Farmer’s Perception of Climate Change and Factors Determining the Adaptation Strategies to Ensure Sustainable Agriculture in the Cold Desert Region of Himachal Himalayas, India
Abstract
:1. Introduction
2. Study Area
3. Materials
3.1. Climatic Data
3.2. Field Survey Information
4. Methodology
4.1. Historical Climatic Data Analysis
4.1.1. Annual and Seasonal Trends of Rainfall and Temperature
4.1.2. Anomaly Index for Rainfall and Temperature
4.2. Farmer’s Perception About Climate Change
4.3. Farmers’ Perceptions of Climate Change Induced Agricultural Activity
4.4. Farmer’s Perception on the Adaptation Strategies
4.4.1. Methods for Evaluating Local Adaptation Strategies
4.4.2. Description of Independent Parameters Influencing Farmers’ Adaptation Decisions
4.4.3. Determination of the Parameters Influencing Farmers’ Decisions
5. Result and Analysis
5.1. Climate Change Scenario and Trend Analysis
5.2. Calculation of Anomalies for Examining Long-Term Climatic Trend
5.3. Perception of Farmers About Climate Change
5.3.1. Sociodemographic Information of the Farmers
5.3.2. Farmers’ Perceptions About Climate Change Indicators
5.4. Farmers’ Perception on Climate Change-Induced Agricultural Problems
5.5. Local Adaptation Strategies
5.6. Factors Affecting Farmers’ Adaptation Strategies
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kattel, G.R. Climate warming in the Himalayas threatens biodiversity, ecosystem functioning and ecosystem services in the 21st century: Is there a better solution? Biodivers. Conserv. 2022, 31, 2017–2044. [Google Scholar] [CrossRef]
- Mir, B.H.; Kumar, R.; Lone, M.A.; Tantray, F.A. Climate change and water resources of Himalayan region—Review of impacts and implication. Arab. J. Geosci. 2021, 14, 1088. [Google Scholar] [CrossRef]
- Rani, S.; Kumar, R.; Maharana, P. Climate change, its impacts, and sustainability issues in the Indian Himalaya: An introduction. In Climate Change: Impacts, Responses and Sustainability in the Indian Himalaya; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–27. [Google Scholar]
- Romshoo, S.A.; Murtaza, K.O.; Shah, W.; Ramzan, T.; Ameen, U.; Bhat, M.H. Anthropogenic climate change drives melting of glaciers in the Himalaya. Environ. Sci. Pollut. Res. 2022, 29, 52732–52751. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Negi, M.; Nandy, S.; Kumar, M.; Singh, V.; Valente, D.; Petrosillo, I.; Pandey, R. Mapping socio-environmental vulnerability to climate change in different altitude zones in the Indian Himalayas. Ecol. Indic. 2020, 109, 105787. [Google Scholar] [CrossRef]
- Singh, R.K.; Kumar, M. Assessing vulnerability of agriculture system to climate change in the SAARC region. Environ. Chall. 2021, 5, 100398. [Google Scholar] [CrossRef]
- Negi, V.S.; Tiwari, D.C.; Singh, L.; Thakur, S.; Bhatt, I.D. Review and synthesis of climate change studies in the Himalayan region. Environ. Dev. Sustain. 2022, 24, 10471–10502. [Google Scholar] [CrossRef]
- Yadav, J.S.; Tiwari, S.K.; Misra, A.; Rai, S.K.; Yadav, R.K. High-altitude meteorology of Indian Himalayan Region: Complexities, effects, and resolutions. Environ. Monit. Assess. 2021, 193, 654. [Google Scholar] [CrossRef]
- Shrestha, U.B.; Gautam, S.; Bawa, K.S. Widespread climate change in the Himalayas and associated changes in local ecosystems. PLoS ONE 2012, 7, e36741. [Google Scholar] [CrossRef]
- Rathore, L.S.; Attri, S.D.; Jaswal, A.K. State Level Climate Change Trends in India; Meteorological Monograph No. ESSO/IMD/Education Multimedia Research Centre/02; India Meteorological Department (IMD): New Delhi, India, 2013. [Google Scholar]
- Barrett, K.; Bosak, K. The role of place in adapting to climate change: A case study from Ladakh, Western Himalayas. Sustainability 2018, 10, 898. [Google Scholar] [CrossRef]
- Negi, V.S.; Maikhuri, R.K.; Pharswan, D.; Thakur, S.; Dhyani, P.P. Climate change impact in the Western Himalaya: People’s perception and adaptive strategies. J. Mt. Sci. 2017, 14, 403–416. [Google Scholar] [CrossRef]
- Das, P.V. Climate Change Knowledge: Comparison of People’s and Scientists’ Perceptions in Western Himalayas. In Resource Management, Sustainable Development and Governance: Indian and International Perspectives; Springer: Berlin/Heidelberg, Germany, 2021; pp. 475–485. [Google Scholar]
- Rana, R.S.; Kalia, V.; Ramesh, R.P.; Singh, K.K. Managing impacts of extreme weather events on crop productivity in mountain agriculture. Mausam 2016, 67, 223–232. [Google Scholar] [CrossRef]
- Tewari, V.P.; Verma, R.K.; Von Gadow, K. Climate change effects in the Western Himalayan ecosystems of India: Evidence and strategies. For. Ecosyst. 2017, 4, 13. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: Synthesis Report (AR4); IPCC: Geneva, Switzerland, 2007; Available online: http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_synthesis_report.htm (accessed on 2 June 2024).
- Calzadilla, A.; Zhu, T.; Rehdanz, K.; Tol, R.S.; Ringler, C. Economywide impacts of climate change on agriculture in Sub-Saharan Africa. Ecol. Econ. 2013, 93, 150–165. [Google Scholar] [CrossRef]
- Shukla, R.; Agarwal, A.; Sachdeva, K.; Kurths, J.; Joshi, P.K. Climate change perception: An analysis of climate change and risk perceptions among farmer types of Indian Western Himalayas. Clim. Change 2019, 152, 103–119. [Google Scholar] [CrossRef]
- Patel, N.R.; Akarsh, A.; Ponraj, A.; Singh, J. Geospatial technology for climate change impact assessment of mountain agriculture. In Remote Sensing of Northwest Himalayan Ecosystems; Springer: Berlin/Heidelberg, Germany, 2019; pp. 381–400. [Google Scholar]
- Pandey, R.; Kumar, P.; Archie, K.M.; Gupta, A.K.; Joshi, P.K.; Valente, D.; Petrosillo, I. Climate change adaptation in the western-Himalayas: Household level perspectives on impacts and barriers. Ecol. Indic. 2018, 84, 27–37. [Google Scholar] [CrossRef]
- Sharma, A.; Batish, D.R.; Uniyal, S.K. Documentation and validation of climate change perception of an ethnic community of the western Himalaya. Environ. Monit. Assess. 2020, 192, 552. [Google Scholar] [CrossRef]
- Chhogyel, N.; Kumar, L.; Bajgai, Y.; Hasan, M.K. Perception of farmers on climate change and its impacts on agriculture across various altitudinal zones of Bhutan Himalayas. Int. J. Environ. Sci. Technol. 2020, 17, 3607–3620. [Google Scholar] [CrossRef]
- Shrestha, R.; Rakhal, B.; Adhikari, T.R.; Ghimire, G.R.; Talchabhadel, R.; Tamang, D.; KC, R.; Sharma, S. Farmers’ perception of climate change and its impacts on agriculture. Hydrology 2022, 9, 212. [Google Scholar] [CrossRef]
- Ali, M.F.; Rose, S. Farmers’ perception and adaptations to climate change: Findings from three agro-ecological zones of Punjab, Pakistan. Environ. Sci. Pollut. Res. 2021, 28, 14844–14853. [Google Scholar] [CrossRef]
- Shaffril, H.A.M.; Krauss, S.E.; Samsuddin, S.F. A systematic review on Asian’s farmers’ adaptation practices towards climate change. Sci. Total Environ. 2018, 644, 683–695. [Google Scholar] [CrossRef]
- Jha, C.K.; Gupta, V. Do better agricultural extension and climate information sources enhance adaptive capacity? A micro-level assessment of farm households in rural India. Ecofeminism Clim. Change 2021, 2, 83–102. [Google Scholar] [CrossRef]
- Torres, M.A.O.; Kallas, Z.; Herrera, S.I.O. Farmers’ environmental perceptions and preferences regarding climate change adaptation and mitigation actions; towards a sustainable agricultural system in México. Land Use Policy 2020, 99, 105031. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2001: Impacts, Adaptation and Vulnerability, Summary for Policymakers; WMO: Geneva, Switzerland, 2001. [Google Scholar]
- Chauhan, N.; Shukla, R.; Joshi, P.K. Assessing inherent vulnerability of farming communities across different biogeographical zones in Himachal Pradesh, India. Environ. Dev. 2020, 33, 100506. [Google Scholar] [CrossRef]
- Dasgupta, S.; Badola, R.; Ali, S.Z.; Jiju, J.S.; Tariyal, P. Adaptive capacity and vulnerability of the socio-ecological system of Indian Himalayan villages under present and predicted future scenarios. J. Environ. Manag. 2022, 302, 113946. [Google Scholar] [CrossRef]
- Rani, S.; Prasher, R.S. Farmers’ perceptions towards climate change and its adaptation strategies in Himachal Pradesh. Indian J. Econ. Dev. 2021, 17, 77–85. [Google Scholar]
- Singh, P.; Sharma, I.; Guleria, A. Impact of socioeconomic parameters on adoption of climate resilient technology under varying vulnerability conditions: Evidences from Himalayan region. In Visualization Techniques for Climate Change with Machine Learning and Artificial Intelligence; Elsevier: Amsterdam, The Netherlands, 2023; pp. 229–246. [Google Scholar]
- Thakur, T.; Chand, K.; Kuniyal, J.C.; Singh, S.K.; Kanga, S.; Meraj, G. Vulnerability to Climate Change in Different Sectors of Lug Valley, Kullu District of Himachal Pradesh. In Advances in Water Resource Planning and Sustainability; Springer Nature: Singapore, 2023; pp. 183–201. [Google Scholar]
- Shashni, A.; Sharma, S. Sustainable agriculture in a cold desert: Case Study of Lahaul and Spiti District of Himachal Pradesh. In Sustainable Water Resources Management: Proceedings of SWARM 2020; Springer Nature: Singapore, 2022; pp. 228–235. [Google Scholar]
- Datta, P.; Behera, B. Climate change and Indian agriculture: A systematic review of farmers’ perception, adaptation, and transformation. Environ. Chall. 2022, 8, 100543. [Google Scholar] [CrossRef]
- Lone, F.A.; Maheen, M.; Ul Shafiq, M.; Bhat, M.S.; Rather, J.A. Farmer’s perception and adaptation strategies to changing climate in Kashmir Himalayas, India. GeoJournal 2020, 87, 1743–1757. [Google Scholar] [CrossRef]
- Paudel, B.; Zhang, Y.; Yan, J.; Rai, R.; Li, L.; Wu, X.; Chapagain, P.S.; Khanal, N.R. Farmers’ understanding of climate change in Nepal Himalayas: Important determinants and implications for developing adaptation strategies. Clim. Change 2020, 158, 485–502. [Google Scholar] [CrossRef]
- Marie, M.; Yirga, F.; Haile, M.; Tquabo, F. Farmers’ choices and factors affecting adoption of climate change adaptation strategies: Evidence from northwestern Ethiopia. Heliyon 2020, 6, e03867. [Google Scholar] [CrossRef]
- Jha, C.K.; Gupta, V. Farmer’s perception and factors determining the adaptation decisions to cope with climate change: An evidence from rural India. Environ. Sustain. Indic. 2021, 10, 100112. [Google Scholar] [CrossRef]
- Tiet, T.; To-The, N.; Nguyen-Anh, T. Farmers’ behaviors and attitudes toward climate change adaptation: Evidence from Vietnamese smallholder farmers. Environ. Dev. Sustain. 2022, 24, 14235–14260. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, X.; Li, H.; Zhang, Q. Will social capital affect farmers’ choices of climate change adaptation strategies? Evidences from rural households in the Qinghai-Tibetan Plateau, China. J. Rural. Stud. 2021, 83, 127–137. [Google Scholar] [CrossRef]
- Musafiri, C.M.; Kiboi, M.; Macharia, J.; Ng’etich, O.K.; Kosgei, D.K.; Mulianga, B.; Okoti, M.; Ngetich, F.K. Adoption of climate-smart agricultural practices among smallholder farmers in Western Kenya: Do socioeconomic, institutional, and biophysical factors matter? Heliyon 2022, 8, e08677. [Google Scholar] [CrossRef] [PubMed]
- Angmo, T.; Mishra, S. Impacts of climate change in Ladakh and Lahaul & Spiti of the western Himalayan region. In Energy and Climate Change in Cold Regions of Asia; 2009; pp. 51–54. Available online: https://www.geres.eu/wp-content/uploads/2019/10/seminar_proceedings.pdf (accessed on 2 June 2024).
- Kulkarni, A.; Prasad, V.; Shirsat, T.; Chaturvedi, R.K.; Bahuguna, I.M. Impact of climate change on the glaciers of Spiti River basin, Himachal Pradesh, India. J. Indian Soc. Remote Sens. 2021, 49, 1951–1963. [Google Scholar] [CrossRef]
- Pathak, V.; Sharma, M.C. Climate change and the rising hazard potential in Lahaul and Spiti: Himachal Pradesh. In Climate Change, Disaster and Adaptations: Contextualising Human Responses to Ecological Change; Springer International Publishing: Cham, Switzerland, 2022; pp. 83–105. [Google Scholar]
- Warpa, V.; Singh, H. Cultivable Land and the Nature of Its Distribution in Cold Desert of Lahaul-Spiti District of Himachal Pradesh. In Landscape Ecology and Water Management: Proceedings of IGU Rohtak Conference; Springer: Tokyo, Japan, 2014; Volume 2, pp. 115–127. [Google Scholar]
- Yue, S.; Wang, C. The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour. Manag. 2004, 18, 201–218. [Google Scholar] [CrossRef]
- Kumar, U.; Singh, S.; Bisht, J.K.; Kant, L. Use of meteorological data for identification of agricultural drought in Kumaon region of Uttarakhand. J. Earth Syst. Sci. 2021, 130, 121. [Google Scholar] [CrossRef]
- Saini, D.; Singh, O.; Bhardwaj, P. Standardized precipitation index based dry and wet conditions over a dryland ecosystem of northwestern India. Geol. Ecol. Landsc. 2022, 6, 252–264. [Google Scholar] [CrossRef]
- Peng, X.; Che, Y.; Chang, J. A novel approach to improve numerical weather prediction skills by using anomaly integration and historical data. J. Geophys. Res. Atmos. 2013, 118, 8814–8826. [Google Scholar] [CrossRef]
- Pal, S.; Sarda, R. Modeling riparian flood plain wetland water richness in pursuance of damming and linking it with a methane emission rate. Geocarto Int. 2022, 37, 7954–7982. [Google Scholar] [CrossRef]
- Bai, S.B.; Wang, J.; Lü, G.N.; Zhou, P.G.; Hou, S.S.; Xu, S.N. GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China. Geomorphology 2010, 115, 23–31. [Google Scholar] [CrossRef]
- Jin, J.; Wang, X.; Gao, Y. Gender differences in farmers’ responses to climate change adaptation in Yongqiao District, China. Sci. Total Environ. 2015, 538, 942–948. [Google Scholar] [CrossRef] [PubMed]
- Alemayehu, A.; Bewket, W. Determinants of smallholder farmers’ choice of coping and adaptation strategies to climate change and variability in the central highlands of Ethiopia. Environ. Dev. 2017, 24, 77–85. [Google Scholar] [CrossRef]
- Sertse, S.F.; Khan, N.A.; Shah, A.A.; Liu, Y.; Naqvi, S.A.A. Farm households’ perceptions and adaptation strategies to climate change risks and their determinants: Evidence from Raya Azebo district, Ethiopia. Int. J. Disaster Risk Reduct. 2021, 60, 102255. [Google Scholar] [CrossRef]
- Guo, R.; Li, Y.; Shang, L.; Feng, C.; Wang, X. Local farmer’s perception and adaptive behavior toward climate change. J. Clean. Prod. 2021, 287, 125332. [Google Scholar] [CrossRef]
- Swami, D.; Parthasarathy, D. A multidimensional perspective to farmers’ decision making determines the adaptation of the farming community. J. Environ. Manag. 2020, 264, 110487. [Google Scholar] [CrossRef]
- Jaiswal, R.K.; Lohani, A.K.; Tiwari, H.L. Statistical analysis for change detection and trend assessment in climatological parameters. Environ. Process. 2015, 2, 729–749. [Google Scholar] [CrossRef]
- Das, L.; Meher, J.K. Drivers of climate over the Western Himalayan region of India: A review. Earth-Sci. Rev. 2019, 198, 102935. [Google Scholar] [CrossRef]
- Rathore, S.; Shashni, S. Indigenous knowledge system and livelihood option of natives of Lahaul and Spiti district, Himachal Pradesh. In Climate Change Adaptation, Risk Management and Sustainable Practices in the Himalaya; Springer International Publishing: Cham, Switzerland, 2023; pp. 213–235. [Google Scholar]
- Macchi, M.; Gurung, A.M.; Hoermann, B. Community perceptions and responses to climate variability and change in the Himalayas. Clim. Dev. 2015, 7, 414–425. [Google Scholar] [CrossRef]
- Simane, B.; Zaitchik, B.F.; Foltz, J.D. Agroecosystem specific climate vulnerability analysis: Application of the livelihood vulnerability index to a tropical highland region. Mitig. Adapt. Strateg. Glob. Change 2016, 21, 39–65. [Google Scholar] [CrossRef]
- Singh, R.; Sharma, R.K.; Babu, S.; Bhatnagar, Y.V. Traditional ecological knowledge and contemporary changes in the agro-pastoral system of upper Spiti landscape, Indian trans-Himalayas. Pastoralism 2020, 10, 15. [Google Scholar] [CrossRef]
- Sharma, A.; Shashni, S.; Rathore, S. Traditional Knowledge System for Sustainable Agriculture Practices of Rural Communities of North-Western Himalaya, India. In Traditional Ecological Knowledge of Resource Management in Asia; Springer International Publishing: Cham, Switzerland, 2023; pp. 191–210. [Google Scholar]
- Bhalerao, A.K.; Rasche, L.; Scheffran, J.; Schneider, U.A. Sustainable agriculture in Northeastern India: How do tribal farmers perceive and respond to climate change? Int. J. Sustain. Dev. World Ecol. 2022, 29, 291–302. [Google Scholar] [CrossRef]
- Abbass, K.; Qasim, M.Z.; Song, H.; Murshed, M.; Mahmood, H.; Younis, I. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ. Sci. Pollut. Res. 2022, 29, 42539–42559. [Google Scholar] [CrossRef] [PubMed]
- Bryant, C.R.; Smit, B.; Brklacich, M.; Johnston, T.R.; Smithers, J.; Chiotti, Q.; Singh, B. Adaptation in Canadian agriculture to climatic variability and change. In Societal Adaptation to Climate Variability and Change; Springer: Berlin/Heidelberg, Germany, 2000; pp. 181–201. [Google Scholar]
- Rana, R.S.; Kalia, V.; Singh, S.; Randhawa, S.S.; Chauhan, R.; Katoch, A.; Sandal, A.; Thakur, R.K.; Upadhyay, S.K. Climate vulnerability assessment of farming systems in Himachal Pradesh, Indian Himalayas. Mt. Res. Dev. 2021, 41, R50–R60. [Google Scholar] [CrossRef]
- Mishra, C. Socioeconomic transition and wildlife conservation in the Indian Trans-Himalaya. J. -Bombay Nat. Hist. Soc. 2000, 97, 25–32. [Google Scholar]
- Singh, R.; Sharma, R.K.; Babu, S. Pastoralism in transition: Livestock abundance and herd composition in Spiti, Trans-Himalaya. Hum. Ecol. 2015, 43, 799–810. [Google Scholar] [CrossRef]
- FAO. Climate-Smart Agriculture Sourcebook: Summary; FAO: Rome, Italy, 2017. [Google Scholar]
- Autio, A.; Johansson, T.; Motaroki, L.; Minoia, P.; Pellikka, P. Constraints for adopting climate-smart agricultural practices among smallholder farmers in Southeast Kenya. Agric. Syst. 2021, 194, 103284. [Google Scholar] [CrossRef]
- Pagliacci, F.; Defrancesco, E.; Mozzato, D.; Bortolini, L.; Pezzuolo, A.; Pirotti, F.; Pisani, E.; Gatto, P. Drivers of farmers’ adoption and continuation of climate-smart agricultural practices. A study from northeastern Italy. Sci. Total Environ. 2020, 710, 136345. [Google Scholar] [CrossRef]
- Wakweya, R.B. Challenges and prospects of adopting climate-smart agricultural practices and technologies: Implications for food security. J. Agric. Food Res. 2023, 14, 100698. [Google Scholar] [CrossRef]
- Aryal, J.P.; Sapkota, T.B.; Khurana, R.; Khatri-Chhetri, A.; Rahut, D.B.; Jat, M.L. Climate change and agriculture in South Asia: Adaptation options in smallholder production systems. Environ. Dev. Sustain. 2020, 22, 5045–5075. [Google Scholar] [CrossRef]
Parameter | Variable | Measurement | Possible Effect |
---|---|---|---|
P1 | Gender | Gender of farmers in a binary format, where 1 = Male; and 0 = Female | Positive/Negative |
P2 | Education | Education status of the farmers noted as years of schooling | Positive |
P3 | Age | Age of the responding farmers (Years) | Negative |
P4 | Farming experiences | Years of farming experience | Positive |
P5 | Landholding size | The size of land measured in hectares | Positive |
P6 | Number of livestock | The quantity of livestock | Positive |
P7 | Altitude | Location of farms expressed as altitude in meters | Negative |
P8 | Agricultural purpose | The purpose of activity expressed as 1 = market oriented; 0 = subsistence | Positive |
P9 | Contact with extension agents | Number of extension agent visits annually (continuous) | Positive |
P10 | Exposure to media | Number of mass media outfits accessed (continuous) | Positive |
P11 | Household size | Number of members in the household (continuous) | Positive |
P12 | Engagement in the non-agricultural sector | Number of household members engaged in non-agricultural activity | Negative |
P13 | Accessibility of transport | Connectivity of the road network | Positive |
P14 | Awareness of climate change | Awareness or perception of climate change | Positive |
P15 | Monthly income | Total monthly income of the respondent | Positive |
P16 | Distance to market | Distance to the local market (kilometers) | Positive |
P17 | Distance to home | Distance to home to the agriculture location measured in kilometers | Positive |
P18 | Availability of water | Nearby water availability for agriculture | Positive |
Parameter | Variables | Category | Frequency | Parameter | Variables | Category | Frequency |
---|---|---|---|---|---|---|---|
P1 | Gender | Male | 129 (60) | P10 | Exposure to media | Mean (count) | 2.52 ± 1.97 |
Female | 86 (40) | P11 | Household size | Mean (count) | 6.13 ± 2.52 | ||
P2 | Education | No Schooling | 31 (14.42) | P12 | Engagement in the non-agricultural sector | Mean (count) | 1.87 ± 1.56 |
Primary | 85 (39.53) | P13 | Accessibility of Transport | Yes | 111 (51.63) | ||
Secondary | 68 (31.63) | No | 104 (48.37) | ||||
Higher Secondary | 21 (9.77) | P14 | Awareness of climate change | Yes | 167 (77.67) | ||
Graduation | 10 (4.65) | No | 48 (22.33) | ||||
P3 | Age | Mean (years) | 38.21 ± 9.32 | P15 | Monthly Income (Rupees) | Below 5000 | 42 (19.53) |
P4 | Farming experiences | No experience | 39 (18.14) | 5000–10,000 | 81 (37.67) | ||
1–5 years | 72 (33.49) | 10,000–15,000 | 62 (28.84) | ||||
5–10 years | 63 (29.30) | 15,000–20,000 | 22 (10.23) | ||||
10–15 Years | 24 (11.16) | Above 20,000 | 8 (3.72) | ||||
Above 15 years | 17 (7.91) | P16 | Distance to market | Below 500 m | 74 (34.42) | ||
P5 | Landholding size | No own land | 28 (13.02) | 500 m–1000 m | 79 (36.74) | ||
Below 1 ha | 59 (27.44) | 1000–1500 m | 53 (24.65) | ||||
1–2 ha | 51 (23.72) | 1500 m–2000 m | 4 (1.86) | ||||
2–5 ha | 48 (22.33) | above 2000 m | 5 (2.33) | ||||
above 5 ha | 29 (13.49) | P17 | Distance to home | Below 100 m | 6 (2.79) | ||
P6 | Number of livestock | Mean (count) | 2.54 ± 1.91 | 100 m–500 m | 74 (34.42) | ||
P7 | Altitude | Mean (meter) | 3164.58 ± 426.71 | 500–1000 m | 58 (26.98) | ||
P8 | Farming purpose | Market-oriented | 147 (68.37) | 1000–1500 m | 70 (32.56) | ||
Subsidence | 68 (31.63) | above 1500 m | 7 (3.26) | ||||
P9 | Contact with extension agents | Mean (count) | 2.87 ± 1.95 | P18 | Availability of water | Yes | 181 (84.19) |
No | 34 (15.81) |
Parameter | Perception Category | Male (n = 129) | Female (n = 86) | p-Value (Chi-Square Test) |
---|---|---|---|---|
Changes in climate (n = 167; f = 77.68%) | Yes | 79.07 | 75.58 | 0.547 |
No | 20.93 | 24.42 | ||
Changes in Rainfall (n = 161; f = 74.88%) | Yes | 63.57 | 60.47 | 0.646 |
No | 36.43 | 39.53 | ||
Changes in Temperature (n = 156; f = 72.56%) | Yes | 65.12 | 72.09 | 0.283 |
No | 34.88 | 27.91 | ||
Changes in Season (n = 130; f = 60.47%) | Yes | 57.36 | 54.65 | 0.2 |
No | 42.64 | 45.35 |
Parameter | Perception Category | Education Status | p-Value (Chi-Square Test) | ||||
---|---|---|---|---|---|---|---|
No Schooling | Up to Primary | Up to Secondary | Up to Higher Secondary | Graduation and Above | |||
Changes in climate | Yes | 6.45 | 77.65 | 100 | 100 | 100 | <0.001 |
No | 93.55 | 22.35 | 0 | 0 | 0 | ||
Changes in Rainfall | Yes | 6.45 | 70.59 | 100 | 100 | 100 | <0.001 |
No | 93.55 | 29.41 | 0 | 0 | 0 | ||
Changes in Temperature | Yes | 3.23 | 70.59 | 94.12 | 100 | 100 | <0.001 |
No | 96.77 | 29.41 | 5.88 | 0 | 0 | ||
Changes in Season | Yes | 3.23 | 40.00 | 94.12 | 100 | 100 | <0.001 |
No | 96.77 | 60.00 | 5.88 | 0 | 0 |
Parameter | Perception Category | Respondent Age | p-Value (Chi-Square Test) | ||||
---|---|---|---|---|---|---|---|
Below 20 Years | 20–30 | 30–40 | 40–50 | Above 50 Years | |||
Changes in Climate | Yes | 0 | 15 | 92 | 96 | 93 | <0.001 |
No | 100 | 85 | 8 | 4 | 7 | ||
Changes in Rainfall | Yes | 0 | 10 | 73 | 78 | 78 | <0.001 |
No | 100 | 90 | 27 | 22 | 22 | ||
Changes in Temperature | Yes | 0 | 10 | 76 | 88 | 85 | <0.001 |
No | 100 | 90 | 24 | 12 | 15 | ||
Changes in Season | Yes | 0 | 2 | 39 | 79 | 63 | <0.001 |
No | 100 | 98 | 61 | 21 | 37 |
Climate Change Impact on Agriculture | Average Merit (AM) | Standard Deviation (SD) |
---|---|---|
Drying of water resources (n = 135; f = 62.79%) | 0.668 | 0.015 |
Crop damage (n = 85; f = 39.54%) | 0.668 | 0.018 |
Reduced crop yield area (n = 60; f = 27.91%) | 0.501 | 0.011 |
Loss of soil moisture (n = 107; f = 49.77%) | 0.494 | 0.023 |
Pests and disease (n = 40; f = 18.61%) | 0.417 | 0.010 |
Delayed in time of sowing (n = 29; f = 13.49%) | 0.207 | 0.020 |
Increase mortality of seedlings (n = 17; f = 7.91%) | 0.186 | 0.011 |
Adaptation Strategies | Ranking Scale | Weighted Average | ||||
---|---|---|---|---|---|---|
1 (Most Common) | 2 (Common) | 3 (Quite Common) | 4 (Less Common) | 5 (Least Common) | ||
Crop and variety adaptation | 28 (12.97) | 27 (12.39) | 29 (13.26) | 26 (12.10) | 13 (6.03) | 22.37 |
Agricultural land-related adaptation | 24 (11.10) | 29 (13.44) | 26 (12.07) | 29 (13.44) | 14 (6.70) | 23.14 |
Technological adaptation | 19 (9.01) | 31 (14.47) | 31 (14.47) | 23 (10.83) | 17 (7.95) | 23.57 |
Irrigation/Water resource-related adaptation | 34 (15.83) | 34 (15.83) | 24 (11.24) | 15 (6.92) | 15 (6.92) | 20.57 |
Diversification of income | 23 (10.64) | 13 (6.20) | 32 (15.11) | 24 (11.07) | 30 (13.73) | 25.98 |
Parameter | Tolerance | VIF |
---|---|---|
Gender | 0.773 | 1.293 |
Education status | 0.647 | 1.546 |
Age | 0.210 | 4.765 |
Farming experience | 0.245 | 4.088 |
Landholding size | 0.451 | 2.217 |
Number of livestock | 0.301 | 3.325 |
Altitude | 0.436 | 2.291 |
Farming purpose | 0.517 | 1.935 |
Contact with an extension agent | 0.775 | 1.291 |
Exposure to media | 0.7 | 1.428 |
Household size | 0.232 | 4.32 |
Engagement in non-agricultural activity | 0.347 | 2.883 |
Accessibility of transport | 0.703 | 1.423 |
Awareness of climate change | 0.459 | 2.178 |
Monthly income | 0.465 | 2.152 |
Distance to market | 0.481 | 2.08 |
Distance to home | 0.91 | 1.099 |
Availability of water | 0.751 | 1.332 |
Parameter | Estimate | Standard Error | p-Value |
---|---|---|---|
Gender | −0.065 | 0.705 | 0.927 |
Education status | 0.295 | 0.466 | 0.527 |
Age | −0.11 | 0.092 | 0.231 |
Farming experience | 0.515 | 0.644 | 0.423 |
Landholding size | 1.274 | 0.423 | 0.003 |
Number of livestock | 0.057 | 0.311 | 0.855 |
Altitude | 0.002 | 0.001 | 0.124 |
Farming purpose | 1.042 | 0.972 | 0.283 |
Contact with an extension agent | 0.273 | 0.189 | 0.148 |
Exposure to media | −0.061 | 0.185 | 0.741 |
Household size | −0.208 | 0.269 | 0.440 |
Engagement in non-agricultural activity | −0.383 | 0.352 | 0.277 |
Accessibility of transport | 1.786 | 0.739 | 0.016 |
Awareness of climate change | 4.917 | 1.727 | 0.004 |
Monthly income | 0.817 | 0.602 | 0.175 |
Distance from market | −2.299 | 0.544 | 0.001 |
Distance from home | 0.313 | 0.363 | 0.389 |
Availability of water | 1.998 | 1.18 | 0.090 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, P.; Sarda, R.; Yadav, A.; Ashwani; Gonencgil, B.; Rai, A. Farmer’s Perception of Climate Change and Factors Determining the Adaptation Strategies to Ensure Sustainable Agriculture in the Cold Desert Region of Himachal Himalayas, India. Sustainability 2025, 17, 2548. https://doi.org/10.3390/su17062548
Kumar P, Sarda R, Yadav A, Ashwani, Gonencgil B, Rai A. Farmer’s Perception of Climate Change and Factors Determining the Adaptation Strategies to Ensure Sustainable Agriculture in the Cold Desert Region of Himachal Himalayas, India. Sustainability. 2025; 17(6):2548. https://doi.org/10.3390/su17062548
Chicago/Turabian StyleKumar, Pankaj, Rajesh Sarda, Ankur Yadav, Ashwani, Barbaros Gonencgil, and Abhinav Rai. 2025. "Farmer’s Perception of Climate Change and Factors Determining the Adaptation Strategies to Ensure Sustainable Agriculture in the Cold Desert Region of Himachal Himalayas, India" Sustainability 17, no. 6: 2548. https://doi.org/10.3390/su17062548
APA StyleKumar, P., Sarda, R., Yadav, A., Ashwani, Gonencgil, B., & Rai, A. (2025). Farmer’s Perception of Climate Change and Factors Determining the Adaptation Strategies to Ensure Sustainable Agriculture in the Cold Desert Region of Himachal Himalayas, India. Sustainability, 17(6), 2548. https://doi.org/10.3390/su17062548