3201 *** | 55.7774 *** | −3.5435 *** | Stationary |
Lag | AIC | BIC | HQIC |
---|---|---|---|
1 | −0.46936 * | 0.293445 * | −0.160325 * |
2 | 0.158367 | 1.09649 | 0.536842 |
3 | 0.094417 | 1.24256 | 0.554039 |
4 | 0.166756 | 1.57175 | 0.721114 |
5 | 0.590548 | 2.31665 | 1.25229 |
h_dlnr | h_dlne | |
---|---|---|
L1.h_dlnr | 0.2231188 (0.2125265) | −0.3835178 (0.3967767) |
L1.h_dlne | 0.2707036 ** (0.115078) | 0.9431634 *** (0.2059084) |
Period | Variance Decomposition of Tourism Economic Resilience | Variance Decomposition of Tourism Economic Efficiency | ||
---|---|---|---|---|
lnr | lne | lnr | lne | |
1.000 | 1.000 | 0.000 | 0.535 | 0.465 |
2.000 | 0.930 | 0.070 | 0.461 | 0.539 |
3.000 | 0.860 | 0.140 | 0.422 | 0.578 |
4.000 | 0.812 | 0.188 | 0.400 | 0.600 |
5.000 | 0.784 | 0.216 | 0.389 | 0.611 |
6.000 | 0.767 | 0.233 | 0.382 | 0.618 |
7.000 | 0.758 | 0.242 | 0.379 | 0.621 |
8.000 | 0.753 | 0.247 | 0.377 | 0.623 |
9.000 | 0.750 | 0.250 | 0.376 | 0.624 |
10.000 | 0.749 | 0.251 | 0.375 | 0.625 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Guo, W.; Yang, S. Coupling Dynamics of Resilience and Efficiency in Sustainable Tourism Economies: A Case Study of the Beijing–Tianjin–Hebei Urban Agglomeration. Sustainability 2025, 17, 2860. https://doi.org/10.3390/su17072860
Liu T, Guo W, Yang S. Coupling Dynamics of Resilience and Efficiency in Sustainable Tourism Economies: A Case Study of the Beijing–Tianjin–Hebei Urban Agglomeration. Sustainability. 2025; 17(7):2860. https://doi.org/10.3390/su17072860
Chicago/Turabian StyleLiu, Tongtong, Wei Guo, and Shuo Yang. 2025. "Coupling Dynamics of Resilience and Efficiency in Sustainable Tourism Economies: A Case Study of the Beijing–Tianjin–Hebei Urban Agglomeration" Sustainability 17, no. 7: 2860. https://doi.org/10.3390/su17072860
APA StyleLiu, T., Guo, W., & Yang, S. (2025). Coupling Dynamics of Resilience and Efficiency in Sustainable Tourism Economies: A Case Study of the Beijing–Tianjin–Hebei Urban Agglomeration. Sustainability, 17(7), 2860. https://doi.org/10.3390/su17072860