Sustainable Resilience in Flood-Prone Rice Farming: Adaptive Strategies and Risk-Sharing Around Tempe Lake, Indonesia
Abstract
:1. Introduction
2. Research Methods
2.1. Study Sites
2.2. Data Collection
2.3. Data Analysis
- Cross-validation of narratives from farmers, landowners, and irrigation pump operators to identify recurring themes in flood response strategies.
- Comparison with historical flood records to situate individual and community-level experiences within broader environmental trends; and
- Thematic analysis of risk-sharing agreements to uncover structural patterns in farmer collaboration and adaptation without imposing rigid quantitative assumptions on social interactions.
3. Results and Discussion
3.1. Challenges of Sustainable Livelihoods in Flood-Prone Areas
3.2. Social Characteritics of Households
3.3. Livelihood Diversification as a Response to Flood-Induced Risks
3.4. Adaptive Income Strategies and Risk-Sharing Frameworks
3.5. Risk-Sharing Mechanisms for Resilient Rice Farming
3.6. Institutional Frameworks and Collaborative Risk Management
4. Conclusion and Policy Recommendation
4.1. Conlusion
4.2. Policy Recomendataion
4.3. Limitation of the Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haimes, Y.Y. On the definition of resilience in systems. Risk Anal. 2009, 29, 498–501. [Google Scholar] [CrossRef] [PubMed]
- Breakwell, G.M. Risk: A very short introduction. J. Risk Res. 2012, 15, 451–452. [Google Scholar] [CrossRef]
- Linsley, P. Risk: A very short introduction. Prometheus 2013, 31, 162–163. [Google Scholar] [CrossRef]
- Nicholls, N.; Easterling, D.; Goodess, C.M.; Kanae, S.; Kossin, J.; Luo, Y.; Marengo, J.; McInnes, K.; Rahimi, M.; Reichstein, M.; et al. Changes in climate extremes and their impacts on the natural physical environment. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012; pp. 109–230. [Google Scholar] [CrossRef]
- Widyastuti, M. Manajemen Bencana: Kajian Dan Ruang Lingkup. Jurnal Madani Edisi Lll 2005. Available online: https://wangsajaya.wordpress.com/wp-content/uploads/2017/08/ipi19473.pdf (accessed on 27 January 2025).
- Adhikari, S.; Keshav, C.A.; Barlaya, G.; Rathod, R.; Mandal, R.N.; Ikmail, S.; Saha, G.S.; De, H.K.; Sivaraman, I.; Mahapatra, A.S.; et al. Adaptation and Mitigation Strategies of Climate Change Impact in Freshwater Aquaculture in some states of India. J. Fishscicom 2018, 12, 16–21. [Google Scholar] [CrossRef]
- Govind, P.J.; Verchick, R.R.M. Natural disaster and climate change. In International Environmental Law and the Global South; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar] [CrossRef]
- Keim, M.E. Floods. In Koenig and schultz’s Disaster Medicine: Comprehensive Principles and Practices; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar] [CrossRef]
- Masud, M.M.; Azam, M.N.; Mohiuddin, M.; Banna, H.; Akhtar, R.; Alam, A.F.; Begum, H. Adaptation barriers and strategies towards climate change: Challenges in the agricultural sector. J. Clean. Prod. 2017, 156, 698–706. [Google Scholar] [CrossRef]
- Zain, M.M. Overcoming the Deluge: The Community Resilience in Temp Lake, Indonesia. Pak. J. Life Soc. Sci. 2022, 20, 264–270. [Google Scholar] [CrossRef]
- Wilby, R.L.; Keenan, R. Adapting to flood risk under climate change. Prog. Phys. Geogr. 2012, 36, 348–378. [Google Scholar] [CrossRef]
- Sultana, R.; Irfanullah, H.M.; Selim, S.A.; Budrudzaman, M. Vulnerability and ecosystem-based adaptation in the farming communities of droughtprone Northwest Bangladesh. Environ. Chall. 2023, 11, 100707. [Google Scholar] [CrossRef]
- Tran, P.T.; Vu, B.T.; Ngo, S.T.; Tran, V.D.; Ho, T.D.N. Climate change and livelihood vulnerability of the rice farmers in the North Central Region of Vietnam: A case study in Nghe An province, Vietnam. Environ. Chall. 2022, 7, 100460. [Google Scholar] [CrossRef]
- Darma, R.; Pada, A.A.T.; Bakri, R.; Darwis Amrullah, A.; Taufik, M. Community income analysis in lake Tempe Area, Wajo Regency. IOP Conf. Ser. Earth Environ. Sci. 2021, 807, 032084. [Google Scholar] [CrossRef]
- Salam, M.; Sari, A.N.; Bakri, R.; Arsyad, M.; Jamil, M.H.; Tenriawaru, A.N.; Muslim, A.I. Determinant factors affecting farmers’ income of rice farming in Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2019, 343, 012115. [Google Scholar] [CrossRef]
- Ali, M.S.S.; Majika, A.; Salman, D. Food consumption and production in Tempe Lake, South Sulawesi, Indonesia. J. Asian Rural Stud. 2017, 1, 43–52. [Google Scholar] [CrossRef]
- Van Khanh Triet, N.; Viet Dung, N.; Merz, B.; Apel, H. Towards risk-based flood management in highly productive paddy rice cultivation-concept development and application to the Mekong Delta. Nat. Hazards Earth Syst. Sci. 2018, 18, 2859–2876. [Google Scholar] [CrossRef]
- Ismail, A.M.; Singh, U.S.; Singh, S.; Dar, M.H.; Mackill, D.J. The contribution of submergence-tolerant (Sub1) rice varieties to food security in flood-prone rainfed lowland areas in Asia. Field Crop. Res. 2013, 152, 83–93. [Google Scholar] [CrossRef]
- Soeprobowati, T.R. Integrated Lake Basin Management for Save Indonesian Lake Movement. Procedia Environ. Sci. 2015, 23, 368–374. [Google Scholar] [CrossRef]
- Shiferaw, B.; Tesfaye, K.; Kassie, M.; Abate, T.; Prasanna, B.M.; Menkir, A. Managing vulnerability to drought and enhancing livelihood resilience in sub-Saharan Africa: Technological, institutional and policy options. Weather Clim. Extrem. 2014, 3, 67–79. [Google Scholar] [CrossRef]
- Brüntrup, M.; Tsegai, D. Drought Adaptation and Resilience in Developing Countries; Briefing Paper; German Development Institute/Deutsches Institut für Entwicklungspolitik (DIE): Bonn, Germany, 2017. [Google Scholar]
- Yang, Q.; Al Mamun, A.; Naznen, F.; Masud, M.M. Adoption of conservative agricultural practices among rural Chinese farmers. Humanit. Soc. Sci. Commun. 2024, 11, 450. [Google Scholar] [CrossRef]
- Tambo, J.A. Adaptation and resilience to climate change and variability in north-east Ghana. Int. J. Disaster Risk Reduct. 2016, 17, 85–94. [Google Scholar] [CrossRef]
- Arouri, M.; Nguyen, C.; Ben, Y.A. Natural Disasters, Household Welfare, and Resilience: Evidence from Rural Vietnam. World Dev. 2015, 70, 59–77. [Google Scholar] [CrossRef]
- Nguyen, K.V.; James, H. Measuring household resilience to floods: A case study in the Vietnamese Mekong River Delta. Ecol. Soc. 2013, 18, 13. [Google Scholar] [CrossRef]
- McElwee, P.; Nghiem, T.; Le, H.; Vu, H. Flood vulnerability among rural households in the Red River Delta of Vietnam: Implications for future climate change risk and adaptation. Nat. Hazards 2017, 86, 465–492. [Google Scholar] [CrossRef]
- Perdinan, P.; Boer, R.; Kartikasari, K.; Dasanto, B.D.; Hidayanti, R.; Oktavariani, D. Economic and adaptation costs of climate change: Case study of Indramayu, west java Indonesia. J. Kesejaht. Sos. 2018. [Google Scholar] [CrossRef]
- Institutions, L.; Adaptation, C.C. Local Institutions and Climate Change Adaptation; Social Development Notes; World Bank Publications: Chicago, IL, USA, 2008. [Google Scholar]
- Perez, C.; Jones, E.M.; Kristjanson, P.; Cramer, L.; Thornton, P.K.; Förch, W.; Barahona, C.A. How resilient are farming households and communities to a changing climate in Africa? A gender-based perspective. Glob. Environ. Chang. 2015, 34, 95–107. [Google Scholar] [CrossRef]
- Bin Rahman, A.N.M.R.; Zhang, J. Flood and drought tolerance in rice: Opposite but may coexist. Food Energy Secur. 2016, 5, 76–88. [Google Scholar] [CrossRef]
- Karim, M.R.; Thiel, A. Role of community based local institution for climate change adaptation in the Teesta riverine area of Bangladesh. Clim. Risk Manag. 2017, 17, 92–103. [Google Scholar] [CrossRef]
- Suharyanto, S.; Rinaldy, J.; Ngurah Arya, N. Analisis Risiko Produksi Usahatani Padi Sawah. AGRARIS J. Agribus. Rural Dev. Res. 2015, 1, 70–77. [Google Scholar] [CrossRef]
- Ullah, R.; Shivakoti, G.P.; Ali, G. Factors effecting farmers’ risk attitude and risk perceptions: THE case of Khyber Pakhtunkhwa, Pakistan. Int. J. Disaster Risk Reduct. 2015, 13, 151–157. [Google Scholar] [CrossRef]
- Al Mamun, M.A.; Rahman, A.T.M.S.; Shabee, M.S.S.A.; Das, J.; Islam, M.A.; Alam, G.M.M.; Rahman, M.M.; Kamruzzaman, M. Adaptation to Climate Change in Agriculture at Teesta Basin in Bangladesh. In Monitoring and Managing Multi-Hazards; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Saroar, M.; Routray, J.K. Local determinants of adaptive capacity against the climatic impacts in coastal bangladesh. In Handbook of Climate Change Adaptation; Springer: Berlin/Heidelberg, Germany,, 2015. [Google Scholar] [CrossRef]
- Artur, L.; Hilhorst, D. Everyday realities of climate change adaptation in Mozambique. Glob. Environ. Chang. 2012, 22, 529–536. [Google Scholar] [CrossRef]
- Khailani, D.K.; Perera, R. Mainstreaming disaster resilience attributes in local development plans for the adaptation to climate change induced flooding: A study based on the local plan of Shah Alam City, Malaysia. Land Use Policy 2013, 30, 615–627. [Google Scholar] [CrossRef]
- Haque, C.E.; Zaman, J.R.; Walker, D. Risk-Reduction, Coping, and Adaptation to Flood Hazards in Manitoba, Canada: Evidence from Communities in the Red River Valley. Geosciences 2023, 13, 88. [Google Scholar] [CrossRef]
- Murniati, K.; Mutolib, A. The impact of climate change on the household food security of upland rice farmers in sidomulyo, lampung province, Indonesia. Biodiversitas 2020, 21, 8. [Google Scholar] [CrossRef]
- Chartzoulakis, K.; Bertaki, M. Sustainable Water Management in Agriculture under Climate Change. Agric. Agric. Sci. Procedia 2015, 4, 88–98. [Google Scholar] [CrossRef]
- Hussain, A.; Rasul, G.; Mahapatra, B.; Tuladhar, S. Household food security in the face of climate change in the Hindu-Kush Himalayan region. Food Secur. 2016, 8, 921–937. [Google Scholar] [CrossRef]
- Bos, K.; Gupta, J. Stranded assets and stranded resources: Implications for climate change mitigation and global sustainable development. Energy Res. Soc. Sci. 2019, 56, 101215. [Google Scholar] [CrossRef]
- Aryal, J.P.; Sapkota, T.B.; Khurana, R.; Khatri-Chhetri, A.; Rahut, D.B.; Jat, M.L. Climate change and agriculture in South Asia: Adaptation options in smallholder production systems. Environ. Dev. Sustain. 2020, 22, 5045–5075. [Google Scholar] [CrossRef]
- Ojoyi, M.M. Building Climate Resilience in Tanzania: Institutional Reform and Capacity Development. 2017. Available online: https://www.jstor.org/stable/resrep29521?seq=1 (accessed on 7 March 2025).
- Cymh, Y. Economics for Ecology. In Proceedings of the 15th International Student Conference, Sumy, Ukraine, 29 April–2 May 2009. [Google Scholar]
- Agrawal, A.; Gandhi, P.; Khare, P. Women empowerment through entrepreneurship: Case study of a social entrepreneurial intervention in rural India. Int. J. Organ. Anal. 2023, 31, 1122–1142. [Google Scholar] [CrossRef]
- Version, D. A Critical Perspective on Policy Translation, Institutional Capacity. 2021. Available online: https://doi.org/10.33612/diss.192293069 (accessed on 7 March 2025).
- Tuan, L.A.; Cottrell, A.; King, D. Changes in Social Capital: A Case Study of Collective Rice Farming Practices in the Mekong Delta, Vietnam. J. Vietnam. Stud. 2014, 9, 68–99. [Google Scholar] [CrossRef]
- Hua, H.H.; Brown, P.R. Social capital enhances the resilience of agricultural cooperatives: Comparative case studies in the Mekong Delta, Vietnam. World Dev. Sustain. 2024, 5, 100170. [Google Scholar] [CrossRef]
- Nor Diana, M.I.; Zulkepli, N.A.; Siwar, C.; Zainol, M.R. Farmers’ Adaptation Strategies to Climate Change in Southeast Asia: A Systematic Literature Review. Sustainability 2022, 14, 3639. [Google Scholar] [CrossRef]
- Irawan, E. Lake and the laws: An exploratory network analysis of legal provisions for lake management. IOP Conf. Ser. Earth Environ. Sci. 2021, 789, 012038. [Google Scholar] [CrossRef]
- Alfath, N. Adaptation Strategies to Climate Change Impacts in The Area of Sidenreng Lake, Sidenreng Rappang Regency. PENA TEKNIK: J. Ilm. Ilmu-Ilmu Tek. 2023, 8, 43–61. [Google Scholar] [CrossRef]
- Abdurrahim, A.Y.; Farida, F.; Sari, R.R.; Van Noordwijk, M.; Yogaswarai, H.; Adiwibowo, S.; Dharmawan, A.H. Collective Action in Lake Management (CALM): An Indonesian stocktake. IOP Conf. Ser. Earth Environ. Sci. 2021, 789, 012039. [Google Scholar] [CrossRef]
- Busthanul, N.; Demmallino Eb Sultani Hr Lampe, M.; Ismail, A.; Yassi, A.; Daris, L.; Saudi My Zainuddin, A. Ecological adaptation of smallholders to tropical climate change in the highland zone of South Sulawesi, Indonesia. Biodiversitas 2023, 24, 10. [Google Scholar] [CrossRef]
- Kattel, G.R. Are freshwater systems in lower mekong basin (Southeast Asia) resilient? a synthesis of social-ecological system. Environ. Res. Commun. 2020, 2, 115004. [Google Scholar] [CrossRef]
- Ho, T.D.N.; Kuwornu, J.K.M.; Tsusaka, T.W. Factors Influencing Smallholder Rice Farmers’ Vulnerability to Climate Change and Variability in the Mekong Delta Region of Vietnam. Eur. J. Dev. Res. 2022, 34, 272–302. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, Z.; Chen, K.Z. Building climate-resilient food systems in east and southeast Asia: Vulnerabilities, responses and financing. Front. Agric. Sci. Eng. 2023, 10, 16–30. [Google Scholar] [CrossRef]
- Suryanto; Gravitiani, E.; Daerobi, A.; Susilowati, F. Crop insurance as farmers adaptation for climate change risk on agriculture in Surakarta residency-Indonesia. Int. J. Trade Glob. Mark. 2020, 13, 251. [Google Scholar] [CrossRef]
- Humanitarian Data Exchange. Indonesia. Subnational Administrative Boundaries. 2020. Available online: https://data.humdata.org/dataset/cod-ab-idn (accessed on 21 December 2024).
- Lapak, G.I.S. Shapefile Sulawesi Selatan. Lapak GISCom. 2020. Available online: https://www.lapakgis.com/2020/07/shapefile-provinsi-sulawesi-selatan.html (accessed on 21 December 2024).
- Sumawijaya, N. Hydrology and peat-land development in Indonesia. Tropics 2006, 15, 279–284. [Google Scholar] [CrossRef]
- Wolski, P.; Murray-Hudson, M. Flooding dynamics in a large low-gradient alluvial fan, the Okavango Delta, Botswana, from analysis and interpretation of a 30-year hydrometric record. Hydrol. Earth Syst. Sci. 2006, 10, 127–137. [Google Scholar] [CrossRef]
- Yu, K.; Xu, H.; Lan, J.; Sheng, E.; Liu, B.; Wu, H.; Tan, L.; Yeager, K.M. Climate change and soil erosion in a small alpine lake basin on the Loess Plateau, China. Earth Surf. Process Landf. 2017, 42, 1238–1247. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, C.; Chen, Y.; Li, W.; Liu, J. Response of glacial-lake outburst floods to climate change in the Yarkant River basin on northern slope of Karakoram Mountains, China. Quat. Int. 2010, 226, 75–81. [Google Scholar] [CrossRef]
- Feinstein, O.N. Adaptation to Climate Change. Evaluating Climate Change and Development. 2018. Available online: https://doi.org/10.4324/9781351297967-18 (accessed on 27 January 2025).
- Sorgho, R.; Quiñonez, C.A.M.; Louis, V.R.; Winkler, V.; Dambach, P.; Sauerborn, R.; Horstick, O. Climate change policies in 16 west African countries: A systematic review of adaptation with a focus on agriculture, food security, and nutrition. Int. J. Environ. Res. Public Health 2020, 17, 8897. [Google Scholar] [CrossRef] [PubMed]
- Allan, R.P.; Soden, B.J. Atmospheric warming and the amplification of precipitation extremes. Science 2008, 321, 1481–1484. [Google Scholar] [CrossRef]
- Trenberth, K.E. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Impacts, Adaptation and Vulnerability; Cambridge University Press (CUP): Cambridge, UK, 2014. [Google Scholar] [CrossRef]
- Belana, D. Economic Valuation of Lake Tempe Area Resources in Wajo Regency; A Socio-Economic and Ecological Approach. EcceS (Econ. Soc. Dev. Stud.) 2021, 8, 111–131. [Google Scholar] [CrossRef]
- Haerunnisa, H.; Budimawan, B.; Alam Ali, S.; Burhanuddin, A.I. Management Model of Sustainability Fisheries at Lake Tempe, South Sulawesi, Indonesian. Int. J. Sci. Res. (IJSR) 2015, 4, 2319–7064. [Google Scholar]
- Tantu, A.G.; Nurkaidah Salam, S. Tempe Lake and Various Problems. J. FisheriesSciences.com 2018, 11, 14–18. [Google Scholar] [CrossRef]
- Verhoeven, J.T.A.; Setter, T.L. Agricultural use of wetlands: Opportunities and limitations. Ann. Bot. 2010, 105, 155–163. [Google Scholar] [CrossRef]
- Syahriana Darti, B.; Bariroh, L.; Wahdaniyah Herman, S.R. Dilema Kebijakan Revitalisasi Pemanfaatan Danau Tempe Kabupaten Wajo. Politics Humanism 2022, 1, 1–9. [Google Scholar] [CrossRef]
- Ali, M.S.; Dahliana, B.; Salman, D.; Dirpan, A.; Viantika, I.M. Community resilience in dealing with Tempe lake disaster. IOP Conf. Ser. Earth Environ. Sci. 2019, 235, 012108. [Google Scholar] [CrossRef]
- Naing, N.; Santosa, H.R.; Soemarno, I. Living on the Floating Houses for Sustainable Livelihoods at Lake Tempe, South Sulawesi. Environ. Urban. Asia 2011, 2, 93–108. [Google Scholar] [CrossRef]
- McCully, P. Silenced Rivers: The Ecology and Politics of Large Dams; Zed Books: London, UK, 1996. [Google Scholar] [CrossRef]
- Buckley, P.H. Silenced Rivers: The Ecology and Politics of Large Dams; Professional Geographer; Zed Books: London, UK, 2003; p. 55. [Google Scholar]
- Pauly, D.; Christensen, V.; Walters, C. Ecopath, Ecosim, and Ecospace as tools for evaluating ecosystem impact of fisheries. ICES J. Mar. Sci. 2000, 57, 697–706. [Google Scholar] [CrossRef]
- Yazdanpanah, M.; Monfared, N.; Hochrainer-Stigler, S. Inter-Related Effects due to Droughts for Rural Populations: A Qualitative Field Study for Farmers in Iran. Int. J. Mass. Emerg. Disasters 2013, 31, 106–129. [Google Scholar] [CrossRef]
- Iglesias, A.; Moneo, M.; Quiroga, S. Methods for evaluating social vulnerability to drought. Adv. Nat. Technol. Hazards Res. 2009, 26, 153–159. [Google Scholar] [CrossRef]
- Mawardhi, A.D.; Linga, S.N. Drought and flood hazards management for agricultural water users in Central Java, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2023, 1190, 012001. [Google Scholar] [CrossRef]
- Jackson, D.C.; Marmulla, G. The Influence of Dams on River Fisheries. FAO Fisheries Technical Paper (Dams, Fish and Fisheries Opportunities, Challenges and Conflict Resolution). 2001, p. 419. Available online: https://www.fao.org/4/y2785e/y2785e02.htm (accessed on 27 January 2025).
- Pintar, M.R.; Dorn, N.J.; Kline, J.L.; Trexler, J.C. Hydrology-mediated ecological function of a large wetland threatened by an invasive predator. Sci. Total Environ. 2023, 857, 159245. [Google Scholar] [CrossRef]
- Winemiller, K.O.; McIntyre, P.B.; Castello, L.; Fluet-Chouinard, E.; Giarrizzo, T.; Nam, S.; Baird, I.G.; Darwall, W.; Lujan, N.K.; Harrison, I.; et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 2016, 351, 128–129. [Google Scholar] [CrossRef]
- Goto, D.; Dunlop, E.S.; Young, J.D.; Jackson, D.A. Shifting Trophic Control of Fishery–Ecosystem Dynamics Following Biological Invasions. Bull. Ecol. Soc. Am. 2020, 101, e02190. [Google Scholar] [CrossRef]
- Wheeler, S.; Loch, A.; Zuo, A.; Bjornlund, H. Reviewing the adoption and impact of water markets in the Murray-Darling Basin, Australia. J. Hydrol. 2013, 518, 28–41. [Google Scholar] [CrossRef]
- Ananda, F.; Nofrizal; Yoswaty, D.; Farida, L.; Hamidy, R. Integrating Environmentally Friendly Management of Water Resources toward Ecological and Socio-Economic Sustainability. Int. J. Energy Econ. Policy 2023, 13, 73–79. [Google Scholar] [CrossRef]
- Santos, E.; Carvalho, M.; Martins, S. Sustainable Water Management: Understanding the Socioeconomic and Cultural Dimensions. Sustainability 2023, 15, 13074. [Google Scholar] [CrossRef]
- Sawada, Y.; Shoji, M.; Sugawara, S.; Shinkai, N. The role of infrastructure in mitigating poverty dynamics: The case of an irrigation project in Sri Lanka. BE J. Econ. Anal. Policy 2014, 14, 1117–1144. [Google Scholar] [CrossRef]
- Béné, C.; Steel, E.; Luadia, B.K.; Gordon, A. Fish as the “bank in the water”-Evidence from chronic-poor communities in Congo. Food Policy 2009, 34, 108–118. [Google Scholar] [CrossRef]
- Sall, M.; Poussin, J.C.; Bossa, A.Y.; Ndiaye, R.; Cissé, M.; Martin, D.; Bader, J.C.; Sultan, B.; Ogilvie, A. Water constraints and flood-recession agriculture in the senegal river valley. Atmosphere 2020, 11, 1192. [Google Scholar] [CrossRef]
- Harou, I.L.; Whitney, C.; Kung’u, J.; Luedeling, E. Mapping flood-based farming systems with Bayesian networks. Land 2020, 9, 369. [Google Scholar] [CrossRef]
- Dinh, N.C.; Tan, N.Q.; Tinh, B.D.; Ha, V.H.; Kien, N.D.; Hung, P.X.; Linh, N.H.; Phuong, H.T. Decoding the livelihood vulnerability of flood-prone communities in Vietnam: Implications for disaster risk reduction and sustainable rural development. J. Agric. Environ. Int. Dev. 2023, 117, 99–122. [Google Scholar] [CrossRef]
- Betcherman, G.; Haque, I.; Marschke, M. Exploring livelihood transitions in the Mekong delta. Singap. J. Trop. Geogr. 2021, 42, 222–240. [Google Scholar] [CrossRef]
- Roy, A.; Basu, S. Determinants of Livelihood Diversification Under Environmental Change in Coastal Community of Bangladesh. Asia Pac. J. Rural Dev. 2020, 30, 7–26. [Google Scholar] [CrossRef]
- Swargiary, P.; Mahanta, A. Changing pattern of farm and non-farm livelihood among the bodos: A study in bodoland territorial areas of assam, India. Asian J. Agric. Rural Dev. 2020, 10, 671–681. [Google Scholar] [CrossRef]
- Kawasaki, A.; Shimomura, N. Accelerated widening of economic disparity due to recurrent floods. Int. J. Disaster Risk Reduct. 2024, 102, 104273. [Google Scholar] [CrossRef]
- Lobell, D.B.; Burke, M.B.; Tebaldi, C.; Mastrandrea, M.D.; Falcon, W.P.; Naylor, R.L. Prioritizing climate change adaptation needs for food security in 2030. Science 2008, 319, 607–610. [Google Scholar] [CrossRef] [PubMed]
- Michael, P.S.; Mwakyusa, L.; Sanga, H.G.; Shitindi, M.J.; Kwaslema, D.R.; Herzog, M.; Meliyo, J.L.; Massawe, B.H. Floods stress in lowland rice production: Experiences of rice farmers in Kilombero and Lower-Rufiji floodplains, Tanzania. Front. Sustain. Food Syst. 2023, 7, 1206754. [Google Scholar] [CrossRef]
- Carter, M.R.; Little, P.D.; Mogues, T.; Negatu, W. Poverty Traps and Natural Disasters in Ethiopia and Honduras. World Dev. 2007, 35, 835–856. [Google Scholar] [CrossRef]
- Sisay, K. Impacts of multiple livelihood diversification strategies on diet quality and welfare of smallholder farmers: Insight from Kaffa zone of Ethiopia. Clean. Responsible Consum. 2024, 12, 100161. [Google Scholar] [CrossRef]
- Meusch, E.; Yhoung-Aree, J.; Friend, R.; Funge-Smith, S.J. The Role and Nutritional Value of Aquatic Resources in the Livelihoods of Rural People. A participatory Assessement in Attapeu Province, Lao PDR; FAO: Rome, Italy, 2003; Volume 11. [Google Scholar]
- Béné, C.; Friend, R.M. Poverty in small-scale fisheries: Old issue, new analysis. Prog. Dev. Stud. 2011, 11, 119–144. [Google Scholar] [CrossRef]
- Singh, R.K.; Singh, A.; Kumar, A.; Kumar, N.; Kumar, S.; Sheraon, P.; Sharma, D.K. Autonomous Adaptation Strategies to Multiple Stressors: A Case Study with Marginal Communities in Eastern Uttar Pradesh, India. In Research Developments in Saline Agriculture; Springer: Singapore, 2019; pp. 853–882. [Google Scholar] [CrossRef]
- Adger, W.N. Social and ecological resilience: Are they related? Prog. Hum. Geogr. 2000, 24, 347–364. [Google Scholar] [CrossRef]
- Shi, C.; He, Y.; Li, H. How does ecological poverty alleviation contribute to improving residents’ sustainable livelihoods?—Evidence from Zhejiang Province, China. Sustain. Prod. Consum. 2023, 41, 418–430. [Google Scholar] [CrossRef]
- Chattopadhyay, K.; Gayan, S.; Mondal, I.; Mishra, S.K.; Mukherjee, A.K.; Reddy, J.N.; Marndi, B.C.; Sarkar, R.K. Stress Tolerant Rice And On-Farm Seed Production Ensure Food Security And Livelihood To Small And Marginal Farmers Of Sundarbans (Indian Site). SAARC J. Agric. 2020, 17, 127–139. [Google Scholar] [CrossRef]
- Dam, T.H.T.; Amjath-Babu, T.S.; Zander, P.; Müller, K. Paddy in saline water: Analysing variety-specific effects of saline water intrusion on the technical efficiency of rice production in Vietnam. Outlook Agric. 2019, 48, 237–245. [Google Scholar] [CrossRef]
- Hoang, L.P.; Pot, M.; Tran, D.D.; Ho, L.H.; Park, E. Adaptive capacity of high- and low dyke farmers to hydrological changes in the Vietnamese Mekong delta. Environ. Res. 2023, 224, 115423. [Google Scholar] [CrossRef]
- Luu, D.T. Origins of Farmers’ Adoption of Multiple Climate-Smart Agriculture Management Practices in the Vietnamese Mekong Delta. Makara Hum. Behav. Stud. Asia 2020, 24, 141–153. [Google Scholar] [CrossRef]
- Brown, P.R.; Tuan VVan Nhan, D.K.; Dung, L.C.; Ward, J. Influence of livelihoods on climate change adaptation for smallholder farmers in the Mekong Delta Vietnam. Int. J. Agric. Sustain. 2018, 16, 255–271. [Google Scholar] [CrossRef]
- Alamneh, T.; Mada, M.; Abebe, T. The Choices of Livelihood Diversification Strategies and Determinant Factors Among the Peri-Urban Households in Amhara Regional State, Ethiopia. Cogent Soc. Sci. 2023, 9, 2281047. [Google Scholar] [CrossRef]
- Behera, U.K.; Yates, C.M.; Kebreab, E.; France, J. Farming systems methodology for efficient resource management at the farm level: A review from an Indian perspective. J. Agric. Sci. 2008, 146, 493–505. [Google Scholar] [CrossRef]
- Majhi, A. Integrated Duck cum Fish Farming and its Economic Efficiency: A Study in Purulia District, West Bengal. Int. J. Sci. Res. (IJSR) 2018, 5, 5443–5450. [Google Scholar]
- Allison, E.H.; Mvula, P.M. Fishing Livelihoods and Fisheries Management in Malawi. 2002. Available online: https://assets.publishing.service.gov.uk/media/57a08d45e5274a31e000176c/Ladder-wp22.pdf (accessed on 27 January 2025).
- Awange, J.L.; Ong’ang’a, O. Lake Victoria: Ecology, Resources, Environment; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar] [CrossRef]
- Suciati, L.P.; Juanda, B.; Fauzi, A.; Rustiadi, E. Developing for Water Resources Incentives to Support System of Rice Intensification (SRI) in Jatiluhur Irrigation Area. IOSR J. Humanit. Soc. Sci. 2014, 19, 31–41. [Google Scholar] [CrossRef]
- Triyono; Mulyo, J.H.; Masyhuri; Jamhari. Resources economic efficiency for sustainable agriculture: Case on rice farm in Yogyakarta, Indonesia. Int. J. Appl. Bus. Econ. Res. 2017, 15. [Google Scholar]
- Purwantini, T.B.; Susilowati, S.H. Dampak Penggunaan Alat Mesin Panen terhadap Kelembagaan Usaha Tani Padi. Anal. Kebijak. Pertan. 2018, 16, 73–88. [Google Scholar] [CrossRef]
- Ho, T.D.N.; Kuwornu, J.K.M.; Tsusaka, T.W.; Nguyen, L.T.; Datta, A. An assessment of the smallholder rice farming households’ vulnerability to climate change and variability in the Mekong delta region of Vietnam. Local. Environ. 2021, 26, 948–966. [Google Scholar] [CrossRef]
- Wu, Y.; Zhu, Q.; Huang, J.; Tsang, D.H.K. Revenue sharing based resource allocation for dynamic spectrum access networks. IEEE J. Sel. Areas Commun. 2014, 32, 2280–2296. [Google Scholar] [CrossRef]
- Silva, J.V.; Reidsma, P.; Baudron, F.; Laborte, A.G.; Giller, K.E.; van Ittersum, M.K. How sustainable is sustainable intensification? Assessing yield gaps at field and farm level across the globe. Glob. Food Sec. 2021, 30, 100552. [Google Scholar] [CrossRef]
- Mwangoka, J.W.; Letaief, K.; Ben Cao, Z. Joint power control and spectrum allocation for cognitive radio networks via pricing. Phys. Commun. 2009, 2, 103–115. [Google Scholar] [CrossRef]
- Abbasi, I.A.; Ashari, H.; Jan, A.; Ariffin, A.S. Contract Farming towards Social Business: A New Paradigm. Sustainability 2021, 13, 12680. [Google Scholar] [CrossRef]
- Coclanis, P.A.; Stewart, M.A. Precarious Paddies: The Uncertain, Unstable, and Insecure Lives of Rice Farmers in the Mekong Delta. Adv. Glob. Chang. Res. 2011, 45, 103–114. [Google Scholar] [CrossRef]
- Tran, T.A.; James, H.; Nhan, D.K. Effects of Social Learning on Rural Farmers’ Adaptive Capacity: Empirical Insights from the Vietnamese Mekong Delta. Soc. Nat. Resour. 2020, 33, 1053–1072. [Google Scholar] [CrossRef]
- Chapman, A.D.; Darby, S.E.; Hồng, H.M.; Tompkins, E.L.; Van, T.P.D. Adaptation and development trade-offs: Fluvial sediment deposition and the sustainability of rice-cropping in An Giang Province, Mekong Delta. Clim. Chang. 2016, 137, 593–608. [Google Scholar] [CrossRef]
- Tran, N.L.D.; Rañola, R.F.; Ole Sander, B.; Reiner, W.; Nguyen, D.T.; Nong, N.K.N. Determinants of adoption of climate-smart agriculture technologies in rice production in Vietnam. Int. J. Clim. Chang. Strateg. Manag. 2020, 12, 238–256. [Google Scholar] [CrossRef]
Social Characteristics | Range (n = 140) | Total | ||
---|---|---|---|---|
Age (year) | <40 | 40–60 | >60 | |
30.00 | 60.00 | 10.00 | 100.00 | |
Employment | Farmer | Farmer + fishermen | Farmer + fishermen + others | |
7.14 | 80.00 | 12.86 | 100.00 | |
Household head education | Illiterate | Elementary | High school | |
16.43 | 53.57 | 25.00 | 100.00 | |
Household size (people) | <4 | 4–6 | >6 | |
53.57 | 34.29 | 12.14 | 100.00 | |
Farmer experience | <10 years | 10–20 years | >30 years | |
5.00 | 46.42 | 43.57 | 100.00 |
Description | Agriculture (IDR/Season) | Fishery (IDR/Month) | Others (IDR/Month) |
---|---|---|---|
Average | 14,738.58 | 571.32 | 2967.87 |
Standard of Deviation | 15,215.44 | 818.12 | 2532.81 |
Coefficient Variation (%) | 103.24 | 143.24 | 85.40 |
Range of Income (Percentage of RMW) | Households | Percentage (%) |
---|---|---|
Above 100.0 | 59 | 36.98 |
75.1–100.0 | 28 | 17.71 |
50.1–75.0 | 20 | 12.50 |
25.1–50.0 | 38 | 23.44 |
Less or ≤25 | 15 | 9.38 |
160 | 100.00 |
Description | Productivity | Price (IDR000/kg) |
---|---|---|
Average | 4689 (kg/ha) | 4520 (IDR/kg) |
Standard of Deviation (kg/ha) | 2258 (kg/ha) | 1320 (IDR/kg) |
Coeficient Variation | 48.16% | 29.20% |
Loss of Production (%) | Farmers | Percentage (%) |
---|---|---|
No loss | 86 | 53.71 |
Loss of ≤25 | 29 | 18.29 |
Loss of 25.1–50 | 12 | 7.43 |
Loss of 50.1–75 | 18 | 11.43 |
Loss of ≥75 | 15 | 9.14 |
160.00 | 100.00 |
Lost Items | Stakeholders | Value of Risk Potency | Net Return ** |
---|---|---|---|
Opportunity cost | Farmer | 2.00–3.00 | 10.93 |
Land preparation (tractor service) | Farmer | 1.30–1.50 | - |
Input production (seed, fertilizer, pesticide) | Farmer * | 0.70–1.20 | - |
Labour for plant cultivation | Farmer * | 0.20–0.50 | |
Opportunity cost of irrigation pump (oil, diesel, maintenance) | Water irrigation pump enterprise | 1.20 | 2.91 |
Opportunity cost of water pump labour (based on UMR) | Water pump labour | 0.00–0.29 | 0.73 |
Opportunity cost of land rent | Landowner | 2.00–2.50 | 6.43 |
Cost and Revenue Components | Contribution Share | Value (IDRMillion /ha) |
---|---|---|
Land preparation | Farmer | 1.3–1.5 |
Input production (seed, fertilizer, pesticide) | Equal share | 0.70–1.20 |
Labour for maintenance and planting | Farmer | 0.20–0.50 |
Harvesting cost (7.50% of gross production) | Equal share | 2.20 |
Pumping water use fee 20% from net production. No water fee from fail culture | Equal share | 0–5.96 |
Share tenant system after deduction all costs except land preparation and cultivation. | Farmer (60%) | 0–17.9 |
Landowner (40%) | 0–12.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amandaria, R.; Darma, R.; Zain, M.M.; Fudjaja, L.; Wahda, M.A.; Kamarulzaman, N.H.; Bakheet Ali, H.; Akzar, R. Sustainable Resilience in Flood-Prone Rice Farming: Adaptive Strategies and Risk-Sharing Around Tempe Lake, Indonesia. Sustainability 2025, 17, 2456. https://doi.org/10.3390/su17062456
Amandaria R, Darma R, Zain MM, Fudjaja L, Wahda MA, Kamarulzaman NH, Bakheet Ali H, Akzar R. Sustainable Resilience in Flood-Prone Rice Farming: Adaptive Strategies and Risk-Sharing Around Tempe Lake, Indonesia. Sustainability. 2025; 17(6):2456. https://doi.org/10.3390/su17062456
Chicago/Turabian StyleAmandaria, Riri, Rahim Darma, Majdah M. Zain, Letty Fudjaja, Muhammad Aksha Wahda, Nitty Hirawaty Kamarulzaman, Hamed Bakheet Ali, and Rida Akzar. 2025. "Sustainable Resilience in Flood-Prone Rice Farming: Adaptive Strategies and Risk-Sharing Around Tempe Lake, Indonesia" Sustainability 17, no. 6: 2456. https://doi.org/10.3390/su17062456
APA StyleAmandaria, R., Darma, R., Zain, M. M., Fudjaja, L., Wahda, M. A., Kamarulzaman, N. H., Bakheet Ali, H., & Akzar, R. (2025). Sustainable Resilience in Flood-Prone Rice Farming: Adaptive Strategies and Risk-Sharing Around Tempe Lake, Indonesia. Sustainability, 17(6), 2456. https://doi.org/10.3390/su17062456