Hematophagous Tick Control in the South African Cattle Production System by Using Fossil Shell Flour as a Sustainable Solution: A Systematic Review
Abstract
:1. Introduction
2. The Impacts of Ticks and Tick-Borne Pathogens on Livestock Production Systems
3. Climate Change and Epidemiology of Ticks
4. Previous and Current Tick Control Measures
5. Acaricide Resistance of Livestock Ticks in South Africa
6. Physical and Chemical Properties of Natural Fossil Shell Flour and Chemical Composition of FSF Deposits Found in South Africa
7. Fossil Shell Flour as an Insecticide
8. Availability, Accessibility, Research, and Development of FSF in South Africa
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Department: Agriculture, Forestry and Fisheries (DAFF). A Profile of the South African Meat and Wool Market Value Chain. Arcadia, South Africa. 2016. Available online: http://webapps1.daff.gov.za/AmisAdmin/upload/Mutton%20Market%20Value%20Chain%20Profile%202021.pdf (accessed on 2 July 2023).
- Beyene, S.T.; Mlisa, L.; Gxasheka, M. Local perceptions of livestock husbandry and rangeland degradation in the highlands of South Africa: Implication for development interventions. J. Hum. Ecol. 2014, 47, 257–268. [Google Scholar] [CrossRef]
- Department of Agriculture Forestry and Fisheries (DAFF). DAFF Annual Report. Pretoria, SA. 2019. Available online: https://nationalgovernment.co.za/department_annual/261/2019-department:-agriculture-forestry-and-fisheries-(daff)-annual-report.pdf (accessed on 2 July 2023).
- Yawa, M.; Nyangiwe, N.; Jaja, I.F.; Kadzere, C.T.; Marufu, M.C. Communal cattle farmer’s knowledge, attitudes and practices on ticks (Acari: Ixodidae), tick control and acaricide resistance. Trop. Anim. Health Prod. 2020, 52, 3005–3013. [Google Scholar] [CrossRef]
- Sotsha, K.; Fakudze, B.; Khoza, T.; Mmbengwa, V.; Ngqangweni, S.; Lubinga, M.H.; Mazibuko, N.; Ntshangase, T.; Nyhodo, B.; Myeki, L.; et al. Factors influencing communal livestock farmers’ participation into the National Red Meat Development Programme (NRMDP) in South Africa: The case of the Eastern Cape Province. OIDA Int. J. Sustain. Dev. 2018, 11, 73–80. Available online: https://ssrn.com/abstract=3149129 (accessed on 3 February 2024).
- Katiyatiya, C.L.F.; Muchenje, V.; Mushunje, A. Farmers’ perceptions and knowledge of cattle adaptation to heat stress and tick resistance in the Eastern Cape, South Africa. Asian-Australas. J. Anim. Sci. 2014, 27, 1663. Available online: https://pubmed.ncbi.nlm.nih.gov/25358328 (accessed on 3 February 2024). [CrossRef] [PubMed]
- Sungirai, M.; Moyo, D.Z.; De Clercq, P.; Madder, M. Communal farmers’ perceptions of tick-borne diseases affecting cattle and investigation of tick control methods practiced in Zimbabwe. Ticks Tick-Borne Dis. 2016, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Makwarela, T.G.; Nyangiwe, N.; Masebe, T.; Mbizeni, S.; Nesengani, L.T.; Djikeng, A.; Mapholi, N.O. Tick Diversity and Distribution of Hard (Ixodidae) Cattle Ticks in South Africa. Microbiol. Res. 2023, 14, 42–59. [Google Scholar] [CrossRef]
- Sungirai, M.; Madder, M.; Moyo, D.Z.; De Clercq, P.; Abatih, E.N. An update on the ecological distribution of the Ixodidae ticks in Zimbabwe. Exp. Appl. Acarol. 2015, 66, 269–280. [Google Scholar] [CrossRef]
- Ikusika, O.O.; Mpendulo, C.T.; Zindove, T.J.; Okoh, A.I. Fossil shell flour in livestock production: A Review. Animals 2019, 9, 70. [Google Scholar] [CrossRef]
- Joe Leech, M.S. What Is Diatomaceous Earth. 2019. Available online: https://www.healthline.com/nutrition/what-is-diatomaceous-earth#what-it-is (accessed on 13 September 2022).
- Korunić, Z. Diatomaceous earths, a group of natural insecticides. Review. J. Stored Prod. Res. 1998, 34, 87–97. [Google Scholar] [CrossRef]
- Subramanyam, B.; Roesli, R. Inert Dusts. In Alternatives to Pesticides in Stored-Product IPM; Springer: Berlin/Heidelberg, Germany, 2000; pp. 321–380. [Google Scholar] [CrossRef]
- Fernandez, M.A.; Bellotti, N. Silica-based bioactive solids obtained from modified diatomaceous earth to be used as antimicrobial filler material. Mater. Lett. 2017, 194, 130–134. [Google Scholar] [CrossRef]
- Pérez de León, A.A.; Mitchell, R.D., III; Watson, D.W. Ectoparasites of cattle. Vet. Clin. N. Am. Food Anim. 2020, 36, 173–185. [Google Scholar] [CrossRef]
- Esteve-Gasent, M.D.; Rodríguez-Vivas, R.I.; Medina, R.F.; Ellis, D.; Schwartz, A.; Cortés Garcia, B.; Hunt, C.; Tietjen, M.; Bonilla, D.; Thomas, D.; et al. Research on integrated management for cattle fever ticks and bovine babesiosis in the United States and Mexico: Current status and opportunities for binational coordination. Pathogens 2020, 9, 871. [Google Scholar] [CrossRef]
- Alonso-Díaz, M.A.; Fernández-Salas, A. Entomopathogenic fungi for tick control in cattle livestock from Mexico. Front. Fungal Biol. 2021, 2, 657–694. [Google Scholar] [CrossRef]
- Guo, H.; Moumouni, P.F.A.; Thekisoe, O.; Gao, Y.; Liu, M.; Li, J.; Galon, E.M.; Efstratiou, A.; Wang, G.; Jirapattharasate, C.; et al. Genetic characterization of tick-borne pathogens in ticks infesting cattle and sheep from three South African provinces. Ticks Tick-Borne Dis. 2019, 10, 875–882. [Google Scholar] [CrossRef] [PubMed]
- Spickett, A.M.; Fivaz, B.H. A survey of cattle tick control practices in the Eastern Cape Province of South Africa. Onderstepoort J. Vet. Res. 1992, 59, 203–210. [Google Scholar] [PubMed]
- Gerber, P.J.H.; Steinfeld, B.; Henderson, A.; Mottet, C.; Opio, J.; Dijkman, A.; Falcucci, G.; Tempio, G. Tackling Climate Change Through Livestock: A Global Assessment of Emissions and Mitigation Opportunities [Internet] Rome: FAO. 2013. Available online: https://www.fao.org/4/i3437e/i3437e.pdf (accessed on 11 April 2024).
- IPCC. Summary for Policymakers. In Climate Change: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate, Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Nuttall, P.A. Climate change impacts on ticks and tick-borne infections. Biologia 2022, 77, 1503–1512. [Google Scholar] [CrossRef]
- Korotkov, Y.; Kozlova, T.; Kozlovskaya, L. Observations on changes in abundance of questing Ixodes ricinus, castor bean tick, over a 35-year period in the eastern part of its range (Russia, Tula region). Med. Vet. Entomol. 2015, 29, 129–136. [Google Scholar]
- Daniel, M.; Danielová, V.; Fialová, A.; Malý, M.; Kříž, B.; Nuttall, P.A. Increased relative risk of tick-borne encephalitis in warmer weather. Front. Cell Infect. Microbiol. 2018, 8, 90. [Google Scholar]
- NASA-GCC. Overview: Weather, Global Warming and Climate Change; Global Warming vs. Climate Change. Resource 32. 2019. Available online: https://climate.nasa.gov/resources/global-warming-vs-climate-change/ (accessed on 21 August 2022).
- Kutz, S.J.; Jenkins, E.J.; Veitch, A.M.; Ducrocq, J.; Polley, L.; Elkin, B.; Lair, S. The Arctic as a model for anticipating, preventing, and mitigating climate change impacts on host–parasite interactions. Vet. Parasitol. 2009, 163, 217–228. [Google Scholar] [CrossRef]
- Polley, L.; Thompson, R.A. Parasite zoonoses and climate change: Molecular tools for tracking shifting boundaries. Trends Parasitol. 2009, 25, 285–291. [Google Scholar] [CrossRef]
- Cumming, G.S.; Van Vuuren, D.P. Will climate change affect ectoparasite species ranges? Glob. Ecol. Biogeogr. 2006, 15, 486–497. [Google Scholar] [CrossRef]
- Pérez de León, A.A.; Teel, P.D.; Auclair, A.N.; Messenger, M.T.; Guerrero, F.D.; Schuster, G.; Miller, R.J. Integrated strategy for sustainable cattle fever tick eradication in USA is required to mitigate the impact of global change. Front. Physiol. 2012, 3, 195. [Google Scholar] [CrossRef] [PubMed]
- Barré, N.; Uilenberg, G. Spread of parasites transported with their hosts: Case study of two species of cattle tick. Rev. Sci. Tech. Off. Int. Epiz. 2010, 29, 149. [Google Scholar]
- Estrada-Pena, A. Tick-borne pathogens, transmission rates and climate change. Front. Biosci. 2009, 14, 2674–2687. [Google Scholar] [CrossRef] [PubMed]
- Montero, E.; González, L.M.; Chaparro, A.; Benzal, J.; Bertellotti, M.; Masero, J.A.; Colominas-Ciuró, R.; Vidal, V.; Barbosa, A. First record of Babesia sp. in Antarctic penguins. Ticks Tick-Borne Dis. 2016, 7, 498–501. [Google Scholar] [CrossRef]
- Rodríguez-Vivas, R.I.; Ojeda-Chi, M.M.; Rosado-Aguilar, J.A.; Trinidad-Martínez, I.C.; Torres-Acosta, J.F.J.; Ticante-Perez, V.; Castro-Marín, J.M.; Tapia-Moo, C.A.; Vázquez-Gómez, G. Red deer (Cervus elaphus) as a host for the cattle tick Rhipicephalus microplus (Acari: Ixodidae) in Yucatan, Mexico. Exp. Appl. Acarol. 2013, 60, 543–552. [Google Scholar] [CrossRef]
- Giles, J.R.; Peterson, A.T.; Busch, J.D.; Olafson, P.U.; Scoles, G.A.; Davey, R.B.; Pound, J.M.; Kammlah, D.M.; Lohmeyer, K.H.; Wagner, D.M. Invasive potential of cattle fever ticks in the southern United States. Parasit. Vectors. 2014, 7, 189. [Google Scholar] [CrossRef]
- Masika, P.J.; Sonandi, A.; Van Averbeke, W. Tick control by small-scale cattle farmers in the central Eastern Cape Province, South Africa. J. S. Afr. Vet. Assoc. 1997, 68, 45–48. [Google Scholar] [CrossRef]
- Fernández-Salas, A.; Rodríguez-Vivas, R.I.; Alonso-Díaz, M.Á. Resistance of Rhipicephalus microplus to amitraz and cypermethrin in tropical cattle farms in Veracruz, Mexico. J. Parasitol. 2012, 98, 1010–1014. [Google Scholar] [CrossRef]
- Fernández-Salas, A.; Rodríguez-Vivas, R.I.; Alonso-Díaz, M.A.; Basurto-Camberos, H. Ivermectin resistance status and factors associated in Rhipicephalus microplus (Acari: Ixodidae) populations from Veracruz, Mexico. Vet. Parasitol. 2012, 190, 210–215. [Google Scholar] [CrossRef]
- Fernández-Salas, A.; Rodríguez-Vivas, R.I.; Alonso-Díaz, M.A. First report of a Rhipicephalus microplus tick population multi-resistant to acaricides and ivermectin in the Mexican tropics. Vet. Parasitol. 2012, 183, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Díaz, M.A.; Fernández-Salas, A.; Martínez-Ibáñez, F.; Osorio-Miranda, J. Amblyomma cajennense (Acari: Ixodidae) tick populations susceptible or resistant to acaricides in the Mexican Tropics. Vet. Parasitol. 2013, 197, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Vivas, R.I.; Pérez-Cogollo, L.C.; Rosado-Aguilar, J.A.; Ojeda-Chi, M.M.; Trinidad-Martinez, I.; Miller, R.J.; Li, A.Y.; de León, A.P.; Guerrero, F.; Klafke, G. Rhipicephalus (Boophilus) microplus resistant to acaricides and ivermectin in cattle farms of Mexico. Rev. Bras. Parasitol. Vet. 2014, 23, 113–122. [Google Scholar] [CrossRef]
- de Castro, J.J. Sustainable tick and tick-borne disease control in livestock improvement in developing countries. Vet. Parasitol. 1997, 71, 77–97. [Google Scholar] [CrossRef] [PubMed]
- García, D.D.; Agatón, F.T.; Rosario-Cruz, R. Evaluación económica del control de garrapatas Rhipicephalus microplus en México/Economic evaluation of tick (Rhipicephalus microplus) control in Mexico. CIBA Rev. Iberoam. De Las Cienc. Biológicas Y Agropecu. 2016, 5, 43–52. [Google Scholar] [CrossRef]
- Rodríguez-Vivas, R.I.; Grisi, L.; Pérez de León, A.A.; Villela, H.S.; Torres-Acosta, J.F.; Fragoso Sánchez, H.; Romero Salas, D.; Rosario Cruz, R.; Saldierna, F.; García Carrasco, D. Potential economic impact assessment for cattle parasites in Mexico. Review. Rev. Mex. De Cienc. Pecuarias. 2017, 8, 61–74. [Google Scholar] [CrossRef]
- van Wyk, R.D.; Baron, S.; Maritz-Olivier, C. An integrative approach to understanding pyrethroid resistance in Rhipicephalus microplus and R. decoloratus ticks. Ticks Tick-Borne Dis. 2016, 7, 586–594. [Google Scholar] [CrossRef]
- Aguilar, G.; Olvera, A.M.; Carvajal, B.I.; Mosqueda, J. SNPs and other polymorhisms associated with acaricide resistance in Rhipicephalus microplus. Front. Biosci. 2018, 23, 65–82. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Statistical Yearbook; FAO: Rome, Italy, 2018. [Google Scholar]
- Dzemo, W.D.; Thekisoe, O.; Vudriko, P. Development of acaricide resistance in tick populations of cattle: A systematic review and meta-analysis. Heliyon 2022, 8, e08718. [Google Scholar] [CrossRef]
- Hernandez, R.; Guerrero, F.D.; George, J.E.; Wagner, G.G. Allele frequency and gene expression of a putative carboxylesterase-encoding gene in a pyrethroid resistant strain of the tick Boophilus microplus. Insect Biochem. Mol. Biol. 2002, 32, 1009–1016. [Google Scholar] [CrossRef]
- CVMP. Committee for Medical Products for Veterinary Use. In Reflection Paper on Resistance in Ectoparasites; European Medicines Agency: London, UK, 2018; p. 30. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-resistance-ectoparasites_en.pdf (accessed on 18 August 2022).
- Yessinou, R.E.; Akpo, Y.; Sidick, A.; Adoligbe, C.; Karim, I.Y.; Akogbeto, M.; Farougou, S. Evidence of multiple mechanisms of alphacypermethrin and deltamethrin resistance in ticks Rhipicephalus microplus in Benin, West Africa. Ticks Tick-Borne Dis. 2018, 9, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Abbas, R.Z.; Zaman, M.A.; Colwell, D.D.; Gilleard, J.; Iqbal, Z. Acaricide resistance in cattle ticks and approaches to its management: The state of play. Vet. Parasitol. 2014, 203, 6–20. [Google Scholar] [CrossRef] [PubMed]
- Vudriko, P.; Okwee-Acai, J.; Tayebwa, D.S.; Byaruhanga, J.; Kakooza, S.; Wampande, E.; Omara, R.; Muhindo, J.B.; Tweyongyere, R.; Owiny, D.O.; et al. Emergence of multi-acaricide resistant Rhipicephalus ticks and its implication on chemical tick control in Uganda. Parasit. Vectors. 2016, 9, 1–3. [Google Scholar] [CrossRef]
- Puerta, J.M.; Chaparro, J.J.; Lopez-Arias, A.; Arroyave, S.A.; Villar, D. Loss of in vitro efficacy of topical commercial acaricides on Rhipicephalus microplus (Ixodida: Ixodidae) from Antioquian farms, Colombia. J. Med. Entomol. 2015, 52, 1309–1314. [Google Scholar] [CrossRef] [PubMed]
- Villar, D.; Puerta, J.; López, A.; Chaparro, J.J. Ivermectin resistance of three Rhipicephalus microplus populations using the larval immersion test. Rev. Colomb. Cienc. Pecu. 2016, 29, 51–57. [Google Scholar] [CrossRef]
- Klafke, G.; Webster, A.; Agnol, B.D.; Pradel, E.; Silva, J.; de La Canal, L.H.; Becker, M.; Osório, M.F.; Mansson, M.; Barreto, R.; et al. Multiple resistance to acaricides in field populations of Rhipicephalus microplus from Rio Grande do Sul state, Southern Brazil. Ticks Tick-Borne Dis. 2017, 8, 73–80. [Google Scholar] [CrossRef]
- Rodríguez-Vivas, R.I.; Hodgkinson, J.E.; Rosado-Aguilar, J.A.; Villegas-Perez, S.L.; Trees, A.J. The prevalence of pyrethroid resistance phenotype and genotype in Rhipicephalus (Boophilus) microplus in Yucatan, Mexico. Vet. Parasitol. 2012, 184, 221–229. [Google Scholar] [CrossRef]
- Miller, R.J.; Almazán, C.; Ortíz-Estrada, M.; Davey, R.B.; George, J.E.; De León, A.P. First report of fipronil resistance in Rhipicephalus (Boophilus) microplus of Mexico. Vet. Parasitol. 2013, 191, 97–101. [Google Scholar] [CrossRef]
- Busch, J.D.; Stone, N.E.; Nottingham, R.; Araya-Anchetta, A.; Lewis, J.; Hochhalter, C.; Giles, J.R.; Gruendike, J.; Freeman, J.; Buckmeier, G.; et al. Widespread movement of invasive cattle fever ticks (Rhipicephalus microplus) in southern Texas leads to shared local infestations on cattle and deer. Parasit. Vectors. 2014, 7, 1–6. [Google Scholar] [CrossRef]
- Sharma, N.; Singh, V.; KP, S.; Solanki, V.; Gupta, J.P. Comparative resistance status of Hyalomma anatolicum and Rhipicephalus (Boophilus) microplus ticks against Synthetic Pyrethroids (deltamethrin and cypermethrin) from Banaskantha, Gujarat, India. Int. J. Acarol. 2018, 44, 268–275. [Google Scholar] [CrossRef]
- Kumar, S.S.; Rayulu, V.C.; Rao, K.S.; Kumar, N.V. Acaricidal resistance in Rhipicephalus (Boophilus) Microplus ticks infesting cattle of Andhra Pradesh. J. Entomol. Zool. Stud. 2017, 5, 580–584. [Google Scholar]
- Sagar, S.V.; Saini, K.; Sharma, A.K.; Kumar, S.; Kumar, R.; Fular, A.; Shakya, M.; Upadhaya, D.; Nagar, G.; Samanta, S.; et al. Acaricide resistance in Rhipicephalus microplus collected from selected districts of Madhya Pradesh, Uttar Pradesh and Punjab states of India. Trop. Anim. Health Prod. 2020, 52, 611–618. [Google Scholar] [CrossRef]
- Githaka, N.W.; Kanduma, E.G.; Wieland, B.; Darghouth, M.A.; Bishop, R.P. Acaricide resistance in livestock ticks infesting cattle in Africa: Current status and potential mitigation strategies. CRPVBD 2022, 2, 100090. [Google Scholar] [CrossRef] [PubMed]
- Antonides, L.E. Diatomote. 1997. Available online: http://minerals.usgs.gov/minerals/pubs/commodity/diatomite/25049.pdf (accessed on 21 August 2022).
- Izuagie, A.A.; Gitari, W.M.; Gumbo, J.R. Effects of calcination temperature and solution pH on the defluoridation potential of Al/Fe oxide-modified diatomaceous earth: Metal leaching and sorbent reuse. Water Sci. Technol. Water Supply. 2017, 17, 688–697. [Google Scholar] [CrossRef]
- Bakr, H.E. Diatomite: Its characterization, modifications and applications. Asian J. Mater. Sci. 2010, 2, 121–136. [Google Scholar]
- Al-Ghouti, M.; Khraisheh, M.A.; Ahmad, M.N.; Allen, S. Thermodynamic behaviour and the effect of temperature on the removal of dyes from aqueous solution using modified diatomite: A kinetic study. J. Colloid Interface Sci. 2005, 287, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Akin, S.; Schembre, J.M.; Bhat, S.K.; Kovscek, A.R. Spontaneous imbibition characteristics of diatomite. J. Pet. Sci. Eng. 2000, 25, 149–165. [Google Scholar] [CrossRef]
- EFMA. Dynamic Diatomite: The Universal Uses of Diatomaceous Earth. 2016. Available online: http://www.efma.org/diatomite (accessed on 21 August 2022).
- Gao, B.; Jiang, P.; An, F.; Zhao, S.; Ge, Z. Studies on the surface modification of diatomite with polyethyleneimine and trapping effect of the modified diatomite for phenol. Appl. Surf. Sci. 2005, 250, 273–279. [Google Scholar] [CrossRef]
- Pookmanee, P.; Jansanthea, P.; Phanichphant, S. Adsorption of heavy metals onto natural and modified diatomite KMITL. Sci. J. 2008, 8, 1–8. [Google Scholar]
- Izevbekhai, O.; Gitari, W.; Tavengwa, N. Diatomaceous earth: The future of ultra-pure silica-a review. In Proceedings of the ICSMNR 2018, Bolivia Lodge, Polokwane, South Africa, 15–17 October 2018; ISBN 978-0-620-82267-1. Available online: https://univendspace.univen.ac.za/bitstream/handle/11602/1280/Articles%20-%20ICSMNR%202018-.pdf?sequence=1&isAllowed=y (accessed on 21 August 2022).
- Schulz, J.; Berk, J.; Suhl, J.; Schrader, L.; Kaufhold, S.; Mewis, I.; Hafez, H.M.; Ulrichs, C. Characterization, mode of action, and efficacy of twelve silica-based acaricides against poultry red mite (Dermanyssus gallinae) in vitro. Parasitol. Res. 2014, 113, 3167–3175. [Google Scholar] [CrossRef]
- Hills, J. The Most Extraordinary Diatomaceous Earth Uses and Benefits. 2017. Available online: https://www.healthyandnaturalworld.com/diatomaceous-earth-uses-and-benefits/ (accessed on 17 March 2023).
- Ebeling, W. Sorptive dusts for pest control. Annu. Rev. Entomol. 1971, 16, 123–158. [Google Scholar] [CrossRef] [PubMed]
- Calvert, R. Diatomaceous Earth, American Chemical Society Monograph; The Chemical Catalog Co., Inc.: New York, NY, USA, 1930. [Google Scholar]
- Korunić, Z.; Rozman, V.; Liška, A.; Lucić, P. A review of natural insecticides based on diatomaceous earths. Poljoprivreda 2016, 22, 10–18. [Google Scholar] [CrossRef]
- Katz, H. Desiccants: Dry as dust means insect’s death. Pest. Control Tech. 1972, 82, 84. [Google Scholar]
- Wilbur, D.A.; Swoyer, G.; Donahy, A. Effects of Standardized Diatomaceous Earth on Certain Species on Insects; Project report br. 5203; Kansas Agricultural Research Station: Manhattan, KS, USA, 1971. [Google Scholar]
- DeCrosta, A. Mother Nature’s bug-killer [Diatomaceous earth]. Org. Gard. 1979, 26, 38–44. [Google Scholar]
- Snetsinger, R. Tests with Dead-End Roach Killer in Rental Apartments; Report of Department of Entomology; Pennsylvania State University: University Park, PA, USA, 1982. [Google Scholar]
- Rambo, G. Efficacy of diatomaceous earth from Harper Diatomite Deposit for control of German Cockroaches in living spaces. 1992. Appendix A to Volume 4, M Melosira DE-100 data submitted to US EPA.
- Carlson, S.D.; Ball, H.J. Mode of action and insecticidal value of a diatomaceous earth as a grain protectant. J. Econ. Entomol. 1962, 55, 964–970. [Google Scholar] [CrossRef]
- Bartlett, B.R. The action of certain “inert” dust materials on parasitic Hymenoptera. J. Econ. Entomol. 1951, 44, 891–896. [Google Scholar] [CrossRef]
- Dawson, R.D. Efficacy of diatomaceous earth at reducing populations of nest-dwelling ectoparasites in tree swallows. J. Field Ornithol. 2004, 75, 232–238. [Google Scholar] [CrossRef]
- Martin, C.D.; Mullens, B.A. Housing and dustbathing effects on northern fowl mites (Ornithonyssus sylviarum) and chicken body lice (Menacanthus stramineus) on hens. Med. Vet. Entomol. 2012, 26, 323–333. [Google Scholar] [CrossRef]
- Murillo, A.C. Studies of Northern Fowl Mite Host-Parasite Interactions and Evaluation of Novel Control Strategies in Poultry. Ph.D. Thesis, Department of Entemology, University of California, Riverside, CA, USA, 2016. Available online: https://escholarship.org/uc/item/1nh087m0 (accessed on 22 August 2022).
- Kilpinen, O.; Steenberg, T. Inert Dusts and Their Effects on the Poultry Red Mite (Dermanyssus gallinae). In Control of Poultry Mites (Dermanyssus); Springer: Dordrecht, The Netherlands, 2009; pp. 51–62. [Google Scholar] [CrossRef]
- Flanders, S.E. Dust as an inhibiting factor in the reproduction of insects. J. Econ. Entomol. 1941, 34, 470–472. [Google Scholar] [CrossRef]
- Isabirye, R.A.; Biryomumaisho, S.; Acai-Okwee, J.; Okello, S.; Nasinyama, G.W. Effect of dietary supplementation with diatomaceous earth on egg quality traits in hens raised on deep litter. Eur. J. Agric. Food Sci. 2020, 2. [Google Scholar] [CrossRef]
- Mthi, S.; Ikusika, O.O.; Washaya, S.; Mpendulo, C.T.; Nowers, C.B. Growth performance and nematode infestation in grazing lambs: Impact of diatomaceous earth. J. Anim. Health Prod. 2024, 12, 165–172. [Google Scholar]
- McLean, B.; Frost, D.; Evans, E.; Clarke, A.; Griffiths, B. The Inclusion of Diatomaceous Earth in the Diet of Grazing Ruminants and Its Effect on Gastrointestinal Parasite Burdens. In ADAS Agricultural Research and Consulting Report; ADAS: Bristol, UK, 2005. [Google Scholar]
- Hüe, T.; Hurlin, J.C.; Teurlai, M.; Naves, M. Comparison of tick resistance of crossbred Senepol × Limousin to purebred Limousin cattle. Trop. Anim. Health Prod. 2014, 46, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Olson, T.A.; Lucena, C.; Chase, C.C., Jr.; Hammond, A.C. Evidence of a major gene influencing hair length and heat tolerance in Bos taurus cattle. J. Anim. Sci. 2003, 81, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Bonsma, J.C. Breeding Tick-Repellent Cattle. In Tick Biology and Control, Proceedings of The International Conference, Grahamstown, South Africa, 27–29 January 1981; Whitehead, G.B., Gibson, J.D., Eds.; Tick Research Unit: Rhodes University: Grahamstown, South Africa, 1981; pp. 67–77. [Google Scholar]
- Hupp, H.D. History and Development of Senepol Cattle; Agricultural Experiment Station, College of the Virgin Islands: St. Croix, VI, USA, 1981; p. 11. [Google Scholar]
- Peters, K.J.; Horst, P.; Kleinheisterkamp, H.H. The importance of coat colour and coat type as indicator of productive adaptability of beef cattle in a sub-tropical environment. Trop. Anim. Health Prod. 1982, 7, 296–304. [Google Scholar] [CrossRef]
- Fraga, A.B.; Alencar, M.M.; Figueiredo, L.A.; Razook, A.G.; Cyrillo, J.N. Análise de fatores genéticos e ambientais que afetam a infestação de fêmeas bovinas da raça Caracu por carrapatos (Boophilus microplus). Rev. Bras. Zootec. 2003, 32, 1578–1586. [Google Scholar] [CrossRef]
- Ibelli, A.M.; Ribeiro, A.R.; Giglioti, R.; Regitano, L.C.; Alencar, M.M.; Chagas, A.C.; Paço, A.L.; Oliveira, H.N.; Duarte, J.M.; Oliveira, M.C. Resistance of cattle of various genetic groups to the tick Rhipicephalus microplus and the relationship with coat traits. Vet. Parasitol. 2012, 186, 425–430. [Google Scholar] [CrossRef]
- Olson, T.A.; Avila-Chytil, M.; Chase, C.C., Jr.; Hansen, P.J.; Coleman, S.W. Impact of Hair Coat Differences on Rectal Temperature, Skin Temperature, and Respiration Rate of Holstein X Senepol Crosses in Florida. In Proceedings of the Senepol Symposium; St. Croix, VI, USA, 8–10 November 2002. Available online: https://www.ars.usda.gov/research/publications/publication/?seqNo115=130652 (accessed on 25 August 2022).
- Köster, H. Diatomite in Animal Feeds. Animate Animal Health 2010. Available online: https://pdf4pro.com/amp/view/diatomite-in-animal-feeds-agri-silica-11ae03.html (accessed on 25 August 2022).
- Reka, A.A.; Pavlovski, B.; Fazlija, E.; Berisha, A.; Pacarizi, M.; Daghmehchi, M.; Sacalis, C.; Jovanovski, G.; Makreski, P.; Oral, A. Diatomaceous Earth: Characterization, thermal modification, and application. Open Chem. 2021, 19, 451–461. [Google Scholar] [CrossRef]
- Möhner, M.; Pohrt, A.; Gellissen, J. Occupational exposure to respirable crystalline silica and chronic non—Malignant renal disease: Systematic review and meta-analysis. Int. Arch. Occup. Environ. Health 2017, 90, 555–574. [Google Scholar] [CrossRef]
- Nemmar, A.; Yuvaraju, P.; Beegam, S.; Yasin, J.; Dhaheri, R.A.; Fahim, M.A.; Ali, B.H. In vitro platelet aggregation and oxidative stress caused by amorphous silica nanoparticles. Int. J. Physiol. Pathophysiol. Pharmacol. 2015, 7, 27–33. [Google Scholar]
- Zhou, C.; Li, P.; Deng, X. Encapsulation techniques for nanoparticles in animal health management. J. Agric. Sci. 2018, 10, 44–56. [Google Scholar]
- Gehrke, S.; Gräfe, S.; Makarov, V. Combining fossil shell flour with mineral clays for pest control: Insights into particle behavior. J. Pest Sci. 2020, 93, 1181–1194. [Google Scholar]
- Mossa, A.T.H.; Mohafrash, S.M.M.; Chandrasekaran, N. Nanoemulsions for pest management: A safer alternative. J. Nanotechnol. Appl. Pestic. 2017, 45, 67–79. [Google Scholar]
- Ramesh, S.; Subramanian, S.; Gupta, S. Adhesion-enhancing additives for fossil shell flour applications on livestock. Appl. Surf. Sci. 2019, 492, 98–105. [Google Scholar]
Chemical Content | % Weight |
---|---|
silicon dioxide | 81.65 |
aluminum oxide | 0.89 |
iron(III) oxide | - |
calcium oxide | 15.69 |
magnesium oxide | 1.08 |
manganese oxide | - |
potassium oxide | 0.28 |
sodium oxide | - |
titanium dioxide | - |
phosphorus pentoxide | 0.126 |
loss of ignition | - |
Country | % Production |
---|---|
United States of America (USA) | 34% |
China | 15% |
Denmark | 15% |
Turkey | 6% |
Republic of Korea | 5% |
Peru | 4% |
Mexico | 3% |
FSF | Acaricide |
---|---|
Environmentally friendly | Most of them have adverse effects on the ecosystem. |
Slow action | Quick action. |
Insects are unlikely to develop resistance against it | Insects often develop resistance against it. |
Cheap and readily available for commercial and communal farmers | It is often expensive for communal farmers. |
Organic products | Inorganic products. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soji-Mbongo, Z.; Ikusika, O.O.; Mpendulo, T.C. Hematophagous Tick Control in the South African Cattle Production System by Using Fossil Shell Flour as a Sustainable Solution: A Systematic Review. Sustainability 2025, 17, 2826. https://doi.org/10.3390/su17072826
Soji-Mbongo Z, Ikusika OO, Mpendulo TC. Hematophagous Tick Control in the South African Cattle Production System by Using Fossil Shell Flour as a Sustainable Solution: A Systematic Review. Sustainability. 2025; 17(7):2826. https://doi.org/10.3390/su17072826
Chicago/Turabian StyleSoji-Mbongo, Zimkhitha, Olusegun O. Ikusika, and Thando C. Mpendulo. 2025. "Hematophagous Tick Control in the South African Cattle Production System by Using Fossil Shell Flour as a Sustainable Solution: A Systematic Review" Sustainability 17, no. 7: 2826. https://doi.org/10.3390/su17072826
APA StyleSoji-Mbongo, Z., Ikusika, O. O., & Mpendulo, T. C. (2025). Hematophagous Tick Control in the South African Cattle Production System by Using Fossil Shell Flour as a Sustainable Solution: A Systematic Review. Sustainability, 17(7), 2826. https://doi.org/10.3390/su17072826