Highly Enriched Metal Elements in Marine Biological Shells as New Resources for the Sustainable Extraction of Metals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Determination of Metal Element Content
2.3. Determination of the Main Components for Binding the Metal Elements
2.4. Characterization
2.5. Recovery of Metal Elements from Marine Biological Shells
2.6. Statistical Analysis
3. Results and Discussion
3.1. Metal Element Content and Enrichment Ratios
3.2. Functional Components for Enriching Metal Elements
3.3. Recovery of Metal Elements from Marine Biological Shells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Mariñas, B.J.; Mayes, A.M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310. [Google Scholar] [CrossRef]
- Logan, B.E.; Elimelech, M. Membrane-based processes for sustainable power generation using water. Nature 2012, 488, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Fujita, R.; Markham, A.C.; Diaz Diaz, J.E.; Rosa Martinez Garcia, J.; Scarborough, C.; Greenfield, P.; Black, P.; Aguilera, S.E. Revisiting ocean thermal energy conversion. Mar. Policy 2012, 36, 463–465. [Google Scholar] [CrossRef]
- Abehsera, S.; Bentov, S.; Li, X.; Weil, S.; Manor, R.; Sagi, S.; Li, S.; Li, F.; Khalaila, I.; Aflalo, E.D.; et al. Genes encoding putative bicarbonate transporters as a missing molecular link between molt and mineralization in crustaceans. Sci. Rep. 2021, 11, 11722. [Google Scholar] [CrossRef]
- Devaraj, H.; Natarajan, A. Molecular mechanisms regulating molting in a crustacean. FEBS J. 2006, 273, 839–846. [Google Scholar] [CrossRef]
- Fotodimas, I.; Ioannou, Z.; Kanlis, G.; Sarris, D.; Athanasekou, C. Sustainable Management of Shrimp Waste to Produce High-Added Value Carbonaceous Adsorbents. Sustainability 2024, 16, 10305. [Google Scholar] [CrossRef]
- Liao, Y.; Li, W.; Da, B.; Meng, Y.; Chen, D. Research on properties of waste oyster shell mortar: The effect of calcination temperature of oyster shell powder. Case Stud. Constr. Mater. 2023, 19, e02639. [Google Scholar] [CrossRef]
- Zhan, J.; Lu, J.; Wang, D. Review of shell waste reutilization to promote sustainable shellfish aquaculture. Rev. Aquac. 2022, 14, 477–488. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture; FAO: Rome, Italy, 2024. [Google Scholar]
- Jang, K.; Moulay, I.; Lee, D.; Myung, J.; Oh, S.; Kim, S.-H.; Choi, W.Y.; Park, J. Sustainable conversion of oyster shell waste into high-purity calcium carbonate via CO2 mineralization. J. Environ. Chem. Eng. 2025, 13, 115099. [Google Scholar] [CrossRef]
- Dima, J.B.; Sequeiros, C.; Zaritzky, N.E. Hexavalent chromium removal in contaminated water using reticulated chitosan micro/nanoparticles from seafood processing wastes. Chemosphere 2015, 141, 100–111. [Google Scholar] [CrossRef]
- Hou, Y.; Shavandi, A.; Carne, A.; Bekhit, A.; Ng, T.; Randy, C.; Bekhit, A. Marine shells: Potential opportunities for extraction of functional and health-promoting materials. Crit. Rev. Environ. Sci. Technol. 2016, 46, 1047–1116. [Google Scholar] [CrossRef]
- Yan, N.; Chen, X. Sustainability: Don’t waste seafood waste. Nature 2015, 524, 155–157. [Google Scholar] [CrossRef] [PubMed]
- Chao, Z.; Wang, H.; Hu, S.; Wang, M.; Xu, S.; Zhang, W. Permeability and porosity of light-weight concrete with plastic waste aggregate: Experimental study and machine learning modelling. Constr. Build. Mater. 2024, 411, 134465. [Google Scholar] [CrossRef]
- Bonnard, M.; Boury, B.; Parrot, I. Key Insights, Tools, and future prospects on oyster shell end-of-life: A critical analysis of sustainable solutions. Eng. Sci. Technol. 2020, 54, 26–38. [Google Scholar] [CrossRef]
- Siddhartha, T.R.; Kooy, E.; Kashif, M.; Che, C.A.; Ghysels, S.; Wu, D.; Ronsse, F.; Heynderickx, P.M. Evaluation of south korean marine waste resources for hydrochar production: Effect of process variables. Bioresour. Technol. 2024, 410, 131286. [Google Scholar] [CrossRef]
- Yamsomphong, K.; Xu, H.; Yang, P.; Yotpanya, N.; Yokoi, T.; Takahashi, F. Transforming waste into wealth in sustainable shrimp aquaculture: Effective phosphate removal and recovery using shrimp shell-derived adsorbents. Sep. Purif. Technol. 2025, 357, 129982. [Google Scholar] [CrossRef]
- Chen, X.; Yang, H.; Yan, N. Shell biorefinery: Dream or reality? Chem. Eur. J. 2016, 22, 13402–13421. [Google Scholar] [CrossRef]
- Zhang, Z.; Ma, Z.; Song, L.; Farag, M.A. Maximizing crustaceans (shrimp, crab, and lobster) by-products value for optimum valorization practices: A comparative review of their active ingredients, extraction, bioprocesses and applications. J. Adv. Res. 2024, 57, 59–76. [Google Scholar] [CrossRef]
- Shamshina, J.L.; Kelly, A.; Oldham, T.; Rogers, R.D. Agricultural uses of chitin polymers. Environ. Chem. Lett. 2020, 18, 53–60. [Google Scholar] [CrossRef]
- Hülsey, M.J. Shell biorefinery: A comprehensive introduction. Green Energy Environ. 2018, 3, 318–327. [Google Scholar] [CrossRef]
- Mathew, G.M.; Mathew, D.C.; Sukumaran, R.K.; Sindhu, R.; Huang, C.-C.; Binod, P.; Sirohi, R.; Kim, S.-H.; Pandey, A. Sustainable and eco-friendly strategies for shrimp shell valorization. Environ. Pollut. 2020, 267, 115656. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Sun, X. Effects of bean dregs and crab shell powder additives on the composting of green waste. Bioresour. Technol. 2018, 260, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Antu, M.A.; Ali, M.S.; Ferdous, M.J.; Ahmed, M.T.; Ali, M.R.; Suraiya, S.; Pangestuti, R.; Haq, M. Recovery and characterization of calcium-rich mineral powders obtained from fish and shrimp waste: A smart valorization of waste to treasure. Sustainability 2024, 16, 6045. [Google Scholar] [CrossRef]
- Venugopal, V. In Valorization of Seafood Processing Discards: Bioconversion and Bio-Refinery Approaches. Front. Sustain. Food Syst. 2021, 5, 611835. [Google Scholar] [CrossRef]
- ÁLvarez, E.; FernÁNdez-Sanjurjo, M.J.; Seco, N.; NÚÑEz, A. Use of Mussel Shells as a Soil Amendment: Effects on Bulk and Rhizosphere Soil and Pasture Production. Pedosphere 2012, 22, 152–164. [Google Scholar] [CrossRef]
- Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303. [Google Scholar] [CrossRef]
- Lampert, A. Over-exploitation of natural resources is followed by inevitable declines in economic growth and discount rate. Nat. Commun. 2019, 10, 1419. [Google Scholar] [CrossRef]
- Jowitt, S.M.; Mudd, G.M.; Thompson, J.F.H. Future availability of non-renewable metal resources and the influence of environmental, social, and governance conflicts on metal production. Commun. Earth Environ. 2020, 1, 13. [Google Scholar] [CrossRef]
- Ali, S.H.; Giurco, D.; Arndt, N.; Nickless, E.; Brown, G.; Demetriades, A.; Durrheim, R.; Enriquez, M.A.; Kinnaird, J.; Littleboy, A.; et al. Mineral supply for sustainable development requires resource governance. Nature 2017, 543, 367–372. [Google Scholar] [CrossRef]
- Diallo, M.S.; Kotte, M.R.; Cho, M. Mining Critical Metals and Elements from Seawater: Opportunities and Challenges. Environ. Sci. Technol. 2015, 49, 9390–9399. [Google Scholar] [CrossRef]
- Lu, M.; Zhao, Y. Mineral resource extraction and environmental sustainability for green recovery. Resour. Policy 2024, 90, 104616. [Google Scholar] [CrossRef]
- Henckens, T. Scarce mineral resources: Extraction, consumption and limits of sustainability. Resour. Conserv. Recycl. 2021, 169, 105511. [Google Scholar] [CrossRef]
- Fu, W.; Ji, G.; Chen, H.; Yang, S.; Guo, B.; Yang, H.; Huang, Z. Molybdenum sulphide modified chelating resin for toxic metal adsorption from acid mine wastewater. Sep. Purif. Technol. 2020, 251, 117407. [Google Scholar] [CrossRef]
- Masindi, V.; Fosso-Kankeu, E.; Mamakoa, E.; Nkambule, T.T.I.; Mamba, B.B.; Naushad, M.; Pandey, S. Emerging remedia-tion potentiality of struvite developed from municipal wastewater for the treatment of acid mine drainage. Environ. Res. 2022, 210, 112944. [Google Scholar] [CrossRef]
- Feng, S.; Feng, L.; Wang, M.; Yuan, Y.; Yu, Q.; Feng, T.; Cao, M.; Wang, N.; Peng, Q. Highly efficient extraction of uranium from seawater by natural marine crab carapace. Chem. Eng. J. 2022, 430, 133038. [Google Scholar] [CrossRef]
- Doan, C.T.; Tran, T.N.; Nguyen, V.B.; Nguyen, A.D.; Wang, S.-L. Reclamation of Marine Chitinous Materials for Chitosanase Production via Microbial Conversion by Paenibacillus macerans. Mar. Drugs 2018, 16, 429. [Google Scholar] [CrossRef]
- Tolaimate, A.; Desbrieres, J.; Rhazi, M.; Alagui, A. Contribution to the preparation of chitins and chitosans with controlled physico-chemical properties. Polymer 2003, 44, 7939–7952. [Google Scholar] [CrossRef]
- Iwase, K.; Harunari, Y.; Teramoto, M.; Mori, K. Crystal structure, microstructure, and mechanical properties of heat-treated oyster shells. J. Mech. Behav. Biomed. Mater. 2023, 147, 106107. [Google Scholar] [CrossRef] [PubMed]
- Gbenebor, O.; Odili, C.; Lawal, G.; Adeosun, S.; Unilorin, N. Crab (Brachyura) shell Acid and Alkali Treatments- Influence on Thermal and Structural Properties of Isolated Acetamide-Rich Natural Polymer. Niger. J. Technol. Dev. 2023, 20, 103. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, P.; Huang, H.; Lei, L.; Galindo Torres, S.A.; Li, L. Internal hydrodynamics within the skeleton of Acropora pulchra coral. iScience 2025, 28, 111742. [Google Scholar] [CrossRef]
- Qin, K.; Zheng, Z.; Wang, J.; Pan, H.; Tang, R. Biomineralization strategy: From material manufacturing to biological regulation. Giant 2024, 19, 100317. [Google Scholar] [CrossRef]
- Farfan, G.A.; Apprill, A.; Cohen, A.; DeCarlo, T.M.; Post, J.E.; Waller, R.G.; Hansel, C.M. Crystallographic and chemical signatures in coral skeletal aragonite. Coral Reefs 2022, 41, 19–34. [Google Scholar] [CrossRef]
- Chao, Z.; Zhou, J.; Shi, D.; Zheng, J. Particle size effect on the mechanical behaviour of coral sand—Geogrid interfaces. Geosynth. Int. 2025, 1–44. [Google Scholar] [CrossRef]
- Namikawa, Y.; Suzuki, M. Atmospheric CO2 Sequestration in Seawater Enhanced by Molluscan Shell Powders. Environ. Sci. Technol. 2024, 58, 2404–2412. [Google Scholar] [CrossRef]
- Garai, M.; Yavuz, C.T. Radioactive Strontium Removal from Seawater by a MOF via Two-Step Ion Exchange. Chem 2019, 5, 750–752. [Google Scholar] [CrossRef]
- Huang, J.; Dai, X.; Chen, X.; Ali, I.; Chen, H.; Gou, J.; Zhuo, C.; Huang, M.; Zhu, B.; Tang, Y.; et al. Combined forage grass-microbial for remediation of strontium-contaminated soil. J. Hazard. Mater. 2023, 450, 131013. [Google Scholar] [CrossRef] [PubMed]
- Kostial, K.; Vojvodic, S.; Comar, C.L. Effects of Dietary Levels of Phosphorus and Calcium on the Comparative Behaviour of Strontium and Calcium. Nature 1965, 208, 1110–1111. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, L.; Dai, X.; Zhu, L.; Xiao, C.; Xu, L.; Zhang, Z.; Alekseev, E.V.; Wang, Y.; Zhang, C.; et al. Distinctive Two-Step Intercalation of Sr2+ into a Coordination Polymer with Record High 90Sr Uptake Capabilities. Chem 2019, 5, 977–994. [Google Scholar] [CrossRef]
- O’Donnell, A.J.; Lytle, D.A.; Harmon, S.; Vu, K.; Chait, H.; Dionysiou, D.D. Removal of strontium from drinking water by conventional treatment and lime softening in bench-scale studies. Water Res. 2016, 103, 319–333. [Google Scholar] [CrossRef]
- Yang, H.-M.; Jeon, H.; Lee, Y.; Choi, M. Sulfur-modified zeolite A as a low-cost strontium remover with improved selectivity for radioactive strontium. Chemosphere 2022, 299, 134309. [Google Scholar] [CrossRef]
- Feng, L.; Chen, X.; Cao, M.; Zhao, S.; Wang, H.; Chen, D.; Ma, Y.; Liu, T.; Wang, N.; Yuan, Y. Decorating Channel Walls in Metal–Organic Frameworks with Crown Ethers for Efficient and Selective Separation of Radioactive Strontium (II). Angew. Chem. Int. Ed. 2023, 62, e202312894. [Google Scholar] [CrossRef] [PubMed]
- Parekh, P.P.; Möller, P.; Dulski, P.; Bausch, W.M. Distribution of trace elements between carbonate and non-carbonate phases of limestone. Earth Planet. Sci. Lett. 1977, 34, 39–50. [Google Scholar] [CrossRef]
- Terakado, Y.; Masuda, A. The coprecipitation of rare-earth elements with calcite and aragonite. Chem. Geol. 1988, 69, 103–110. [Google Scholar] [CrossRef]
- Zhong, S.; Mucci, A. Partitioning of rare earth elements (REEs) between calcite and seawater solutions at 25 °C and 1 atm, and high dissolved REE concentrations. Geochim. Cosmochim. Acta 1995, 59, 443–453. [Google Scholar] [CrossRef]
- Terribili, L.; Rateau, R.; Szucs, A.M.; Maddin, M.; Rodriguez-Blanco, J.D. Impact of Rare Earth Elements on CaCO3 Crystallization: Insights into Kinetics, Mechanisms, and Crystal Morphology. Cryst. Growth Des. 2024, 24, 632–645. [Google Scholar] [CrossRef]
- Biscéré, T.; Ferrier-Pagès, C.; Gilbert, A.; Pichler, T.; Houlbrèque, F. Evidence for mitigation of coral bleaching by manganese. Sci. Rep. 2018, 8, 16789. [Google Scholar] [CrossRef]
- Akiva, A.; Neder, M.; Kahil, K.; Gavriel, R.; Pinkas, I.; Goobes, G.; Mass, T. Minerals in the pre-settled coral Stylophora pistillata crystallize via protein and ion changes. Nat. Commun. 2018, 9, 1880. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, P.U.P.A.; Bergmann, K.D.; Boekelheide, N.; Tambutté, S.; Mass, T.; Marin, F.; Adkins, J.F.; Erez, J.; Gilbert, B.; Knutson, V.; et al. Biomineralization: Integrating mechanism and evolutionary history. Sci. Adv. 2022, 8, eabl9653. [Google Scholar] [CrossRef]
- Niu, Y.-Q.; Liu, J.-H.; Aymonier, C.; Fermani, S.; Kralj, D.; Falini, G.; Zhou, C.-H. Calcium carbonate: Controlled synthesis, surface functionalization, and nanostructured materials. Chem. Soc. Rev. 2022, 51, 7883–7943. [Google Scholar] [CrossRef]
- Anthoni, J. Oceanic Abundance of Elements. 2006. Available online: www.seafriends.org.nz/oceano/seawater.htm (accessed on 3 February 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, D.; Cao, X.; Tian, X.; Peng, Q.; Zhang, J.; Zhang, J.; Yuan, Y.; Wang, N. Highly Enriched Metal Elements in Marine Biological Shells as New Resources for the Sustainable Extraction of Metals. Sustainability 2025, 17, 2683. https://doi.org/10.3390/su17062683
Chen D, Cao X, Tian X, Peng Q, Zhang J, Zhang J, Yuan Y, Wang N. Highly Enriched Metal Elements in Marine Biological Shells as New Resources for the Sustainable Extraction of Metals. Sustainability. 2025; 17(6):2683. https://doi.org/10.3390/su17062683
Chicago/Turabian StyleChen, Dan, Xuewen Cao, Xuefeng Tian, Qin Peng, Jun Zhang, Jiacheng Zhang, Yihui Yuan, and Ning Wang. 2025. "Highly Enriched Metal Elements in Marine Biological Shells as New Resources for the Sustainable Extraction of Metals" Sustainability 17, no. 6: 2683. https://doi.org/10.3390/su17062683
APA StyleChen, D., Cao, X., Tian, X., Peng, Q., Zhang, J., Zhang, J., Yuan, Y., & Wang, N. (2025). Highly Enriched Metal Elements in Marine Biological Shells as New Resources for the Sustainable Extraction of Metals. Sustainability, 17(6), 2683. https://doi.org/10.3390/su17062683