Divergent Responses of Ecological Quality Under Various Periods of Urbanization in the Yangtze River Basin of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Ecological Quality Indexes
2.2.2. The Global Artificial Impervious Area
2.2.3. Population Density and Economic Data
2.3. Data Analysis
2.3.1. Calculation of Temporal Trends in Ecological Quality
2.3.2. Classification into Mega Cities and Ordinary Cities
2.3.3. Determination of Influence of Various Factors on EQI Dynamics
3. Results
3.1. Spatiotemporal Dynamics of EQI Changes
3.2. Differences in EQI Changes Between Mega Cities and Ordinary Cities
3.3. The Relative Contribution of Influencing Factors on EQI Changes
4. Discussion
4.1. Spatiotemporal Characteristics of EQIs in the Yangtze River Basin
4.2. Influences of Drivers of EQI Changes
4.3. Research Limitation and Insights for Environmental Protection
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.M.; et al. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Change Hum. Policy Dimens. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Ji, J.W.; Wang, S.X.; Zhou, Y.; Liu, W.L.; Wang, L.T. Spatiotemporal Change and Landscape Pattern Variation of Eco-Environmental Quality in Jing-Jin-Ji Urban Agglomeration From 2001 to 2015. IEEE Access 2020, 8, 125534–125548. [Google Scholar] [CrossRef]
- Krausmann, F.; Erb, K.H.; Gingrich, S.; Haberl, H.; Bondeau, A.; Gaube, V.; Lauk, C.; Plutzar, C.; Searchinger, T.D. Global human appropriation of net primary production doubled in the 20th century. Proc. Natl. Acad. Sci. USA 2013, 110, 10324–10329. [Google Scholar] [CrossRef]
- Mubareka, S.; Ehrlich, D. Identifying and modelling environmental indicators for assessing population vulnerability to conflict using ground and satellite data. Ecol. Indic. 2010, 10, 493–503. [Google Scholar] [CrossRef]
- Borgwardt, F.; Robinson, L.; Trauner, D.; Teixeira, H.; Nogueira, A.J.A.; Lillebo, A.I.; Piet, G.; Kuemmerlen, M.; O’Higgins, T.; McDonald, H.; et al. Exploring variability in environmental impact risk from human activities across aquatic ecosystems. Sci. Total Environ. 2019, 652, 1396–1408. [Google Scholar] [CrossRef] [PubMed]
- Dimnwobi, S.K.; Ekesiobi, C.; Madichie, C.V.; Asongu, S.A. Population dynamics and environmental quality in Africa. Sci. Total Environ. 2021, 797, 149172. [Google Scholar] [CrossRef]
- Khan, I.; Hou, F.J.; Le, H.P. The impact of natural resources, energy consumption, and population growth on environmental quality: Fresh evidence from the United States of America. Sci. Total Environ. 2021, 754, 142222. [Google Scholar] [CrossRef]
- Sun, Y.H.; Dong, Y.; Chen, X.L.; Song, M.L. Dynamic evaluation of ecological and economic security: Analysis of China. J. Clean. Prod. 2023, 387, 135922. [Google Scholar] [CrossRef]
- Cao, H.J.; Li, M.N.; Qin, F.Q.; Xu, Y.K.; Zhang, L.; Zhang, Z.F. Economic Development, Fiscal Ecological Compensation, and Ecological Environment Quality. Int. J. Environ. Res. Public Health 2022, 19, 4725. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, J.M.; Zhang, Y.; Wang, J. Ecological response of land use change in a large opencast coal mine area of China. Resour. Policy 2023, 82, 103551. [Google Scholar] [CrossRef]
- Aizizi, Y.; Kasimu, A.; Liang, H.W.; Zhang, X.L.; Zhao, Y.Y.; Wei, B.H. Evaluation of ecological space and ecological quality changes in urban agglomeration on the northern slope of the Tianshan Mountains. Ecol. Indic. 2023, 146, 109896. [Google Scholar] [CrossRef]
- Ripple, W.J.; Wolf, C.; Newsome, T.M.; Gregg, J.W.; Lenton, T.M.; Palomo, I.; Eikelboom, J.A.J.; Law, B.E.; Huq, S.; Duffy, P.B.; et al. World Scientists’ Warning of a Climate Emergency 2021. Bioscience 2021, 71, 894–898. [Google Scholar] [CrossRef]
- Ceballos, G.; Ehrlich, P.R.; Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl. Acad. Sci. USA 2017, 114, E6089–E6096. [Google Scholar] [CrossRef]
- Eisenmenger, N.; Pichler, M.; Krenmayr, N.; Noll, D.; Plank, B.; Schalmann, E.; Wandl, M.T.; Gingrich, S. The Sustainable Development Goals prioritize economic growth over sustainable resource use: A critical reflection on the SDGs from a socio-ecological perspective. Sustain. Sci. 2020, 15, 1101–1110. [Google Scholar] [CrossRef]
- Khan, I.; Hou, F.J.; Zakari, A.; Tawiah, V.; Ali, S.A. Energy use and urbanization as determinants of China’s environmental quality: Prospects of the Paris climate agreement. J. Environ. Plan. Manag. 2022, 65, 2363–2386. [Google Scholar] [CrossRef]
- Bao, L.Y.; Ding, X.H.; Zhang, J.X.; Ma, D.Y. Can New Urbanization Construction Improve Ecological Welfare Performance in the Yangtze River Economic Belt? Sustainability 2023, 15, 8758. [Google Scholar] [CrossRef]
- Qayyum, U.; Sabir, S.; Anjum, S. Urbanization, informal economy, and ecological footprint quality in South Asia. Environ. Sci. Pollut. Res. 2021, 28, 67011–67021. [Google Scholar] [CrossRef]
- Kashki, A.; Karami, M.; Zandi, R.; Roki, Z. Evaluation of the effect of geographical parameters on the formation of the land surface temperature by applying OLS and GWR, A case study Shiraz City, Iran. Urban Clim. 2021, 37, 100832. [Google Scholar] [CrossRef]
- Yao, J.; Xu, P.; Huang, Z. Impact of urbanization on ecological efficiency in China: An empirical analysis based on provincial panel data. Ecol. Indic. 2021, 129, 107827. [Google Scholar] [CrossRef]
- Wu, C.; Li, C.; Ouyang, L.; Xiao, H.; Wu, J.; Zhuang, M.; Bi, X.; Li, J.; Wang, C.; Song, C.; et al. Spatiotemporal evolution of urbanization and its implications to urban planning of the megacity, Shanghai, China. Landsc. Ecol. 2023, 38, 1105–1124. [Google Scholar] [CrossRef]
- Sun, Y.; Jiao, L.; Guo, Y.; Xu, Z. Recognizing urban shrinkage and growth patterns from a global perspective. Appl. Geogr. 2024, 166, 103247. [Google Scholar] [CrossRef]
- Nathaniel, S.; Victor Bekun, F. Environmental management amidst energy use, urbanization, trade openness, and deforestation: The Nigerian experience. J. Public Aff. 2019, 20, e2037. [Google Scholar] [CrossRef]
- Chen, X.F.; Liu, C.; Yu, X.H. Urbanization, Economic Development, and Ecological Environment: Evidence from Provincial Panel Data in China. Sustainability 2022, 14, 1124. [Google Scholar] [CrossRef]
- Zhou, Z.C.; Wang, J. Evolution of landscape dynamics in the Yangtze River Delta from 2000 to 2020. J. Water Clim. Change 2022, 13, 1241–1256. [Google Scholar] [CrossRef]
- Shi, Z.T.; Zhou, S.L. A study on the dynamic evaluation of ecosystem health in the Yangtze river Basin of China. Ecol. Indic. 2023, 153, 110445. [Google Scholar] [CrossRef]
- Jiang, Z.G.; Dai, B.G.; Wang, C.; Xiong, W. Multifaceted biodiversity measurements reveal incongruent conservation priorities for rivers in the upper reach and lakes in the middle-lower reach of the largest river-floodplain ecosystem in China. Sci. Total Environ. 2020, 739, 140380. [Google Scholar] [CrossRef]
- Qi, W.; Feng, L.; Yang, H.; Liu, J.G.; Zheng, Y.; Shi, H.Y.; Wang, L.; Chen, D.L. Economic growth dominates rising potential flood risk in the Yangtze River and benefits of raising dikes from 1991 to 2015. Environ. Res. Lett. 2022, 17, 034046. [Google Scholar] [CrossRef]
- Zhu, M.; Zhang, Z.X.; Zhu, B.; Kong, R.; Zhang, F.Y.; Tian, J.X.; Jiang, T. Population and Economic Projections in the Yangtze River Basin Based on Shared Socioeconomic Pathways. Sustainability 2020, 12, 4202. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, X.; Deng, Q.; Li, D.; Xu, J.; Li, M.; Cui, Y. Spatial Association of Urbanization in the Yangtze River Delta, China. Int. J. Environ. Res. Public Health 2020, 17, 7276. [Google Scholar] [CrossRef]
- Chang, L.; Cheng, L.; Li, S.; Guo, Z.; Liu, Y.; Zhang, L. Reservoir dominated spatio-temporal changes of the surface water area in the Yangtze River Basin during past three decades. J. Hydrol. Reg. Stud. 2024, 55, 101948. [Google Scholar] [CrossRef]
- Tian, Y.Y.; Jiang, G.H.; Zhou, D.Y.; Li, G.Y. Systematically addressing the heterogeneity in the response of ecosystem services to agricultural modernization, industrialization and urbanization in the Qinghai-Tibetan Plateau from 2000 to 2018. J. Clean. Prod. 2021, 285, 125323. [Google Scholar] [CrossRef]
- Wang, J.; Chen, X.; Ouyang, X.; Ding, Y. A dataset of ecological quality indexes of terrestrial ecosystems in China from 2000 to 2018. China Sci. Data 2023, 8, 1–9. [Google Scholar] [CrossRef]
- Gong, P.; Li, X.C.; Wang, J.; Bai, Y.Q.; Cheng, B.; Hu, T.Y.; Liu, X.P.; Xu, B.; Yang, J.; Zhang, W.; et al. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sens. Environ. 2020, 236, 111510. [Google Scholar] [CrossRef]
- Tatem, A.J. Comment: WorldPop, open data for spatial demography. Sci. Data 2017, 4, sdata20174. [Google Scholar] [CrossRef]
- Chen, J.D.; Gao, M.; Cheng, S.L.; Hou, W.X.; Song, M.L.; Liu, X.; Liu, Y. Global 1 km × 1 km gridded revised real gross domestic product and electricity consumption during 1992–2019 based on calibrated nighttime light data. Sci. Data 2022, 9, 202. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Yang, P.; Xia, J.; Qi, K.L.; Wang, W.Y.; Cai, W.; Chen, N.C. Research and Analysis of Ecological Environment Quality in the Middle Reaches of the Yangtze River Basin between 2000 and 2019. Remote Sens. 2021, 13, 4475. [Google Scholar] [CrossRef]
- Yang, X.Y.; Meng, F.; Fu, P.J.; Zhang, Y.X.; Liu, Y.H. Spatiotemporal change and driving factors of the Eco-Environment quality in the Yangtze River Basin from 2001 to 2019. Ecol. Indic. 2021, 131, 108214. [Google Scholar] [CrossRef]
- Liu, Z.X.; Zhang, W.W.; Lu, H.Y.; Ji, J.W.; Yang, Z.H.; Chen, C. Exploring evolution characteristics of eco-environment quality in the Yangtze River Basin based on remote sensing ecological index. Heliyon 2023, 9, e23243. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, C.; Su, Y.; Duan, H.L.; Wu, X.M.; Lu, R.; Su, Q.; Wu, Y.T.; Chu, Z.J. Study on Spatiotemporal Evolution and Driving Forces of Habitat Quality in the Basin along the Yangtze River in Anhui Province Based on InVEST Model. Land 2023, 12, 1092. [Google Scholar] [CrossRef]
- Qian, L.S.; Chen, J.H.; Deng, T.; Sun, H. Plant diversity in Yunnan: Current status and future directions. Plant Divers. 2020, 42, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Liao, S.; Boufford, D.E.; Ma, J.S. Twenty years of Chinese vascular plant novelties, 2000 through 2019. Plant Divers. 2020, 42, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Enroth, J.; Shevock, J.R.; Ignatov, M.S. Mawenzhangia thamnobryoides (Bryophyta, Lembophyllaceae), a new moss genus and species from the Shangri-la region of Yunnan Province, China. Phytotaxa 2018, 346, 237–246. [Google Scholar] [CrossRef]
- Häkkinen, M. Musa chunii Hakkinen, a new species (Musaceae) from Yunnan, China and taxonomic identity of Musa rubra. J. Syst. Evol. 2009, 47, 87–91. [Google Scholar] [CrossRef]
- Zhang, M.L.; He, Y.; Liu, Q.R. A new species of Argyreia (Convolvulaceae) from Yunnan, China. Phytokeys 2023, 225, 199–209. [Google Scholar] [CrossRef]
- Song, W.Q.; Feng, Y.H.; Wang, Z.H. Ecological restoration programs dominate vegetation greening in China. Sci. Total Environ. 2022, 848, 157729. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Zhao, X.; Gong, J.; Luo, F.; Pan, Y.P. Effectiveness and driving mechanism of ecological restoration efforts in China from 2009 to 2019. Sci. Total Environ. 2024, 910, 168676. [Google Scholar] [CrossRef]
- Cai, Y.J.; Liang, J.S.; Zhang, P.Y.; Wang, Q.Y.; Wu, Y.; Ding, Y.R.; Wang, H.J.; Fu, C.; Sun, J.J. Review on strategies of close-to-natural wetland restoration and a brief case plan for a typical wetland in northern China. Chemosphere 2021, 285, 131534. [Google Scholar] [CrossRef]
- Rodrigo, M.A. Wetland Restoration with Hydrophytes: A Review. Plants 2021, 10, 1035. [Google Scholar] [CrossRef]
- Lin, J.; Yang, S.; Liu, Y.; Zhu, Y.; Cai, A. The urban population agglomeration capacity and its impact on economic efficiency in the Yangtze River Delta Urban Agglomeration. Environ. Dev. Sustain. 2023, 26, 13739–13768. [Google Scholar] [CrossRef]
- Jin, M.; Lin, K.-C.; Shi, W.; Lee, P.T.W.; Li, K.X. Impacts of high-speed railways on economic growth and disparity in China. Transp. Res. Part A Policy Pract. 2020, 138, 158–171. [Google Scholar] [CrossRef]
- Ilyas, M.; Mu, Z.; Akhtar, S.; Hassan, H.; Shahzad, K.; Aslam, B.; Maqsood, S. Renewable energy, economic development, energy consumption and its impact on environmental quality: New evidence from South East Asian countries. Renew. Energy 2024, 223, 119961. [Google Scholar] [CrossRef]
- Zhu, X.; Gao, W.; Zhou, N.; Kammen, D.M.; Wu, Y.; Zhang, Y.; Chen, W. The inhabited environment, infrastructure development and advanced urbanization in China’s Yangtze River Delta Region. Environ. Res. Lett. 2016, 11, 124020. [Google Scholar] [CrossRef]
- Salman, M.Y.; Hasar, H. Review on environmental aspects in smart city concept: Water, waste, air pollution and transportation smart applications using IoT techniques. Sustain. Cities Soc. 2023, 94, 104567. [Google Scholar] [CrossRef]
- Costa, E.; Seixas, J.; Baptista, P.; Costa, G.; Turrentine, T. CO2 emissions and mitigation policies for urban road transportation: Sao Paulo versus Shanghai. Urbe Rev. Bras. Gestão Urbana 2018, 10, 143–158. [Google Scholar] [CrossRef]
- Sheikh, M.; Harami, H.R.; Rezakazemi, M.; Cortina, J.L.; Aminabhavi, T.M.; Valderrama, C. Towards a sustainable transformation of municipal wastewater treatment plants into biofactories using advanced NH3-N recovery technologies: A review. Sci. Total Environ. 2023, 904, 166077. [Google Scholar] [CrossRef]
- Fayyazbakhsh, A.; Bell, M.L.; Zhu, X.B.; Mei, X.Y.; Koutny, M.; Hajinajaf, N.; Zhang, Y.X. Engine emissions with air pollutants and greenhouse gases and their control technologies. J. Clean. Prod. 2022, 376, 134260. [Google Scholar] [CrossRef]
- Hong, J.L.; Chen, Y.L.; Wang, M.; Ye, L.P.; Qi, C.C.; Yuan, H.R.; Zheng, T.; Li, X.Z. Intensification of municipal solid waste disposal in China. Renew. Sustain. Energy Rev. 2017, 69, 168–176. [Google Scholar] [CrossRef]
- Wentz, E.A.; Anderson, S.; Fragkias, M.; Netzband, M.; Mesev, V.; Myint, S.W.; Quattrochi, D.; Rahman, A.; Seto, K.C. Supporting Global Environmental Change Research: A Review of Trends and Knowledge Gaps in Urban Remote Sensing. Remote Sens. 2014, 6, 3879–3905. [Google Scholar] [CrossRef]
- Gao, F.; De Colstoun, E.B.; Ma, R.H.; Weng, Q.H.; Masek, J.G.; Chen, J.; Pan, Y.Z.; Song, C.H. Mapping impervious surface expansion using medium-resolution satellite image time series: A case study in the Yangtze River Delta, China. Int. J. Remote Sens. 2012, 33, 7609–7628. [Google Scholar] [CrossRef]
- Fu, P.; Weng, Q.H. A time series analysis of urbanization induced land. use and land cover change and its impact on land surface temperature with Landsat imagery. Remote Sens. Environ. 2016, 175, 205–214. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Yi, L.W.; Xie, B.G.; Li, J.H.; Xiao, J.Y.; Xie, J.; Liu, Z.X. Analysis of ecological quality changes and influencing factors in Xiangjiang River Basin. Sci. Rep. 2023, 13, 4375. [Google Scholar] [CrossRef] [PubMed]
- Cui, R.H.; Han, J.Z.; Hu, Z.Q. Assessment of Spatial Temporal Changes of Ecological Environment Quality: A Case Study in Huaibei City, China. Land 2022, 11, 944. [Google Scholar] [CrossRef]
- Fang, C.; Lin, X.Q. The eco-environmental guarantee for China’s urbanization process. J. Geogr. Sci. 2009, 19, 95–106. [Google Scholar] [CrossRef]
- Yuan, B.D.; Fu, L.N.; Zou, Y.; Zhang, S.Q.; Chen, X.S.; Li, F.; Deng, Z.M.; Xie, Y.H. Spatiotemporal change detection of ecological quality and the associated affecting factors in Dongting Lake Basin, based on RSEI. J. Clean. Prod. 2021, 302, 126995. [Google Scholar] [CrossRef]
- Ramezani, M.; Abolhassani, L.; Foroushani, N.S.; Burgess, D.; Aminizadeh, M. Ecological Footprint and Its Determinants in MENA Countries: A Spatial Econometric Approach. Sustainability 2022, 14, 11708. [Google Scholar] [CrossRef]
- Miao, C.L.; Sun, L.Y.; Yang, L. The studies of ecological environmental quality assessment in Anhui Province based on ecological footprint. Ecol. Indic. 2016, 60, 879–883. [Google Scholar] [CrossRef]
- Fakher, H.A.; Ahmed, Z.; Acheampong, A.O.; Nathaniel, S.P. Renewable energy, nonrenewable energy, and environmental quality nexus: An investigation of the N-shaped Environmental Kuznets Curve based on six environmental indicators. Energy 2023, 263, 125660. [Google Scholar] [CrossRef]
- Sharma, R.; Sinha, A.; Kautish, P. Does renewable energy consumption reduce ecological footprint? Evidence from eight developing countries of Asia. J. Clean. Prod. 2021, 285, 124867. [Google Scholar] [CrossRef]
- Abid, M.; Sakrafi, H.; Gheraia, Z.; Abdelli, H. Does renewable energy consumption affect ecological footprints in Saudi Arabia? A bootstrap causality test. Renew. Energy 2022, 189, 813–821. [Google Scholar] [CrossRef]
- Van Hoey, G.; Permuy, D.C.; Vandendriessche, S.; Vincx, M.; Hostens, K. An ecological quality status assessment procedure for soft-sediment benthic habitats: Weighing alternative approaches. Ecol. Indic. 2013, 25, 266–278. [Google Scholar] [CrossRef]
- Karimi, A.; Brown, G.; Hockings, M. Methods and participatory approaches for identifying social-ecological hotspots. Appl. Geogr. 2015, 63, 9–20. [Google Scholar] [CrossRef]
- Drayson, K.; Wood, G.; Thompson, S. Assessing the quality of the ecological component of English Environmental Statements. J. Environ. Manag. 2015, 160, 241–253. [Google Scholar] [CrossRef] [PubMed]
- Mahtta, R.; Fragkias, M.; Güneralp, B.; Mahendra, A.; Reba, M.; Wentz, E.A.; Seto, K.C. Urban land expansion: The role of population and economic growth for 300+ cities. NPJ Urban Sustain. 2022, 2, 5. [Google Scholar] [CrossRef]
Factor | Coefficient | Standard Error | 95% Confidence Interval | |
---|---|---|---|---|
GAIA rate | Mega city | −0.223 *** | 0.008 | [−0.237, −0.208] |
Ordinary city | −0.274 *** | 0.005 | [−0.283, −0.264] | |
GDP | Mega city | 0.004 | 0.012 | [−0.020, 0.028] |
Ordinary city | 0.149 *** | 0.009 | [0.131, 0.167] | |
Population density | Mega city | −0.012 ** | 0.005 | [−0.021, −0.004] |
Ordinary city | 0.002 | 0.002 | [−0.002, 0.007] |
Factor | Mega Cities | Ordinary Cities | ||
---|---|---|---|---|
Count | Percentage | Count | Percentage | |
GAIA rate | 5 | 62.5% | 83 | 74.8% |
GDP | 1 | 12.5% | 19 | 17.1% |
Population density | 2 | 25.0% | 9 | 8.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Jing, Y.; Yan, W. Divergent Responses of Ecological Quality Under Various Periods of Urbanization in the Yangtze River Basin of China. Sustainability 2025, 17, 2756. https://doi.org/10.3390/su17062756
Xu J, Jing Y, Yan W. Divergent Responses of Ecological Quality Under Various Periods of Urbanization in the Yangtze River Basin of China. Sustainability. 2025; 17(6):2756. https://doi.org/10.3390/su17062756
Chicago/Turabian StyleXu, Jingxian, Yi Jing, and Wenjia Yan. 2025. "Divergent Responses of Ecological Quality Under Various Periods of Urbanization in the Yangtze River Basin of China" Sustainability 17, no. 6: 2756. https://doi.org/10.3390/su17062756
APA StyleXu, J., Jing, Y., & Yan, W. (2025). Divergent Responses of Ecological Quality Under Various Periods of Urbanization in the Yangtze River Basin of China. Sustainability, 17(6), 2756. https://doi.org/10.3390/su17062756