Identification, Attribution, and Mitigation of Agricultural–Ecological Functional Conflicts in Urban Agglomerations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area and Basic Data
2.1.1. Overview of the Study Area
2.1.2. Data Sources and Preprocessing
2.2. Research Framework
2.3. Construction of the Functional System
2.3.1. Construction of the Multi-Indicator Evaluation System
2.3.2. Standardization, Classification, and Weight Calculation of Indicators
2.3.3. Calculation of Functional Evaluation Values and Intensity Classification
2.4. Construction of the Functional Conflict Identification Model
2.4.1. Types of Functional Conflicts
2.4.2. Exploratory Spatial Data Analysis (ESDA)
2.5. Identification of Key Influencing Factors
3. Results
3.1. Spatiotemporal Variation Characteristics of Functions
3.2. Functional Conflict Analysis
3.2.1. Spatiotemporal Variation in Function Conflicts
3.2.2. Spatial Autocorrelation of Functional Conflicts
3.3. Key Influencing Factors of Functional Conflicts
3.3.1. Selection of Influencing Factors
3.3.2. Identification and Analysis of Key Influencing Factors
3.3.3. Spatial Conflict Mechanism
3.4. Spatial Conflict Control Pathway
3.4.1. Precise Regulation: Purpose-Driven Control Based on Functional Zoning
3.4.2. Zoning Guidance: Promoting the Tiered Optimization of Agricultural and Ecological Functions
3.4.3. Functional Synergy: Establishing Dynamic Monitoring and Long-Term Governance Mechanisms
4. Discussion
4.1. Identification of Agricultural and Ecological Functions
4.2. Changes in Agricultural and Ecological Function Conflicts and Their Influencing Factors
4.3. Changes in Agricultural and Ecological Function Conflicts and Their Driving Mechanisms
4.4. Policy Implications for Sustainable Territorial Space Regulation
4.5. Limitations and Future Research Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zou, Y.; Meng, J.; Zhu, L.; Han, Z.; Ma, Y. Characterizing land use transition in China by accounting for the conflicts underlying land use structure and function. J. Environ. Manag. 2024, 349, 119311. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, P.; Tian, Y.; Chen, H.; Chen, Y. Exploring the impact of integrated spatial function zones on land use dynamics and ecosystem services tradeoffs based on a future land use simulation (FLUS) model. Ecol. Indic. 2023, 150, 110246. [Google Scholar] [CrossRef]
- Li, S.; Zhu, C.; Lin, Y.; Dong, B.; Chen, B.; Si, B.; Li, Y.; Deng, X.; Gan, M.; Zhang, J.; et al. Conflicts between agricultural and ecological functions and their driving mechanisms in agroforestry ecotone areas from the perspective of land use functions. J. Clean. Prod. 2021, 317, 128453. [Google Scholar] [CrossRef]
- Delgado, L.E.; Marín, V.H. Ecosystem services and ecosystem degradation: Environmentalist’s expectation? Ecosyst. Serv. 2020, 45, 101177. [Google Scholar] [CrossRef]
- Zong, S.; Hu, Y.; Bai, Y.; Guo, Z.; Wang, J. Analysis of the distribution characteristics and driving factors of land use conflict potentials in the Bohai Rim coastal zone. Ocean Coast. Manag. 2022, 226, 106260. [Google Scholar] [CrossRef]
- Chen, L.; Cai, H. Study on land use conflict identification and territorial spatial zoning control in Rao River Basin, Jiangxi Province, China. Ecol. Indic. 2022, 145, 109594. [Google Scholar] [CrossRef]
- Jing, W.; Yu, K.; Wu, L.; Luo, P. Potential Land Use Conflict Identification Based on Improved Multi-Objective Suitability Evaluation. Remote Sens. 2021, 13, 2416. [Google Scholar] [CrossRef]
- Valtiala, J.; Niskanen, O.; Torvinen, M.; Riekkinen, K.; Suokannas, A. The relationship between agricultural land parcel size and cultivation costs. Land Use Policy 2023, 131, 106728. [Google Scholar] [CrossRef]
- Tran, D.X.; Pla, F.; Latorre-Carmona, P.; Myint, S.W.; Caetano, M.; Kieu, H.V. Characterizing the relationship between land use land cover change and land surface temperature. ISPRS J. Photogramm. Remote Sens. 2017, 124, 119–132. [Google Scholar] [CrossRef]
- Xue, M.; Wang, H.; Wei, Y.; Ma, C.; Yin, Y. Spatial Characteristics of Land Use Multifunctionality and Their Trade-Off/Synergy in Urumqi, China: Implication for Land Space Zoning Management. Sustainability 2022, 14, 9285. [Google Scholar] [CrossRef]
- Liu, J.; Jin, X.; Xu, W.; Fan, Y.; Ren, J.; Zhang, X.; Zhou, Y. Spatial coupling differentiation and development zoning trade-off of land space utilization efficiency in eastern China. Land Use Policy 2019, 85, 310–327. [Google Scholar] [CrossRef]
- Schneibel, A.; Stellmes, M.; Röder, A.; Finckh, M.; Revermann, R.; Frantz, D.; Hill, J. Evaluating the trade-off between food and timber resulting from the conversion of Miombo forests to agricultural land in Angola using multi-temporal Landsat data. Sci. Total Environ. 2016, 548–549, 390–401. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, Y. Synergy/trade-offs and differential optimization of production, living, and ecological functions in the Yangtze River Economic Belt, China. Ecol. Indic. 2023, 147, 109925. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Wang, F.; Yang, W. Spatiotemporal Landscape Pattern Analyses Enhanced by an Integrated Index: A Study of the Changbai Mountain National Nature Reserve. Remote Sens. 2023, 15, 1760. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Li, X.; Cao, S. An Analysis of Land Use Conflicts and Strategies in the Harbin–Changchun Urban Agglomeration Based on the Production–Ecological–Living Space Theory and Patch-Generating Land Use Simulation. Land 2025, 14, 111. [Google Scholar] [CrossRef]
- Mamanis, G.; Vrahnakis, M.; Chouvardas, D.; Nasiakou, S.; Kleftoyanni, V. Land Use Demands for the CLUE-S Spatiotemporal Model in an Agroforestry Perspective. Land 2021, 10, 1097. [Google Scholar] [CrossRef]
- Wei, Z.; Bin, G.; Hao, S.; Zijun, L. Study on multi-scenarios regulating strategy of land use conflict in urban agglomerations under the perspective of “three-zone space”: A case study of Harbin-Changchun urban agglomerations, China. Front. Environ. Sci. 2024, 11, 1288933. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, F.; Li, R.; Yu, H.; Chen, Y.; Yu, H. Comprehensive Ecological Functional Zoning: A Data-Driven Approach for Sustainable Land Use and Environmental Management—A Case Study in Shenzhen, China. Land 2024, 13, 1413. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, B.; Jiang, W.; Qiu, H. Spatial and temporal variation and prediction of ecological carrying capacity based on machine learning and PLUS model. Ecol. Indic. 2023, 154, 110611. [Google Scholar] [CrossRef]
- Gossner, M.M.; Lewinsohn, T.M.; Kahl, T.; Grassein, F.; Boch, S.; Prati, D.; Birkhofer, K.; Renner, S.; Sikorski, J.; Wubet, T.; et al. Land-use intensification causes multitrophic homogenization of grassland communities. Nature 2016, 540, 266–269. [Google Scholar] [CrossRef]
- Bekele, A.E.; Drabik, D.; Dries, L.; Heijman, W. Large-scale land investments and land-use conflicts in the agro-pastoral areas of Ethiopia. Land Use Policy 2022, 119, 106166. [Google Scholar] [CrossRef]
- Izakovičová, Z.; Miklós, L.; Miklósová, V. Integrative Assessment of Land Use Conflicts. Sustainability 2018, 10, 3270. [Google Scholar] [CrossRef]
- Wang, H.; Qin, F.; Xu, C.; Li, B.; Guo, L.; Wang, Z. Evaluating the suitability of urban development land with a Geodetector. Ecol. Indic. 2021, 123, 107339. [Google Scholar] [CrossRef]
- Cao, X.; Liu, Y.; Li, T.; Liao, W. Analysis of Spatial Pattern Evolution and Influencing Factors of Regional Land Use Efficiency in China Based on ESDA-GWR. Sci. Rep. 2019, 9, 520. [Google Scholar] [CrossRef]
- Sales, M.H.R.; de Bruin, S.; Souza, C.; Herold, M. Land Use and Land Cover Area Estimates from Class Membership Probability of a Random Forest Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4402711. [Google Scholar] [CrossRef]
- Shao, Y.; Xiao, Y.; Kou, X.; Sang, W. Sustainable land use scenarios generated by optimizing ecosystem distribution based on temporal and spatial patterns of ecosystem services in the southern China hilly region. Ecol. Inform. 2023, 78, 102275. [Google Scholar] [CrossRef]
- Rigo, R.; Houet, T. Do Land Use and Land Cover Scenarios Support More Integrated Land Use Management? Land 2023, 12, 1414. [Google Scholar] [CrossRef]
- Zhang, L.; Kuang, B.; Yang, B. Sustainable Land Use and Management. Sustainability 2023, 15, 16259. [Google Scholar] [CrossRef]
- Wu, F.; Wang, Z. Assessing the impact of urban land expansion on ecosystem carbon storage: A case study of the Changzhutan metropolitan area, China. Ecol. Indic. 2023, 154, 110688. [Google Scholar] [CrossRef]
- Ouyang, X.; Xu, J.; Li, J.; Wei, X.; Li, Y. Land space optimization of urban-agriculture-ecological functions in the Changsha-Zhuzhou-Xiangtan Urban Agglomeration, China. Land Use Policy 2022, 117, 106112. [Google Scholar] [CrossRef]
- GB/T 21010-2017; National Standardization Technical Committee for Land and Resources (SAC/TC 93). Classification of Land Use Current Status. China Standards Press: Beijing, China, 2017.
- Wang, L.; Xiong, C.; Tian, Y.; Zhou, B. Evaluation of the heterogeneity, spatiotemporal evolution, and zoning control of production-living-ecological space functions in China. Trans. Chin. Soc. Agric. Eng. 2024, 40, 265–275. [Google Scholar]
- Dong, G.; Zhou, Q.; Sun, C.; Wang, Y.; Ke, Q. Identification of land use conflicts in the Guangdong-Hong Kong-Macao Greater Bay Area based on “multi-suitability-scarcity-diversity”. Trans. Chin. Soc. Agric. Eng. 2023, 39, 245–255. [Google Scholar]
- Valle, D.; Izbicki, R.; Leite, R.V. Quantifying uncertainty in land-use land-cover classification using conformal statistics. Remote Sens. Environ. 2023, 295, 113682. [Google Scholar] [CrossRef]
- Jia, Y.; Liu, Y.; Zhang, S. Evaluation of agricultural ecosystem service value in arid and semiarid regions of Northwest China based on the equivalent factor method. Environ. Process. 2021, 8, 713–727. [Google Scholar] [CrossRef]
- Levers, C.; Romero-Muñoz, A.; Baumann, M.; De Marzo, T.; Fernández, P.D.; Gasparri, N.I.; Gavier-Pizarro, G.I.; le Polain de Waroux, Y.; Piquer-Rodríguez, M.; Semper-Pascual, A.; et al. Agricultural expansion and the ecological marginalization of forest-dependent people. Proc. Natl. Acad. Sci. USA 2021, 118, e2100436118. [Google Scholar] [CrossRef]
- Wu, G.; Riaz, N.; Dong, R. China’s agricultural ecological efficiency and spatial spillover effect. Environ. Dev. Sustain. 2023, 25, 3073–3098. [Google Scholar] [CrossRef]
- Wang, D.; Fu, J.; Xie, X.; Ding, F.; Jiang, D. Spatiotemporal evolution of urban-agricultural-ecological space in China and its driving mechanism. J. Clean. Prod. 2022, 371, 133684. [Google Scholar] [CrossRef]
- Li, W.; Chen, Z.; Li, M.; Qiu, X.; Zhao, Q.; Chen, Y. Spatial conflict identification and scenario coordination for construction-agricultural-ecological land use. Environ. Dev. Sustain. 2023, 27, 1933–1961. [Google Scholar] [CrossRef]
- Gupta, U.; Sharma, R. Analysis of criminal spatial events in India using exploratory data analysis and regression. Comput. Electr. Eng. 2023, 109, 108761. [Google Scholar] [CrossRef]
- Ren, Y.; Zhu, X.; Bai, K.; Zhang, R. A New Random Forest Ensemble of Intuitionistic Fuzzy Decision Trees. IEEE Trans. Fuzzy Syst. 2023, 31, 1729–1741. [Google Scholar] [CrossRef]
- Wang, W.; Li, B.; Su, F.; Jiang, Z.; Chen, S. Identifying Ecological Security Patterns Meeting Future Urban Expansion in Changsha–Zhuzhou–Xiangtan Urban Agglomeration, China. Remote Sens. 2023, 15, 3141. [Google Scholar] [CrossRef]
- Chen, W.; Zeng, C.; Ding, C.; Zhu, Y.; Sun, Y. Study on Spatio-Temporal Evolution Law and Driving Mechanism of PM2.5 Concentration in Changsha–Zhuzhou–Xiangtan Urban Agglomeration. Sustainability 2022, 14, 14967. [Google Scholar] [CrossRef]
- Hong, Y.; Yu, H.; Lu, Y.; Peng, L. Balancing low-carbon and eco-friendly development: Coordinated development strategy for land use carbon emission efficiency and land ecological security. Environ. Sci. Pollut. Res. 2024, 31, 9495–9511. [Google Scholar] [CrossRef]
- McMahon, J.; Turner, R.; Smart, J.; Shortle, J.; Ramsay, I.; Correa, D.; Chamberlain, D.; Mao, Y.; Warne, M. Offset integrity reduces environmental risk: Using lessons from biodiversity and carbon offsetting to inform water quality offsetting in the catchments of the Great Barrier Reef. Sci. Total Environ. 2024, 951, 175786. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Huang, C.; Wang, Z.; Wu, J.; Zeng, Z.; Mu, J.; Yang, W. Optimization of production-living-ecological space pattern based on the DTTD-MCR-PLUS model: A case study of Changsha, China. Acta Ecol. Sin. 2022, 42, 9957–9970. (In Chinese) [Google Scholar]
- Tang, Y.; Gao, C.; Wu, X. Urban Ecological Corridor Network Construction: An Integration of the Least Cost Path Model and the InVEST Model. ISPRS Int. J. Geo-Inf. 2020, 9, 33. [Google Scholar] [CrossRef]
- Heckert, M.; Rosan, C.D. Developing a green infrastructure equity index to promote equity planning. Urban For. Urban Green. 2016, 19, 263–270. [Google Scholar] [CrossRef]
- Wang, X.; Cui, B.; Chen, Y.; Feng, T.; Li, Z.; Fang, G. Dynamic changes in water resources and comprehensive assessment of water resource utilization efficiency in the Aral Sea basin, Central Asia. J. Environ. Manag. 2024, 353, 120198. [Google Scholar] [CrossRef]
- Duan, W.; Li, C.; Zhang, P.; Chang, Q. Game modeling and policy research on the system dynamics-based tripartite evolution for government environmental regulation. Clust. Comput. 2016, 19, 2061–2074. [Google Scholar] [CrossRef]
Data Name | Description | Data Source |
---|---|---|
Land Use | Multi-period Land Use Remote Sensing Monitoring Dataset of China (CNLUCC) | https://www.resdc.cn/ (accessed on 10 January 2025) |
Surface Soil Moisture | Daily All-Weather Surface Soil Moisture Dataset of China at 1 km Resolution | https://data.tpdc.ac.cn/ (accessed on 10 January 2025) |
CO2 Emissions | 1 km resolution | https://www.cger.nies.go.jp/en/ (accessed on 10 January 2025) |
DEM | SRTM1-Arc Second Global | https://earthexplorer.usgs.gov/ (accessed on 10 January 2025) |
Annual Mean Temperature | Annual Mean Temperature Dataset of China at 1 km Resolution | http://www.geodata.cn/ (accessed on 10 January 2025) |
Annual Precipitation | Annual Mean Precipitation Dataset of China at 1 km Resolution | |
Biodiversity | Ecosystem Services Dataset of China | https://bio-one.org.cn/ (accessed on 10 January 2025) |
Soil Conservation | ||
Water Conservation | ||
Fractional Vegetation Cover (FVC) | Annual Vegetation Coverage Dataset of China at 30 m Resolution | http://www.gis5g.com (accessed on 10 January 2025) |
Net Primary Productivity (NPP) | Monthly Net Primary Productivity (NPP) Dataset of China at 1 km Resolution | |
Normalized Difference Vegetation Index (NDVI) | Maximum Annual NDVI Dataset of China at 30 m Resolution | |
Annual Gross Primary Productivity of Terrestrial Ecosystems (AGPP) | Annual Gross Primary Productivity (AGPP) Dataset of China at 30 arcsecond Resolution | https://www.scidb.cn/en/detail?dataSetId=b496b208f51e44fcaf326e8b0f792c34 (accessed on 10 January 2025) |
Socioeconomic Data | Statistical Yearbooks of Hunan Province, Chinese Urban Statistics, County-Level Statistical Yearbooks and Reports | http://tjj.hunan.gov.cn/ (accessed on 10 January 2025) https://www.stats.gov.cn/ (accessed on 10 January 2025) |
Goal Layer | Criterion Layer | Indicator Layer | Unit | Classification and Scoring | Weight | Attribute | ||||
---|---|---|---|---|---|---|---|---|---|---|
100 | 80 | 60 | 40 | 20 | ||||||
Agricultural Function | Agricultural Baseline | Current Land Use | / | 11, 12 | 31, 32, 33 | 41, 42, 43, 44, 45, 46 | 21, 22, 23, 24 | 51, 52, 53, 61, 62, 63, 64, 65 | 0.014 | + |
Surface Soil Moisture | cm3/cm3 | >0.38 | 0.36–0.38 | 0.28–0.36 | 0.24–0.28 | <0.24 | 0.034 | + | ||
Size of Arable Land Patches | km2 | >384.2 | 148.9–384.2 | 62.6–148.9 | 18.6–62.6 | <18.6 | 0.194 | + | ||
Agricultural Regulation | Effective Irrigation Area | kha | >63.3 | 34.1–63.3 | 12.0–34.1 | 3.0–12.0 | <3.0 | 0.205 | + | |
NPP [32] | gC/m2/a | >11,667 | 10,701–11,667 | 6514–10,701 | 4579–6514 | <4579 | 0.128 | + | ||
NDVI | / | >0.74 | 0.71–0.74 | 0.66–0.71 | 0.59–0.66 | >0.59 | 0.016 | + | ||
Agricultural Production | Total Power of Agricultural Machinery | MW | >909.1 | 600.4–909.1 | 262.9–600.4 | 71.9–262.9 | <71.9 | 0.228 | + | |
Proportion of Agricultural Output Value | % | >19.44 | 11.47–19.44 | 6.67–11.47 | 3.67–6.67 | <3.67 | 0.144 | + | ||
Crop Yield per Unit Area | k/ha | >4771 | 4033–4771 | 2653–4033 | 1319–2653 | <1319 | 0.038 | + |
Goal Layer | Criterion Layer | Indicator Layer | Unit | Classification and Scoring | Weight | Attribute | ||||
---|---|---|---|---|---|---|---|---|---|---|
100 | 80 | 60 | 40 | 20 | ||||||
Ecological Function | Ecological Baseline | Current Land Use | / | 21, 22, 23, 24 | 31, 32, 33 | 41, 42, 43, 44, 45, 46, 99 | 11, 12 | 61, 62, 63, 64, 65, 66, 67, 51, 52, 53 | 0.029 | + |
Size of Forest and Grassland Patches [33] | km2 | >1410 | 667–1410 | 372–667 | 161–372 | <161 | 0.399 | + | ||
Size of Wetland Water Body Patches [33] | km2 | >77.8 | 35.6–77.8 | 11.3–35.6 | 3.1–11.3 | <3.1 | 0.180 | + | ||
Ecological Purification | AGPP | gC/m2/a | >1812 | 1596–1812 | 1215–1596 | 299–1215 | <299 | 0.053 | + | |
CO2 Emissions | t × 104 | <213 | 213–393 | 393–543 | 543–894 | >894 | 0.024 | − | ||
FVC | % | >80 | 60–80 | 45–60 | 30–45 | <30 | 0.027 | + | ||
Ecological Stability Maintenance | Biodiversity, | /×103 | >28.8 | 12.1–28.8 | 8.9–12.1 | 3.6–8.9 | <3.6 | 0.030 | + | |
Hydrological Regulation | /×105 | >10.07 | 9.55–10.07 | 0.54–0.95 | 0.28–0.54 | <0.28 | 0.143 | + | ||
Soil Conservation | SC/t/km2 × 103 | >71.1 | 48.9–71.1 | 28.1–48.9 | 11.3–28.1 | <11.3 | 0.115 | + |
Types of Territorial Spatial Functions | Classification Breakpoints | Natural Breakpoint Value | Modified Value | Function Classification | ||
---|---|---|---|---|---|---|
2000 | 2010 | 2020 | ||||
Agricultural Function | First breakpoint value | 14.47 | 13.70 | 13.07 | 14 | Weak function |
Second breakpoint value | 19.01 | 19.16 | 18.6 | 19 | Moderately weak function | |
Third breakpoint value | 23.03 | 23.52 | 23.74 | 23 | Moderate function | |
Fourth breakpoint value | 27.63 | 27.28 | 26.54 | 26 | Moderate strong function | |
Final value | 32.38 | 32.78 | 31.62 | / | Strong function | |
Ecological Function | First breakpoint value | 11.94 | 11.57 | 11.60 | 12 | Weak function |
Second breakpoint value | 15.85 | 15.26 | 14.96 | 15 | Moderately weak function | |
Third breakpoint value | 21.29 | 21.26 | 20.73 | 21 | Moderate function | |
Fourth breakpoint value | 28.74 | 28.61 | 28.49 | 29 | Moderate strong function | |
First breakpoint value | 43.64 | 38.84 | 38.24 | / | Strong function |
Types of Conflict Zones | “Agriculture–Ecology” Function Combination | Conflict Explanation |
---|---|---|
No conflict | AF1-EF1 | Both agricultural and ecological functions are weak, and no conflict will arise. |
Weak conflict | AF1-EF2, AF2-EF1, AF1-EF3, AF2-EF2, AF3-EF1 | There is a conflict, but it is not significant. |
Moderate conflict | AF1-EF4, AF2-EF3, AF3-EF2, AF4-EF1 | The conflict is gradually emerging but has not reached a significant level. |
Moderately Strong conflict | AF1-EF5, AF2-EF4, AF3-EF3, AF4-EF2, AF5-EF1 | The conflict is significant, with both agricultural and ecological function intensities increasing. |
Strong conflict | AF2-EF5, AF3-EF4, AF4-EF3, AF5-EF2, AF3-EF5, AF4-EF4, AF5-EF3, AF4-EF5, AF5-EF4, AF5-EF5 | Functions are extremely strong, and the conflict is intense. |
Types of Conflict Zones | Percentage Change | ||
---|---|---|---|
2000–2010 | 2010–2020 | 2000–2020 | |
No conflict | −1.21% | −6.52% | −7.73% |
Weak conflict | −0.84% | 2.20% | 1.36% |
Moderate conflict | −0.67% | 3.78% | 3.11% |
Moderately strong conflict | 1.84% | −1.25% | 0.59% |
Strong conflict | 0.88% | 1.80% | 2.68% |
Standard Scale | Influencing Factors | Feature Selection | Unit | Code |
---|---|---|---|---|
Natural | Natural Environment | Elevation | m | X1 |
Slope | ° | X2 | ||
Annual Average Temperature | °C | X3 | ||
Annual Average Precipitation | mm | X4 | ||
Anthropogenic | Socioeconomic | Population Density | persons/km2 | X5 |
General Public Budget Expenditure | CNY Ten thousand | X6 | ||
Total Retail Sales of Consumer Goods | CNY Ten thousand | X7 | ||
Land Use | Land Economic Density | CNY Ten thousand/km2 | X8 | |
Crop Sown Area | kha | X9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Zhao, X.; Liu, F. Identification, Attribution, and Mitigation of Agricultural–Ecological Functional Conflicts in Urban Agglomerations. Sustainability 2025, 17, 2565. https://doi.org/10.3390/su17062565
Wang M, Zhao X, Liu F. Identification, Attribution, and Mitigation of Agricultural–Ecological Functional Conflicts in Urban Agglomerations. Sustainability. 2025; 17(6):2565. https://doi.org/10.3390/su17062565
Chicago/Turabian StyleWang, Mengjie, Xianchao Zhao, and Fanmin Liu. 2025. "Identification, Attribution, and Mitigation of Agricultural–Ecological Functional Conflicts in Urban Agglomerations" Sustainability 17, no. 6: 2565. https://doi.org/10.3390/su17062565
APA StyleWang, M., Zhao, X., & Liu, F. (2025). Identification, Attribution, and Mitigation of Agricultural–Ecological Functional Conflicts in Urban Agglomerations. Sustainability, 17(6), 2565. https://doi.org/10.3390/su17062565