Data Factor Marketization and Urban Industrial Land Use Efficiency: Evidence from the Establishment of Data Trading Platforms in China
Abstract
:1. Introduction
2. Literature Review
2.1. DFM and Efficiency
2.2. Definition, Measurement Methods, and Influencing Factors of UILUE
3. Theoretical Analysis
4. Research Design
4.1. Variables
4.1.1. Dependent Variable
4.1.2. Independent Variables
4.1.3. Mediating Variables
4.1.4. Control Variables
- Economic development (ED): Compared to per capita GDP, nighttime light data obtained through satellite remote sensing are less affected by statistical methods and data collection biases. They provide a more objective measure of regional economic development [70]. Therefore, this study employs the nighttime light index as a proxy for regional economic development.
- Industrial structure (IS): Defined as the share of secondary sector value-added in regional GDP, reflecting its impact on UILUE.
- Openness to trade (OP): Measured as the ratio of total trade (imports and exports) to regional GDP, accounting for the potential impact of economic openness on UILUE.
- Population density (PD): Measured as the ratio of the urban population to the built-up area, reflecting the influence of population agglomeration on UILUE.
- Technological investment (TI): Measured as the share of government expenditure on science and technology to total fiscal expenditure.
- Marketization of land transactions (ML): Existing studies indicate that the marketization of land transactions significantly enhances UILUE [71]. Therefore, this study employs the share of land transferred via bidding, auction, and listing in total land transactions as a proxy for land marketization. The definitions of these variables are presented in Table 1.
4.2. Sample and Data
4.3. Empirical Methodology
5. Results
5.1. Baseline Regression Results
5.2. Robustness Tests
5.2.1. Parallel Trend Test
5.2.2. Placebo Test
5.2.3. Bacon Decomposition
5.2.4. Propensity Score Matching (PSM)
5.2.5. Other Robustness Tests
5.3. Mechanism Analysis
5.4. Heterogeneity Analysis
5.4.1. Geographic Location
5.4.2. Market Segmentation
5.4.3. Environmental Regulation
5.5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ge, X.J.; Liu, X. Urban Land Use Efficiency under Resource-Based Economic Transformation—A Case Study of Shanxi Province. Land 2021, 10, 850. [Google Scholar] [CrossRef]
- Gao, B.; Huang, Q.; He, C.; Sun, Z.; Zhang, D. How does sprawl differ across cities in China? A multi-scale investigation using nighttime light and census data. Landsc. Urban Plan. 2016, 148, 89–98. [Google Scholar] [CrossRef]
- National Bureau of Statistics. Available online: https://www.stats.gov.cn/sj/ndsj/ (accessed on 21 January 2025).
- Li, G.; Liu, Z.; Liu, T.; Chen, L. Twisted industrial structure, land financing mode and social security. Financ. Res. Lett. 2024, 69, 106115. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, R.; Chen, J. Does industrial land marketization reform faciliate urban land use efficiency? Int. Rev. Econ. Financ. 2024, 96, 103609. [Google Scholar] [CrossRef]
- Tao, C.-Q.; Yi, M.-Y.; Wang, C.-S. Coupling coordination analysis and Spatiotemporal heterogeneity between data elements and green development in China. Econ. Anal. Policy 2023, 77, 1–15. [Google Scholar] [CrossRef]
- National Data Administration. Available online: https://www.nda.gov.cn/sjj/zwgk/zcfb/0830/20240830174038137859023_pc.html (accessed on 21 January 2025).
- Li, Q.; Chen, H.; Chen, Y.; Xiao, T.; Wang, L. Digital economy, financing constraints, and corporate innovation. Pac.-Basin Financ. J. 2023, 80, 102081. [Google Scholar] [CrossRef]
- Cong, L.W.; Wei, W.; Xie, D.; Zhang, L. Endogenous growth under multiple uses of data. J. Econ. Dyn. Control 2022, 141, 104395. [Google Scholar] [CrossRef]
- Kuizao, D.; Siman, W.; Zi, H. How the Construction of Data Trading Platform Affects Firms’ TFP? Econ. Perspect. 2023, 12, 58–75. [Google Scholar]
- Shen, N.; Zhou, J.; Zhang, G.; Wu, L.; Zhang, L. How does data factor marketization influence urban carbon emission efficiency? A new method based on double machine learning. Sust. Cities Soc. 2025, 119, 106106. [Google Scholar] [CrossRef]
- Wang, X.; Shi, Y.; Liu, D. Research on the Influence of Market-based Allocation of Data Elements on the Integration of Digital Economy and Real Economy: A Quasi-natural Experiment Based on a Data Trading Platform. J. Guangdong Univ. Financ. Econ. 2024, 39, 44–58. [Google Scholar]
- Ke, Y.; Zhang, Q.; Wang, G. How Market-based Allocation of Data Element Can Promote Urban Entrepreneurial Vitality—Explanation Based on the Factor Synergy Perspective. Inq. Econ. Iss. 2024, 8, 73–86. [Google Scholar]
- China Academy of Information and Communications Technology. Available online: http://www.caict.ac.cn/kxyj/qwfb/bps/202112/t20211220_394300.htm (accessed on 21 January 2025).
- Prüfer, J.; Schottmüller, C. Competing with Big Data. J. Indust. Econ. 2021, 69, 967–1008. [Google Scholar] [CrossRef]
- Farboodi, M.; Veldkamp, L. A Model of the Data Economy; National Bureau of Economic Research: Cambridge, MA, USA, 2021. [Google Scholar]
- Ming, C.; Zhifan, W. Empowering with “Digital”, improving quality with “New”: Marketization of data elements and new qualitative productivity of cities. J. Chongqing Univ. Soc. Sci. Ed. 2024, 1–13. [Google Scholar]
- Ouyang, Y.; Hu, M. The impact of data elements marketization on corporate financing constraints: Quasi-experimental evidence from the establishment of data trading platforms in China. Financ. Res. Lett. 2024, 69, 106132. [Google Scholar] [CrossRef]
- Fan, G.; Ma, G.R.; Wang, X.L. Institutional reform and economic growth of China: 40-year progress toward marketization. Acta Oecon. 2019, 69, 7–20. [Google Scholar] [CrossRef]
- Jin, W.; Zhang, Q.; Liu, T. Effect of Land Marketization on the High-Quality Development of Industry in Guangdong Province, China. Land 2024, 13, 1400. [Google Scholar] [CrossRef]
- Zhong, W.; Zheng, M. How the Marketization of Land Transfer Affects High-Quality Economic Development: Empirical Evidence from 284 Prefecture-Level Cities in China. Sustainability 2022, 14, 12639. [Google Scholar] [CrossRef]
- Lu, X.; Jiang, X.; Gong, M. How land transfer marketization influence on green total factor productivity from the approach of industrial structure? Evidence from China. Land Use Policy 2020, 95, 104610. [Google Scholar] [CrossRef]
- Pu, W.; Zhang, A. Can Market Reforms Curb the Expansion of Industrial Land?—Based on the Panel Data Analysis of Five National-Level Urban Agglomerations. Sustainability 2021, 13, 4472. [Google Scholar] [CrossRef]
- Li, H.; Du, X.; Yan, X.-W.; Xu, N. Digital Transformation and Urban Green Development: Evidence from China’s Data Factor Marketization. Sustainability 2024, 16, 4511. [Google Scholar] [CrossRef]
- Wang, D.; Liao, H.; Liu, A.; Li, D. Natural resource saving effects of data factor marketization: Implications for green recovery. Resour. Policy 2023, 85, 104019. [Google Scholar] [CrossRef]
- Zhou, Y.; Lu, Y. Spatiotemporal evolution and determinants of urban land use efficiency under green development orientation: Insights from 284 cities and eight economic zones in China, 2005–2019. Appl. Geogr. 2023, 161, 103117. [Google Scholar] [CrossRef]
- Zhang, L.; Mu, R.; Zhan, Y.; Yu, J.; Liu, L.; Yu, Y.; Zhang, J. Digital economy, energy efficiency, and carbon emissions: Evidence from provincial panel data in China. Sci. Total Environ. 2022, 852, 158403. [Google Scholar] [CrossRef] [PubMed]
- Coyne, B.; Denny, E. Applying a Model of Technology Diffusion to Quantify the Potential Benefit of Improved Energy Efficiency in Data Centres. Energies 2021, 14, 7699. [Google Scholar] [CrossRef]
- Cong, L.W.; Xie, D.; Zhang, L. Knowledge Accumulation, Privacy, and Growth in a Data Economy. Manag. Sci. 2021, 67, 6480–6492. [Google Scholar] [CrossRef]
- Jones, C.I.; Tonetti, C. Nonrivalry and the Economics of Data. Am. Econ. Rev. 2020, 110, 2819–2858. [Google Scholar] [CrossRef]
- Acemoglu, D.; Makhdoumi, A.; Malekian, A.; Ozdaglar, A. Too Much Data: Prices and Inefficiencies in Data Markets. Am. Econ. J. Microecon. 2022, 14, 218–256. [Google Scholar] [CrossRef]
- Stull, W.J. Land Use and Zoning in an Urban Economy. Am. Econ. Rev. 1974, 64, 337–347. [Google Scholar]
- Han, W.; Zhang, Y.; Cai, J.; Ma, E. Does Urban Industrial Agglomeration Lead to the Improvement of Land Use Efficiency in China? An Empirical Study from a Spatial Perspective. Sustainability 2019, 11, 986. [Google Scholar] [CrossRef]
- Zhang, R.; Wen, L.; Jin, Y.; Zhang, A.; Gil, J.M. Synergistic impacts of carbon emission trading policy and innovative city pilot policy on urban land green use efficiency in China. Sust. Cities Soc. 2025, 118, 105955. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L. The Impact of Technology Innovation on Urban Land Intensive Use in China: Evidence from 284 Cities in China. Sustainability 2023, 15, 3801. [Google Scholar] [CrossRef]
- Yu, B.; Zhou, X. Urban administrative hierarchy and urban land use efficiency: Evidence from Chinese cities. Int. Rev. Econ. Financ. 2023, 88, 178–195. [Google Scholar] [CrossRef]
- Koroso, N.H.; Zevenbergen, J.A. Urban land management under rapid urbanization: Exploring the link between urban land policies and urban land use efficiency in Ethiopia. Cities 2024, 153, 105269. [Google Scholar] [CrossRef]
- Koroso, N.H. Urban land policy and urban land use efficiency: An analysis based on remote sensing and institutional credibility thesis. Land Use Policy 2023, 132, 106827. [Google Scholar] [CrossRef]
- Yan, S.; Peng, J.; Wu, Q. Exploring the non-linear effects of city size on urban industrial land use efficiency: A spatial econometric analysis of cities in eastern China. Land Use Policy 2020, 99, 104944. [Google Scholar] [CrossRef]
- Meng, Y.; Zhang, F.-R.; An, P.-L.; Dong, M.-L.; Wang, Z.-Y.; Zhao, T. Industrial land-use efficiency and planning in Shunyi, Beijing. Landsc. Urban Plan. 2008, 85, 40–48. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, L.; Huang, X.; Zhao, Y.; Zhang, Y. Evolution of the Spatiotemporal Pattern of Urban Industrial Land Use Efficiency in China. Sustainability 2018, 10, 2174. [Google Scholar] [CrossRef]
- Chen, W.; Shen, Y.; Wang, Y.; Wu, Q. The effect of industrial relocation on industrial land use efficiency in China: A spatial econometrics approach. J. Clean. Prod. 2018, 205, 525–535. [Google Scholar] [CrossRef]
- Qiao, L.; Huang, H.P.; Tian, Y.C. The Identification and Use Efficiency Evaluation of Urban Industrial Land Based on Multi-Source Data. Sustainability 2019, 11, 6149. [Google Scholar] [CrossRef]
- Gao, J.X.; Song, J.B.; Wu, L.F. A new methodology to measure the urban construction land-use efficiency based on the two-stage DEA model. Land Use Policy 2022, 112, 105799. [Google Scholar] [CrossRef]
- Chen, W.; Chen, W.; Ning, S.; Liu, E.; Zhou, X.; Wang, Y.; Zhao, M. Exploring the industrial land use efficiency of China’s resource-based cities. Cities 2019, 93, 215–223. [Google Scholar] [CrossRef]
- Zhu, X.H.; Li, Y.; Zhang, P.F.; Wei, Y.G.; Zheng, X.Y.; Xie, L.L. Temporal-spatial characteristics of urban land use efficiency of China’s 35mega cities based on DEA: Decomposing technology and scale efficiency. Land Use Policy 2019, 88, 104083. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, A.L.; Min, M.; Zhao, K.; Hu, W.Y.; Qin, F.D. Research on the Effect of Manufacturing Agglomeration on Green Use Efficiency of Industrial Land. Int. J. Environ. Res. Public Health 2023, 20, 1575. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Chen, Q.; Lu, F.; Wu, Q.; Wang, W. Spatial-temporal disparities, saving potential and influential factors of industrial land use efficiency: A case study in urban agglomeration in the middle reaches of the Yangtze River. Land Use Policy 2018, 75, 518–529. [Google Scholar] [CrossRef]
- Locurcio, M.; Tajani, F.; Anelli, D. Sustainable Urban Planning Models for New Smart Cities and Effective Management of Land Take Dynamics. Land 2023, 12, 621. [Google Scholar] [CrossRef]
- Yang, F. Problem Analysis of Urban-Rural Industrial Land Use in Metropolitan Areas Under the New Urbanization Policy—A Case Study of Shanghai. In Smart Growth and Sustainable Development: Selected Papers from the 9th International Association for China Planning Conference, Chongqing, China, 19–21 June 2015; Pan, Q., Li, W., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 193–213. [Google Scholar]
- Xie, H.; Wang, W.; Yang, Z.; Choi, Y. Measuring the sustainable performance of industrial land utilization in major industrial zones of China. Technol. Forecast. Soc. Chang. 2016, 112, 207–219. [Google Scholar] [CrossRef]
- Niu, Y.; Yan, Y.; Dong, J.; Yue, K.; Duan, X.; Hu, D.; Li, J.; Peng, L. Evidence for sustainably reducing secondary pollutants in a typical industrial city in China: Co-benefit from controlling sources with high reduction potential beyond industrial process. J. Hazard. Mater. 2024, 478, 135556. [Google Scholar] [CrossRef]
- Akcigit, U.; Liu, Q. The Role of Information in Innovation and Competition. J. Eur. Econ. Assoc. 2015, 14, 828–870. [Google Scholar] [CrossRef]
- Su, Y.; Fan, Q. Renewable energy technology innovation, industrial structure upgrading and green development from the perspective of China’s provinces. Technol. Forecast. Soc. Chang. 2022, 180, 121727. [Google Scholar] [CrossRef]
- Tan, R.; Zhang, T.; Liu, D.; Xu, H. How will innovation-driven development policy affect sustainable urban land use: Evidence from 230 Chinese cities. Sust. Cities Soc. 2021, 72, 103021. [Google Scholar] [CrossRef]
- Anderson, J.E. Access to land and permits: Firm-level evidence of impediments to development in transition countries. J. Econ. Bus. 2019, 101, 38–57. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, B.; Wang, J.; Wu, Q.; Wei, Y.D. How does industrial agglomeration affect urban land use efficiency? A spatial analysis of Chinese cities. Land Use Policy 2022, 119, 106178. [Google Scholar] [CrossRef]
- Liu, J.; Hou, X.; Wang, Z.; Shen, Y. Study the effect of industrial structure optimization on urban land-use efficiency in China. Land Use Policy 2021, 105, 105390. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 2002, 143, 32–41. [Google Scholar] [CrossRef]
- Ul Hassan Shah, W.; Zhu, N.; Hao, G.; Yan, H.; Yasmeen, R. Energy efficiency evaluation, technology gap ratio, and determinants of energy productivity change in developed and developing G20 economies: DEA super-SBM and MLI approaches. Gondwana Res. 2024, 125, 70–81. [Google Scholar] [CrossRef]
- Zhang, H.; Song, Y.; Zhang, M.; Duan, Y. Land use efficiency and energy transition in Chinese cities: A cluster-frontier super-efficiency SBM-based analytical approach. Energy 2024, 304, 132049. [Google Scholar] [CrossRef]
- Cecchini, L.; Venanzi, S.; Pierri, A.; Chiorri, M. Environmental efficiency analysis and estimation of CO2 abatement costs in dairy cattle farms in Umbria (Italy): A SBM-DEA model with undesirable output. J. Clean. Prod. 2018, 197, 895–907. [Google Scholar] [CrossRef]
- Yang, L.; Li, Y.; Liu, H. Did carbon trade improve green production performance? Evidence from China. Energy Econ. 2021, 96, 105185. [Google Scholar] [CrossRef]
- Lee, H.-S. Integrating SBM model and Super-SBM model: A one-model approach. Omega 2022, 113, 102693. [Google Scholar] [CrossRef]
- Zhou, G.; Luo, S. Higher Education Input, Technological Innovation, and Economic Growth in China. Sustainability 2018, 10, 2615. [Google Scholar] [CrossRef]
- Li, W.; Zheng, M. Is it Substantive Innovation or Strategic Innovation?—Impact of Macroeconomic Policies on Micro-enterprises’ Innovation. Econ. Res. J. 2016, 51, 60–73. [Google Scholar]
- Olley, G.S.; Pakes, A. The Dynamics of Productivity in the Telecommunications Equipment Industry. Econometrica 1996, 64, 1263–1297. [Google Scholar] [CrossRef]
- Duranton, G.; Ghani, E.; Goswami, A.G.; Kerr, W. The Misallocation of Land and Other Factors of Production in India; World Bank: Washington, DC, USA, 2015; p. 65. [Google Scholar]
- Lu, F.; Wang, H.; Jing, G. Network infrastructure construction and green high-quality development: A quasi-natural experiment from Broadband China Strategy. J. Stat. Res. 2024, 41, 112–125. [Google Scholar]
- Ma, L.; Xu, W.; Zhang, W.; Ma, Y. Effect and mechanism of environmental regulation improving the urban land use eco-efficiency: Evidence from China. Ecol. Indic. 2024, 159, 111602. [Google Scholar] [CrossRef]
- Strumpf, E.C.; Harper, S.; Kaufman, J.S. Fixed effects and difference in differences. Methods Soc. Epidemiol. 2017, 1, 341–367. [Google Scholar]
- Xie, S.; Fan, P.; Wan, Y. Improvement and Application of Classical PSM-DID Model. Stat. Res. 2021, 38, 146–160. [Google Scholar] [CrossRef]
- Fauver, L.; Hung, M.; Li, X.; Taboada, A.G. Board reforms and firm value: Worldwide evidence. J. Financ. Econ. 2017, 125, 120–142. [Google Scholar] [CrossRef]
- Song, Y.; Hao, X. Corporate Innovation Effects of the Digital Service Trade Network. Contemp. Financ. Econ. 2024, 01, 126–139. [Google Scholar]
- Xu, N.; Zhao, D.; Zhang, W.; Zhang, H.; Chen, W.; Ji, M.; Liu, M. Innovation-Driven Development and Urban Land Low-Carbon Use Efficiency: A Policy Assessment from China. Land 2022, 11, 1634. [Google Scholar] [CrossRef]
- Correia Sinézio Martins, E.; Lépine, J.; Corbett, J. Assessing the effectiveness of financial incentives on electric vehicle adoption in Europe: Multi-period difference-in-difference approach. Transp. Res. Part A Policy Pract. 2024, 189, 104217. [Google Scholar] [CrossRef]
- Qian, J.; Zhang, X.; Yan, X.-W.; Xu, N. Can Information Consumption Promote the Digital Transformation of Enterprises? Empirical Evidence from China. Sustainability 2024, 16, 11026. [Google Scholar] [CrossRef]
- Goodman-Bacon, A. Difference-in-differences with variation in treatment timing. J. Econom. 2021, 225, 254–277. [Google Scholar] [CrossRef]
- Abadie, A.; Diamond, A.; Hainmueller, J. Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program. J. Am. Stat. Assoc. 2010, 105, 493–505. [Google Scholar] [CrossRef]
- Zhang, L.; Liang, T.; Wei, X.; Wang, H. An improved indicator standardization method for multi-indicator composite evaluation: A case study in the evaluation of ecological civilization construction in China. Environ. Impact Assess. Rev. 2024, 108, 107600. [Google Scholar] [CrossRef]
- Langpap, C.; Shimshack, J.P. Private citizen suits and public enforcement: Substitutes or complements? J. Environ. Econ. Manag. 2010, 59, 235–249. [Google Scholar] [CrossRef]
- Wang, F. The intermediary and threshold effect of green innovation in the impact of environmental regulation on economic Growth: Evidence from China. Ecol. Indic. 2023, 153, 110371. [Google Scholar] [CrossRef]
- Wang, B.; Liu, J. Impact of Climate Change on Green Technology Innovation—An Examination Based on Microfirm Data. Sustainability 2024, 16, 11206. [Google Scholar] [CrossRef]
- Chen, C. Untitled Land, Occupational Choice, and Agricultural Productivity. Am. Econ. J. Macroecon. 2017, 9, 91–121. [Google Scholar] [CrossRef]
- Xu, G.; Chen, Y. The influence of market segmentation on energy efficiency in electric power industry: Empirical evidence from China. Energy Rep. 2022, 8, 965–971. [Google Scholar] [CrossRef]
Variable Type | Variable Name | Symbols | Definition |
---|---|---|---|
Dependent variable | Urban industrial land use efficiency | UILUE | The values are calculated using Formula (1) |
Independent variable | Data factor marketization | DFM | If a city establishes a data trading platform, DFM = 1 from the platform’s establishment year onward; otherwise, DFM = 0 |
Mediating variables | Technological innovation | Tech | Number of invention patents granted per capita |
land resource misallocation | Misi | Ratio of a city’s share of industrial land use to its share of industrial output within the overall allocation framework | |
Control variables | Economic development | ED | Nighttime light index |
Industrial structure | IS | Secondary sector value-added/regional GDP | |
Openness to trade | OP | (Import trade + export trade)/regional GDP | |
Population density | PD | Urban population/built-up area | |
Technological investment | TI | Science and technology spending/total fiscal expenditure | |
Marketization of land transactions | ML | Ratio of land transacted via bidding, auction, and listing to total land transfers |
Variables | N | Mean | SD | Min | Max |
---|---|---|---|---|---|
UILUE | 4828 | 0.231 | 0.201 | 0.036 | 2.457 |
DFM | 4828 | 0.024 | 0.153 | 0 | 1 |
Tech | 4534 | 1.234 | 3.838 | 0 | 61.885 |
Misi | 4544 | 1.130 | 1.131 | 0.008 | 17.146 |
ED | 4828 | 7.795 | 9.289 | 0.098 | 60.052 |
IS | 4828 | 0.463 | 0. 113 | 0.107 | 0.910 |
OP | 4828 | 0.192 | 0.327 | 0.0004 | 3.499 |
PD | 4828 | 0.339 | 0.250 | 0.024 | 2.009 |
TI | 4828 | 0.015 | 0.016 | 0.0002 | 0.207 |
ML | 4798 | 0.466 | 0.211 | 0 | 1 |
VIF | UILUE | DFM | ED | IS | OP | PD | TI | ML | |
---|---|---|---|---|---|---|---|---|---|
UILUE | 1.18 | 1.0000 | |||||||
DFM | 1.08 | 0.0612 *** | 1.0000 | ||||||
ED | 2.22 | 0.3633 *** | 0.1809 *** | 1.0000 | |||||
IS | 1.06 | 0.1076 *** | −0.1316 *** | 0.0591 *** | 1.0000 | ||||
OP | 1.59 | 0.2703 *** | 0.0706 *** | 0.5960 *** | 0.0529 *** | 1.0000 | |||
PD | 1.03 | −0.0527 *** | −0.0130 | −0.1185 *** | −0.0438 *** | −0.1318 *** | 1.0000 | ||
TI | 1.65 | 0.1731 *** | 0.2139 *** | 0.6057 *** | 0.0503 *** | 0.4102 *** | −0.1457 *** | 1.0000 | |
ML | 1.04 | −0.0528 *** | −0.0382 *** | 0.0296 ** | 0.1476 *** | −0.0205 | −0.0754 *** | 0.0525 *** | 1.0000 |
Variables | (1) | (2) | (3) |
---|---|---|---|
DFM | 0.0366 *** (0.0128) | 0.0389 *** (0.0126) | 0.0389 ** (0.0153) |
ED | 0.0032 *** (0.0011) | 0.0032 *** (0.0009) | |
IS | 0.4726 *** (0.0544) | 0.4726 *** (0.0422) | |
OP | 0.0310 * (0.0167) | 0.0310 ** (0.0152) | |
PD | 0.0330 ** (0.0134) | 0.0330 ** (0.0153) | |
TI | −0.5936 *** (0.2252) | −0.5936 *** (0.2173) | |
ML | 0.0184 * (0.0109) | 0.0184 * (0.0105) | |
_cons | 0.2306 *** (0.0019) | −0.0306 (0.0280) | −0.0306 (0.0221) |
Individual fixed effect | Yes | Yes | Yes |
Time fixed effect | Yes | Yes | Yes |
N | 4828 | 4798 | 4798 |
Adj. R2 | 0.5838 | 0.6017 | 0.6017 |
Type | Beta | Weight |
---|---|---|
The late-treated group serves as the control group for the early-treated group | −0.036 | 0.016 |
The early-treated group serves as the control group for the late-treated group | 0.009 | 0.005 |
The never-treated group serves as the control group for the treated group | 0.037 | 0.979 |
Radius Matching | Nearest Neighbor Matching | Local Linear Regression Matching | Kernel Matching | |
---|---|---|---|---|
DFM | 0.0242 ** (0.0121) | 0.0316 ** (0.0129) | 0.0316 ** (0.0129) | 0.0260 ** (0.0123) |
Controls | Yes | Yes | Yes | Yes |
Individual fixed effect | Yes | Yes | Yes | Yes |
Time fixed effect | Yes | Yes | Yes | Yes |
N | 4022 | 4103 | 4103 | 4041 |
Adj. R2 | 0.5584 | 0.5665 | 0.5665 | 0.5581 |
Replace the Model with SCM | Change the Measurement Index | Increase High-Dimensional Fixed Effects | Exclude Other Policies | Remove Municipal-Level Samples | |
---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | |
DFM | 0.0480 *** (0.0133) | 0.0762 ** (0.0326) | 0.0360 *** (0.0126) | 0.0321 ** (0.0129) | 0.0317 ** (0.0133) |
Controls | Yes | Yes | Yes | Yes | Yes |
Individual fixed effect | Yes | Yes | Yes | Yes | Yes |
Time fixed effect | Yes | Yes | Yes | Yes | Yes |
N | 4730 | 4798 | 4798 | 4798 | 4730 |
Adj. R2 | 0.5520 | 0.3781 | 0.6072 | 0.6038 | 0.5886 |
Technological Innovation | Land Resource Misallocation | |||
---|---|---|---|---|
Tech | UILUE | Misi | UILUE | |
(1) | (2) | (3) | (4) | |
DFM | 3.2069 *** (0.4584) | 0.0289 ** (0.0132) | −0.1848 *** (0.0457) | 0.0376 *** (0.0127) |
Tech | 0.0037 ** (0.0018) | |||
Misi | −0.0174 *** (0.0044) | |||
Controls | Yes | Yes | Yes | Yes |
Individual fixed effect | Yes | Yes | Yes | Yes |
Time fixed effect | Yes | Yes | Yes | Yes |
N | 4504 | 4504 | 4514 | 4514 |
Adj. R2 | 0.8056 | 0.6174 | 0.7136 | 0.6189 |
Intermediary effect/total effect | 29.29% | 7.88% | ||
Sobel Test | 0.0119 [0.0512] | 0.0032 [0.0045] |
Geographic Location | Market Segmentation | Environmental Regulation | ||||
---|---|---|---|---|---|---|
Eastern | Central-Western | Segmentation-H | Segmentation-L | Regulation-H | Regulation-L | |
DFM | 0.0450 ** | 0.0338 *** | 0.0208 | 0.0536 *** | 0.0605 *** | 0.0064 |
(0.0218) | (0.0127) | (0.0157) | (0.0206) | (0.0189) | (0.0197) | |
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
Individual fixed effect | Yes | Yes | Yes | Yes | Yes | Yes |
Time fixed effect | Yes | Yes | Yes | Yes | Yes | Yes |
N | 1694 | 3104 | 2579 | 2219 | 2398 | 2392 |
Adj. R2 | 0.6851 | 0.5145 | 0.5349 | 0.6560 | 0.6116 | 0.6087 |
Baseline Regression | Radius Matching | Nearest Neighbor Matching | Local Linear Regression Matching | Kernel Matching | SCM Regression | Change UILUE | High-Dimensional Fixed | Exclude Other Policies | Remove Some Sample | |
---|---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | |
DFM | 0.0389 *** (0.0126) | 0.0242 ** (0.0121) | 0.0316 ** (0.0129) | 0.0316 ** (0.0129) | 0.0260 ** (0.0123) | 0.0480 *** (0.0133) | 0.0762 ** (0.0326) | 0.0360 *** (0.0126) | 0.0321 ** (0.0129) | 0.0317 ** (0.0133) |
Controls | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Individual fixed effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Time fixed effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
N | 4828 | 4022 | 4103 | 4103 | 4041 | 4730 | 4798 | 4798 | 4798 | 4730 |
Adj. R2 | 0.5838 | 0.5584 | 0.5665 | 0.5665 | 0.5581 | 0.5520 | 0.3781 | 0.6072 | 0.6038 | 0.5886 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Li, S. Data Factor Marketization and Urban Industrial Land Use Efficiency: Evidence from the Establishment of Data Trading Platforms in China. Sustainability 2025, 17, 2753. https://doi.org/10.3390/su17062753
Chen W, Li S. Data Factor Marketization and Urban Industrial Land Use Efficiency: Evidence from the Establishment of Data Trading Platforms in China. Sustainability. 2025; 17(6):2753. https://doi.org/10.3390/su17062753
Chicago/Turabian StyleChen, Weiwei, and Shunyi Li. 2025. "Data Factor Marketization and Urban Industrial Land Use Efficiency: Evidence from the Establishment of Data Trading Platforms in China" Sustainability 17, no. 6: 2753. https://doi.org/10.3390/su17062753
APA StyleChen, W., & Li, S. (2025). Data Factor Marketization and Urban Industrial Land Use Efficiency: Evidence from the Establishment of Data Trading Platforms in China. Sustainability, 17(6), 2753. https://doi.org/10.3390/su17062753