Machine Learning for Leadership in Energy and Environmental Design Credit Targeting: Project Attributes and Climate Analysis Toward Sustainability
Abstract
:1. Introduction
Goal and Objectives
2. Materials and Methods
2.1. Data Collection
2.2. Data Preprocessing
2.2.1. Data Filtering
2.2.2. Merging the LEED Dataset with Climate Data
2.2.3. Handling Missing Values
2.2.4. Category Encoding
2.2.5. Final Dataset
2.3. Model Selection
2.3.1. Decision Tree (DT)
2.3.2. Support Vector Machine (SVM)
2.3.3. XGBoost
2.3.4. Performance Metrics
2.3.5. Hyper-Tuning Parameters
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Energy Agency (IEA). Buildings and Construction: Tracking Clean Energy Progress. Available online: https://www.iea.org/energy-system/buildings (accessed on 2 February 2025).
- Atmoko, D.; Susilawati, C.; Devi, B.; Wilkinson, S.; Puspitarini, I.; Lukito, J.A.; Goonetilleke, A. Challenges and Opportunities for Promoting Sustainability in Public Buildings. Sustainability 2025, 17, 403. [Google Scholar] [CrossRef]
- Tămaş-Gavrea, D.R.; Iştoan, R.; Tiuc, A.E.; Dénes, T.O.; Manea, D.L.; Ciorîță, A.; Vasile, O. Sustainable Approach to Achieve New Green Solutions for the Construction Industry. Sustainability 2024, 16, 10556. [Google Scholar] [CrossRef]
- AuOlu-Ajayi, R.; Alaka, H.; Egwim, C.; Grishikashvili, K. Comprehensive Analysis of Influencing Factors on Building Energy Performance and Strategic Insights for Sustainable Development: A Systematic Literature Review. Sustainability 2024, 16, 5170. [Google Scholar] [CrossRef]
- Darko, A.; Zhang, C.; Chan, A.P. Drivers for Green Building: A Review of Empirical Studies. Habitat Int. 2017, 60, 34–49. [Google Scholar] [CrossRef]
- Voland, N.; Saad, M.M.; Eicker, U. Public Policy and Incentives for Socially Responsible New Business Models in Market-Driven Real Estate to Build Green Projects. Sustainability 2022, 14, 7071. [Google Scholar] [CrossRef]
- Gurgun, A.P.; Arditi, D. Assessment of Energy Credits in LEED-Certified Buildings Based on Certification Levels and Project Ownership. Buildings 2018, 8, 29. [Google Scholar] [CrossRef]
- USGBC. Benefits of Green Building. Available online: http://www.usgbc.org/projects (accessed on 2 February 2025).
- Fowler, K.M.; Rauch, E.M.; Henderson, J.W.; Kora, A.R. Re-Assessing Green Building Performance: A Post Occupancy Evaluation of 22 GSA Buildings; No. PNNL-19369; Pacific Northwest National Laboratory (PNNL): Richland, WA, USA, 2010. [Google Scholar]
- Rastogi, A.; Choi, J.K.; Hong, T.; Lee, M. Impact of Different LEED Versions for Green Building Certification and Energy Efficiency Rating System: A Multifamily Midrise Case Study. Appl. Energy 2017, 205, 732–740. [Google Scholar] [CrossRef]
- Wu, P.; Song, Y.; Shou, W.; Chi, H.; Chong, H.Y.; Sutrisna, M. A Comprehensive Analysis of the Credits Obtained by LEED 2009 Certified Green Buildings. Renew. Sustain. Energy Rev. 2017, 68, 370–379. [Google Scholar] [CrossRef]
- Guide to LEED Certification. Available online: https://www.usgbc.org/guide-LEED-certification (accessed on 2 February 2025).
- Cheng, J.C.; Ma, L.J. A Data-Driven Study of Important Climate Factors on the Achievement of LEED-EB Credits. Build. Environ. 2015, 90, 232–244. [Google Scholar] [CrossRef]
- Alothaimeen, I.; Arditi, D.; Türkakın, O.H. Multi-Objective Optimization for LEED-New Construction Using BIM and Genetic Algorithms. Autom. Constr. 2023, 149, 104807. [Google Scholar] [CrossRef]
- Ma, J.; Cheng, J.C. Data-Driven Study on the Achievement of LEED Credits Using Percentage of Average Score and Association Rule Analysis. Build. Environ. 2016, 98, 121–132. [Google Scholar] [CrossRef]
- Jun, M.A.; Cheng, J.C. Selection of Target LEED Credits Based on Project Information and Climatic Factors Using Data Mining Techniques. Adv. Eng. Inf. 2017, 32, 224–236. [Google Scholar] [CrossRef]
- Leite Ribeiro, L.M.; Piccinini Scolaro, T.; Ghisi, E. LEED Certification in Building Energy Efficiency: A Review of Its Performance Efficacy and Global Applicability. Sustainability 2025, 17, 1876. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Ma, D.; Gong, W. Exploring green building certification credit selection: A model based on explainable machine learning. J. Build. Eng. 2024, 95, 110279. [Google Scholar] [CrossRef]
- Altomonte, S.; Schiavon, S.; Kent, M.G.; Brager, G. Indoor environmental quality and occupant satisfaction in green-certified buildings. Build. Res. Inf. 2019, 47, 255–274. [Google Scholar] [CrossRef]
- Madanayake, H.; Ruwanpura, J. Special purpose simulation for sustainable development: The LEED cost simulation model. In Proceedings of the 2nd International Construction Specialty Conference, St. John’s, NL, Canada, 27–30 May 2009. CSCE. [Google Scholar]
- Mansouri, A.; Taghaddos, H.; Tak, A.N.; Sadatnya, A.; Aghajamali, K. Simulation-Based Planning of Earthmoving Equipment for Reducing Greenhouse Gas (GHG) Emissions. Autom. Constr. 2024, 168, 105841. [Google Scholar] [CrossRef]
- Syal, M.; Mago, S.; Moody, D. Impact of LEED-NC projects on constructors. J. Archit. Eng. 2007, 13, 174–179. [Google Scholar] [CrossRef]
- Pham, D.H.; Kim, B.; Lee, J.; Ahn, A.C.; Ahn, Y. A Comprehensive Analysis: Sustainable Trends and Awarded LEED 2009 Credits in Vietnam. Sustainability 2020, 12, 852. [Google Scholar] [CrossRef]
- Choi, J.O.; Bhatla, A.; Stoppel, C.M.; Shane, J.S. LEED Credit Review System and Optimization Model for Pursuing LEED Certification. Sustainability 2015, 7, 13351–13377. [Google Scholar] [CrossRef]
- Madson, K.; Franz, B.; Leicht, R.; Nelson, J. Evaluating the Sustainability of New Construction Projects over Time by Examining the Evolution of the LEED Rating System. Sustainability 2022, 14, 15422. [Google Scholar] [CrossRef]
- Rebelatto, B.G.; Salvia, A.L.; Brandli, L.L.; Leal Filho, W. Examining Energy Efficiency Practices in Office Buildings through the Lens of LEED, BREEAM, and DGNB Certifications. Sustainability 2024, 16, 4345. [Google Scholar] [CrossRef]
- Wu, P.; Mao, C.; Wang, J.; Song, Y.; Wang, X. A Decade Review of the Credits Obtained by LEED v2.2 Certified Green Building Projects. Build. Environ. 2016, 102, 167–178. [Google Scholar] [CrossRef]
- Pushkar, S. Impact of project size on LEED-EB V4 credit achievement in the United States. J. Archit. Eng. 2021, 27, 04021012. [Google Scholar] [CrossRef]
- Navaratnam, S. Selecting a Suitable Sustainable Construction Method for Australian High-Rise Buildings: A Multi-Criteria Analysis. Sustainability 2022, 14, 7435. [Google Scholar] [CrossRef]
- Darko, A.; Chan, A.P.C.; Ameyaw, E.E.; Owusu, E.K.; Pärn, E.; Edwards, D.J. Review of Application of Analytic Hierarchy Process (AHP) in Construction. Int. J. Constr. Manag. 2019, 19, 436–452. [Google Scholar] [CrossRef]
- Liu, X.; Wang, W.; Ding, Y.; Wang, K.; Li, J.; Cha, H.; Saierpeng, Y. Research on the Design Strategy of Double-Skin Facade in Cold and Frigid Regions—Using Xinjiang Public Buildings as an Example. Sustainability 2024, 16, 4766. [Google Scholar] [CrossRef]
- Seyis, S.; Ergen, E. A decision-making support tool for selecting green building certification credits based on project delivery attributes. Build. Environ. 2017, 126, 107–118. [Google Scholar] [CrossRef]
- Madanayake, H.L.; Ruwanpura, J. Multi-Criteria Decision Making to Improve Performance in Construction Projects with LEED Certification. In Proceedings of the Construction Research Congress 2012: Construction Challenges in a Flat World, West Palm Beach, FL, USA, 21–23 May 2012; pp. 1899–1909. [Google Scholar] [CrossRef]
- Erfani, A.; Tavakolan, M. Risk Evaluation Model of Wind Energy Investment Projects Using Modified Fuzzy Group Decision-Making and Monte Carlo Simulation. Arthaniti: J. Econ. Theory Pract. 2023, 22, 7–33. [Google Scholar] [CrossRef]
- Attallah, S.O.; Kandil, A.; Senouci, A.; Al-Derham, H. Multicriteria decision-making methodology for credit selection in building sustainability rating systems. J. Archit. Eng. 2017, 23, 04017004. [Google Scholar] [CrossRef]
- Cheng, J.C.P.; Ma, L.J. A non-linear case-based reasoning approach for retrieval of similar cases and selection of target credits in LEED projects. Build. Environ. 2015, 93, 349–361. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, L. Roles of Artificial Intelligence in Construction Engineering and Management: A Critical Review and Future Trends. Autom. Constr. 2021, 122, 103517. [Google Scholar] [CrossRef]
- Erfani, A.; Cui, Q. Predictive Risk Modeling for Major Transportation Projects Using Historical Data. Autom. Constr. 2022, 139, 104301. [Google Scholar] [CrossRef]
- Koh, Y.; Ceylan, H.; Kim, S.; Cho, I.H. An Artificial-Intelligence-Based Approach for Predicting Structural Damages of Paved-Road Systems under Superloads. Constr. Build. Mater. 2024, 411, 134257. [Google Scholar] [CrossRef]
- Mansouri, A.; Erfani, A. Gender Disparity and Self-Presentation on Social Media among AEC Industry Leaders. J. Manag. Eng. 2024, 40, 04024042. [Google Scholar] [CrossRef]
- Erfani, A.; Cui, Q.; Cavanaugh, I. An Empirical Analysis of Risk Similarity among Major Transportation Projects Using Natural Language Processing. J. Constr. Eng. Manag. 2021, 147, 04021175. [Google Scholar] [CrossRef]
- Lee, G.; Chang, T.; Chi, S. Data-Driven Bridge Maintenance Cost Estimation Framework for Annual Expenditure Planning. J. Manag. Eng. 2024, 40, 04023068. [Google Scholar] [CrossRef]
- Debrah, C.; Chan, A.P.; Darko, A. Artificial Intelligence in Green Building. Autom. Constr. 2022, 137, 104192. [Google Scholar] [CrossRef]
- Li, J.; Liu, Z.; Han, G.; Demian, P.; Osmani, M. The Relationship Between Artificial Intelligence (AI) and Building Information Modeling (BIM) Technologies for Sustainable Building in the Context of Smart Cities. Sustainability 2024, 16, 10848. [Google Scholar] [CrossRef]
- Huang, H.; Dai, D.; Guo, L.; Xue, S.; Wu, H. AI and Big Data-Empowered Low-Carbon Buildings: Challenges and Prospects. Sustainability 2023, 15, 12332. [Google Scholar] [CrossRef]
- Alghamdi, S.; Tang, W.; Kanjanabootra, S.; Alterman, D. Optimising Building Energy and Comfort Predictions with Intelligent Computational Model. Sustainability 2024, 16, 3432. [Google Scholar] [CrossRef]
- National Centers for Environmental Information (NCEI). Available online: https://www.ncei.noaa.gov/cdo-web/ (accessed on 2 February 2025).
- Maria, E.; Budiman, E.; Taruk, M. Measure Distance Locating Nearest Public Facilities Using Haversine and Euclidean Methods. J. Phys. Conf. Ser. 2020, 1450, 012080. [Google Scholar] [CrossRef]
- Emmanuel, T.; Maupong, T.; Mpoeleng, D.; Semong, T.; Mphago, B.; Tabona, O. A Survey on Missing Data in Machine Learning. J. Big Data 2021, 8, 140. [Google Scholar] [CrossRef]
- Lee, K.J.; Simpson, J.A. Introduction to Multiple Imputation for Dealing with Missing Data. Respirology 2014, 19, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Hancock, J.T.; Khoshgoftaar, T.M. Survey on Categorical Data for Neural Networks. J. Big Data 2020, 7, 28. [Google Scholar] [CrossRef]
- Jia, B.B.; Zhang, M.L. Multi-Dimensional Classification via Sparse Label Encoding. In Proceedings of the International Conference on Machine Learning, PMLR, online, 18–24 July 2021; pp. 4917–4926. [Google Scholar]
- Hickey, P.J.; Erfani, A.; Cui, Q. Use of LinkedIn Data and Machine Learning to Analyze Gender Differences in Construction Career Paths. J. Manag. Eng. 2022, 38, 04022060. [Google Scholar] [CrossRef]
- Jha, K.K.; Jha, R.; Jha, A.K.; Hassan, M.A.M.; Yadav, S.K.; Mahesh, T. A Brief Comparison on Machine Learning Algorithms Based on Various Applications: A Comprehensive Survey. In Proceedings of the 2021 IEEE International Conference on Computation System and Information Technology for Sustainable Solutions (CSITSS), Bangalore, India, 16–18 December 2021; pp. 1–5, IEEE. [Google Scholar]
- Erfani, A.; Cui, Q. Natural Language Processing Application in Construction Domain: An Integrative Review and Algorithms Comparison. Comput. Civ. Eng. 2021, 26–33. [Google Scholar]
- Li, Y.; Yang, L.; Yang, B.; Wang, N.; Wu, T. Application of Interpretable Machine Learning Models for Intelligent Decision. Neurocomputing 2019, 333, 273–283. [Google Scholar] [CrossRef]
- Erfani, A.; Frias-Martinez, V. A Fairness Assessment of Mobility-Based COVID-19 Case Prediction Models. PLoS ONE 2023, 18, e0292090. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Srinivasan, R.S. A Novel Ensemble Learning Approach to Support Building Energy Use Prediction. Energy Build. 2018, 159, 109–122. [Google Scholar] [CrossRef]
- Zhang, K.; Erfani, A.; Beydoun, O.; Cui, Q. Procurement Benchmarks for Major Transportation Projects. Transp. Res. Rec. 2022, 2676, 363–376. [Google Scholar] [CrossRef]
- Mohammadi, P.; Rashidi, A.; Malekzadeh, M.; Tiwari, S. Evaluating Various Machine Learning Algorithms for Automated Inspection of Culverts. Eng. Anal. Bound. Elem. 2023, 148, 366–375. [Google Scholar] [CrossRef]
- Probst, P.; Boulesteix, A.L.; Bischl, B. Tunability: Importance of Hyperparameters of Machine Learning Algorithms. J. Mach. Learn. Res. 2019, 20, 1–32. [Google Scholar]
- Roy, A.; Chakraborty, S. Support Vector Machine in Structural Reliability Analysis: A Review. Reliab. Eng. Syst. Saf. 2023, 233, 109126. [Google Scholar] [CrossRef]
- Hou, Y.; Liu, S. Predictive Modeling and Validation of Carbon Emissions from China’s Coastal Construction Industry: A BO-XGBoost Ensemble Approach. Sustainability 2024, 16, 4215. [Google Scholar] [CrossRef]
- Gou, L.; Zhang, J.; Wen, L.; Fan, Y. State Reliability of Wind Turbines Based on XGBoost–LSTM and Their Application in Northeast China. Sustainability 2024, 16, 4099. [Google Scholar] [CrossRef]
- Rusdah, D.A.; Murfi, H. XGBoost in Handling Missing Values for Life Insurance Risk Prediction. SN Appl. Sci. 2020, 2, 1336. [Google Scholar] [CrossRef]
- Plevris, V.; Solorzano, G.; Bakas, N.P.; Ben Seghier, M.E.A. Investigation of Performance Metrics in Regression Analysis and Machine Learning-Based Prediction Models. In Proceedings of the 8th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS Congress 2022), Oslo, Norway, 5–9 June 2022. European Community on Computational Methods in Applied Sciences. [Google Scholar] [CrossRef]
- Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A Next-Generation Hyperparameter Optimization Framework. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 2623–2631. [Google Scholar] [CrossRef]
- Eissa, R.; El-Adaway, I.H. Circular Economy Integration in LEED: A Decade of Materials and Resources Credit Achievement Patterns. J. Manag. Eng. 2024, 40, 04024047. [Google Scholar] [CrossRef]
- Ahmad, N.; Ghadi, Y.; Adnan, M.; Ali, M. Load Forecasting Techniques for Power System: Research Challenges and Survey. IEEE Access 2022, 10, 71054–71090. [Google Scholar] [CrossRef]
- Zhang, G.; Guo, J. A Novel Ensemble Method for Residential Electricity Demand Forecasting Based on a Novel Sample Simulation Strategy. Energy 2020, 207, 118265. [Google Scholar] [CrossRef]
- Nateghi, S.; Mansoori, A.; Moghaddam, M.A.E.; Kaczmarczyk, J. Multi-Objective Optimization of a Multi-Story Hotel’s Energy Demand and Investing the Money Saved in Energy Supply with Solar Energy Production. Energy Sustain. Dev. 2023, 72, 33–41. [Google Scholar] [CrossRef]
- Papaioannou, A.; Dimara, A.; Krinidis, S.; Anagnostopoulos, C.N.; Ioannidis, D.; Tzovaras, D. Advanced Proactive Anomaly Detection in Multi-Pattern Home Appliances for Energy Optimization. Internet Things 2024, 26, 101175. [Google Scholar] [CrossRef]
Study | Method | Features | Dataset Size | Limitation |
---|---|---|---|---|
Pushkar [28] | Statistical analysis | Project size | 94 projects | Focuses only on project size, misses other factors and non-linear relationships, limited to LEED-EB V4, small dataset |
Wu et al. [27] | Statistical analysis | Building types | 3416 projects | Lack of actionable strategies, limited to LEED 2009, small dataset |
Seyis and Ergen [32] | Delphi method, MAUT *, TOPSIS ** | Project delivery attributes | Expert opinions | Relies on expert opinions, may not generalize well |
Madanayake et al. [33] | AHP, Monte Carlo simulation | Project cost fluctuations, environmental impact, schedule implications, construction productivity | Expert opinions | Depends on expert knowledge, time-consuming to implement |
Attallah et al. [35] | Statistical analysis, ELECTRE III, Simulation | Project type, location, client type, architect/engineer’s experience | Expert opinions | Depends on expert knowledge, limited projects’ features and regions |
Cheng and Ma [36] | Case-based reasoning (CBR), ANN | Gross sqft, total property area, owner type, project type and location, grade level | 1000 projects | Depends on availability and similarity of past cases, limited to LEED-NC v2009, small dataset |
Ma and Cheng [13] | Random Forest (RF) | Climate factors | 912 projects | Limited to LEED-EB 2009, small dataset |
Jun and Cheng [16] | RF, AdaBoost Decision Tree, SVM | Project information, climatic factors | 912 projects | Limited to LEED-EB 2009, small dataset |
Category | Feature | Type | Unit |
---|---|---|---|
Project attribute | LEED version | Categorical | - |
Owner Type | Categorical | - | |
Project Type | Categorical | - | |
Gross Floor Area | Numerical | Sq ft | |
Climate variables | TAVG | Numerical | Fahrenheit |
DUTR | Numerical | Fahrenheit | |
CLDD | Numerical | Fahrenheit | |
HTDD | Numerical | Fahrenheit | |
PRCP | Numerical | Inches | |
SNOW | Numerical | Inches | |
PRCP_GE0.01 | Numerical | Day | |
SNOW_GE0.1 | Numerical | Day |
Feature | Count | Mean | Standard Deviation | Min | 25% | 50% | 75% | Max |
---|---|---|---|---|---|---|---|---|
Gross Floor Area | 67,347 | 82,482 | 323,003 | 0 | 2026 | 5669 | 64,263 | 37,000,000 |
TAVG | 65,797 | 59 | 8 | 13 | 52 | 57 | 65 | 82 |
DUTR | 65,797 | 20 | 3 | 8 | 18 | 20 | 22 | 38 |
CLDD | 65,797 | 1627 | 1122 | 0 | 768 | 1301 | 2612 | 6289 |
HTDD | 65,797 | 3725 | 2077 | 0 | 1949 | 4150 | 5376 | 18,846 |
PRCP | 66,945 | 37 | 15 | 2 | 23 | 41 | 47 | 176 |
SNOW | 61,621 | 17 | 24 | 0 | 0 | 4 | 25 | 463 |
PRCP_GE0.01 | 66,282 | 102 | 38 | 12 | 77 | 113 | 125 | 285 |
SNOW_GE0.1 | 61,621 | 9 | 13 | 0 | 0 | 2 | 13 | 100 |
LEED Version | Owner Types | Project Types | Gross Floor Area | TAVG | DUTR | CLDD | HTDD | PRCP | SNOW | PRCP_GE0.01 | SNOW_GE0.1 | Points Achieved |
---|---|---|---|---|---|---|---|---|---|---|---|---|
LEED v4 | Investors | Office | 163,887 | 68.2 | 23.0 | 2948.1 | 1741.3 | 38.0 | 0.2 | 86.7 | 0.4 | 61 |
LEED v4 | Corporate Entities | Industrial | 135,000 | 50.3 | 20.8 | 649.2 | 5980.0 | 50.7 | 36.5 | 131.0 | 12.1 | 43 |
LEED v2009 | Investors | Office | 438,580 | 61.9 | 21.2 | 1777.0 | 2877.8 | 52.7 | 0.5 | 117.5 | 0.3 | 64 |
LEED v2009 | Investors | Warehouse | 1,331,763 | 65.5 | 29.1 | 1767.1 | 1566.6 | 11.0 | 0.0 | 36.5 | 0.0 | 61 |
LEED v4 | Educational Institutions | Other | 34,000 | 53.2 | 20.4 | 950.4 | 5217.8 | 48.6 | 25.2 | 125.7 | 13.0 | 51 |
Parameter | Optimum Value |
---|---|
n_estimators | 300 |
max_depth | 10 |
learning_rate | 0.054 |
subsample | 0.930 |
colsample_bytree | 0.709 |
min_child_weight | 2 |
Performance Metric | DT | SVR | XGBoost |
---|---|---|---|
Mean Squared Error (MSE) | 70.79 | 110.88 | 50.76 |
Mean Absolute Error (MAE) | 5.32 | 7.67 | 4.70 |
Root Mean Squared Error (RMSE) | 8.41 | 10.53 | 7.12 |
R-squared | 0.74 | 0.59 | 0.81 |
Mean Absolute Percentage Error (MAPE) | 10.17% | 13.68% | 9.05% |
Training Time (Seconds) | 0.55 | 211.73 | 9.58 |
Test Time (Seconds) | 0.01 | 47.60 | 0.32 |
Total Execution Time (Seconds) | 0.56 | 259.33 | 9.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansouri, A.; Naghdi, M.; Erfani, A. Machine Learning for Leadership in Energy and Environmental Design Credit Targeting: Project Attributes and Climate Analysis Toward Sustainability. Sustainability 2025, 17, 2521. https://doi.org/10.3390/su17062521
Mansouri A, Naghdi M, Erfani A. Machine Learning for Leadership in Energy and Environmental Design Credit Targeting: Project Attributes and Climate Analysis Toward Sustainability. Sustainability. 2025; 17(6):2521. https://doi.org/10.3390/su17062521
Chicago/Turabian StyleMansouri, Ali, Mohsen Naghdi, and Abdolmajid Erfani. 2025. "Machine Learning for Leadership in Energy and Environmental Design Credit Targeting: Project Attributes and Climate Analysis Toward Sustainability" Sustainability 17, no. 6: 2521. https://doi.org/10.3390/su17062521
APA StyleMansouri, A., Naghdi, M., & Erfani, A. (2025). Machine Learning for Leadership in Energy and Environmental Design Credit Targeting: Project Attributes and Climate Analysis Toward Sustainability. Sustainability, 17(6), 2521. https://doi.org/10.3390/su17062521