Synergistic Biochar–Nitrogen Application Enhances Soil Fertility and Compensates for Nutrient Deficiency, Improving Wheat Production in Calcareous Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Biochar and Physicochemical Characteristics
2.2. Execution of Pot Experiment
2.3. Wheat Harvesting and Measurement of Agronomic Attributes
2.4. Measurement of Post-Harvest Soil Fertility Attributes
2.5. Statistical Analysis
3. Results
3.1. Pre-Physicochemical Characteristics of Experimental Soil
3.2. Effect of Treatments on Post-Harvest Soil Fertility Attributes
3.3. Effect of Treatments on Growth and Yield Attributes of Wheat
3.4. Correlation Among the Studied Variables/Parameters
3.5. Principal Component Analysis (PCA) Among the Studied Variables/Parameters
4. Discussion
4.1. Effect on Soil Fertility Attributes
4.2. Effect on Wheat Growth
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rahim, H.U.; Ali, W.; Uddin, M.; Ahmad, S.; Khan, K.; Bibi, H.; Alatalo, J.M. Abiotic stresses in soils, their effects on plants, and mitigation strategies: A literature review. Chem. Ecol. 2024, 1–34. [Google Scholar] [CrossRef]
- Bolan, N.; Srivastava, P.; Rao, C.S.; Satyanaraya, P.; Anderson, G.C.; Bolan, S.; Nortjé, G.P.; Kronenberg, R.; Bardhan, S.; Abbott, L.K. Distribution, characteristics and management of calcareous soils. Adv. Agron. 2023, 182, 81–130. [Google Scholar]
- Bontpart, T.; Weiss, A.; Vile, D.; Gérard, F.; Lacombe, B.; Reichheld, J.-P.; Mari, S. Growing on calcareous soils and facing climate change. Trends Plant Sci. 2024, 29, 1319–1330. [Google Scholar] [CrossRef] [PubMed]
- Pramanick, B.; Choudhary, S.; Kumar, M.; Singh, S.K.; Jha, R.; Singh, S.K.; Salmen, S.H.; Ansari, M.J.; Hossain, A. Can site-specific nutrient management improve the productivity and resource use efficiency of climate-resilient finger millet in calcareous soils in India? Heliyon 2024, 10, e32774. [Google Scholar] [CrossRef]
- Taj, A.; Bibi, H.; Akbar, W.A.; Rahim, H.U.; Iqbal, M.; Ullah, S. Effect of poultry manure and NPK compound fertilizer on soil physicochemical parameters, NPK availability, and uptake by spring maize (Zea mays L.) in alkaline-calcareous soil. Gesunde Pflanz. 2023, 75, 393–403. [Google Scholar] [CrossRef]
- Amanullah; Ilyas, M.; Nabi, H.; Khalid, S.; Ahmad, M.; Muhammad, A.; Ullah, S.; Ali, I.; Fahad, S.; Adnan, M. Integrated foliar nutrients application improve wheat (Triticum aestivum L.) productivity under calcareous soils in drylands. Commun. Soil Sci. Plant Anal. 2021, 52, 2748–2766. [Google Scholar] [CrossRef]
- Salem, E.M.; Kenawey, K.M.; Saudy, H.S.; Mubarak, M. Soil mulching and deficit irrigation effect on sustainability of nutrients availability and uptake, and productivity of maize grown in calcareous soils. Commun. Soil Sci. Plant Anal. 2021, 52, 1745–1761. [Google Scholar] [CrossRef]
- Dey, A.; Dwivedi, B.S.; Bhattacharyya, R.; Datta, S.P.; Meena, M.C.; Jat, R.K.; Gupta, R.K.; Jat, M.L.; Singh, V.K.; Das, D. Effect of conservation agriculture on soil organic and inorganic carbon sequestration and lability: A study from a rice–wheat cropping system on a calcareous soil of the eastern Indo-Gangetic Plains. Soil Use Manag. 2020, 36, 429–438. [Google Scholar] [CrossRef]
- Modaihsh, A.; Taha, A.; Mahjoub, M. Impact of some composts on wheat plant grown in calcareous soils. J. Soil Sci. Agric. Eng. 2005, 30, 8313–8321. [Google Scholar] [CrossRef]
- Khan, I.; Shah, Z.; Ahmad, W.; Khan, F.; Sharif, M. Integrated nutrient and tillage management improve organic matter, micronutrient content and physical properties of alkaline calcareous soil cultivated with wheat. Sarhad J. Agric. 2018, 34, 144–157. [Google Scholar] [CrossRef]
- Khan, H.; Akbar, W.A.; Shah, Z.; Rahim, H.U.; Taj, A.; Alatalo, J.M. Coupling phosphate-solubilizing bacteria (PSB) with inorganic phosphorus fertilizer improves mungbean (Vigna radiata) phosphorus acquisition, nitrogen fixation, and yield in alkaline-calcareous soil. Heliyon 2022, 8, e09081. [Google Scholar] [CrossRef] [PubMed]
- Ul Haq, J.; Sharif, M.; Akbar, W.A.; Ur Rahim, H.; Ahmad Mian, I.; Ahmad, S.; Alatalo, J.M.; Khan, Z.; Mudassir, M. Arbuscular mycorrhiza fungi integrated with single super phosphate improve wheat-nitrogen-phosphorus acquisition, yield, root infection activity, and spore density in alkaline-calcareous soil. Gesunde Pflanz. 2023, 75, 539–548. [Google Scholar] [CrossRef]
- Song, K.; Xue, Y.; Zheng, X.; Lv, W.; Qiao, H.; Qin, Q.; Yang, J. Effects of the continuous use of organic manure and chemical fertilizer on soil inorganic phosphorus fractions in calcareous soil. Sci. Rep. 2017, 7, 1164. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Cornejo, J.; Zornoza, R.; Faz, A. Carbon and nitrogen mineralization during decomposition of crop residues in a calcareous soil. Geoderma 2014, 230, 58–63. [Google Scholar] [CrossRef]
- Liao, D.; Zhang, C.; Lambers, H.; Zhang, F. Changes in soil phosphorus fractions in response to long-term phosphate fertilization under sole cropping and intercropping of maize and faba bean on a calcareous soil. Plant Soil 2021, 463, 589–600. [Google Scholar] [CrossRef]
- Cambrollé, J.; García, J.; Ocete, R.; Figueroa, M.E.; Cantos, M. Evaluating tolerance to calcareous soils in Vitis vinifera ssp. sylvestris. Plant Soil 2015, 396, 97–107. [Google Scholar] [CrossRef]
- Fa-Hu, L.; Keren, R. Calcareous sodic soil reclamation as affected by corn stalk application and incubation: A laboratory study. Pedosphere 2009, 19, 465–475. [Google Scholar]
- Aboukila, E.F.; Nassar, I.N.; Rashad, M.; Hafez, M.; Norton, J.B. Reclamation of calcareous soil and improvement of squash growth using brewers’ spent grain and compost. J. Saudi Soc. Agric. Sci. 2018, 17, 390–397. [Google Scholar] [CrossRef]
- Ahmad, S.; Zhu, X.; Wang, Q.; Wei, X.; Zhang, S. Microwave-assisted hydrothermal treatment of soybean residue and chitosan: Characterization of hydrochars and role of N and P transformation for Pb (II) removal. J. Anal. Appl. Pyrolysis 2021, 160, 105330. [Google Scholar] [CrossRef]
- Ahmad, S.; Liu, X.; Liu, L.; Waqas, M.; Zhang, J.; Hassan, M.A.; Zhang, S.; Pan, B.; Tang, J. Remediation of chromium contaminated water and soil by nitrogen and iron doped biochars. Sci. Total Environ. 2024, 954, 176435. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for environmental management: An introduction. In Biochar for Environmental Management; Routledge: Abingdon, UK, 2015; pp. 1–13. [Google Scholar]
- Farrell, M.; Macdonald, L.M.; Butler, G.; Chirino-Valle, I.; Condron, L.M. Biochar and fertiliser applications influence phosphorus fractionation and wheat yield. Biol. Fertil. Soils 2014, 50, 169–178. [Google Scholar] [CrossRef]
- Peng, Y.; Sun, Y.; Fan, B.; Zhang, S.; Bolan, N.S.; Chen, Q.; Tsang, D.C. Fe/Al (hydr) oxides engineered biochar for reducing phosphorus leaching from a fertile calcareous soil. J. Clean. Prod. 2021, 279, 123877. [Google Scholar] [CrossRef]
- Agegnehu, G.; Bass, A.M.; Nelson, P.N.; Muirhead, B.; Wright, G.; Bird, M.I. Biochar and biochar-compost as soil amendments: Effects on peanut yield, soil properties and greenhouse gas emissions in tropical North Queensland, Australia. Agric. Ecosyst. Environ. 2015, 213, 72–85. [Google Scholar] [CrossRef]
- Akbar, W.A.; Rahim, H.U.; Irfan, M.; Alatalo, J.M.; Mudasssir, M.; Bundschuh, J. Effects of incorporating pine-woodchip biochar with reduced NP fertilizer on calcareous soil characteristics, organic carbon, NPK availability, and maize productivity. J. Soils Sediments 2024, 24, 177–188. [Google Scholar] [CrossRef]
- Song, D.; Xi, X.; Zheng, Q.; Liang, G.; Zhou, W.; Wang, X. Soil nutrient and microbial activity responses to two years after maize straw biochar application in a calcareous soil. Ecotoxicol. Environ. Saf. 2019, 180, 348–356. [Google Scholar] [CrossRef]
- Ippolito, J.; Stromberger, M.; Lentz, R.; Dungan, R. Hardwood biochar and manure co-application to a calcareous soil. Chemosphere 2016, 142, 84–91. [Google Scholar] [CrossRef]
- Khan, A.; Shafi, M.; Bakht, J.; Khan, M.O.; Anwar, S. Response of wheat varieties to salinity stress as ameliorated by seed priming. Pak. J. Bot 2019, 51, 1969–1978. [Google Scholar] [CrossRef]
- Rhoades, J. Salinity: Electrical conductivity and total dissolved solids. In Methods of Soil Analysis, Part 3: Chemical Methods; Soil Science Society of America, Inc.; American Society of Agronomy, Inc.: Madison, WI, USA, 1996; Volume 5, pp. 417–435. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis, Part 3: Chemical Methods; Soil Science Society of America, Inc.; American Society of Agronomy, Inc.: Madison, WI, USA, 1996; Volume 5, pp. 961–1010. [Google Scholar]
- Walter, K.; Don, A.; Tiemeyer, B.; Freibauer, A. Determining soil bulk density for carbon stock calculations: A systematic method comparison. Soil Sci. Soc. Am. J. 2016, 80, 579–591. [Google Scholar] [CrossRef]
- Bremner, J.M.; Mulvaney, C. Nitrogen—Total. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties; American Society of Agronomy: Madison, WI, USA, 1982; Volume 9, pp. 595–624. [Google Scholar]
- Gardner, W.H. Water content. In Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods; American Society of Agronomy: Madison, WI, USA, 1986; Volume 5, pp. 493–544. [Google Scholar]
- Soltanpour, P.; Schwab, A. A new soil test for simultaneous extraction of macro-and micro-nutrients in alkaline soils. Commun. Soil Sci. Plant Anal. 1977, 8, 195–207. [Google Scholar] [CrossRef]
- Sarfraz, R.; Shakoor, A.; Abdullah, M.; Arooj, A.; Hussain, A.; Xing, S. Impact of integrated application of biochar and nitrogen fertilizers on maize growth and nitrogen recovery in alkaline calcareous soil. Soil Sci. Plant Nutr. 2017, 63, 488–498. [Google Scholar] [CrossRef]
- Jien, S.-H.; Wang, C.-S. Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena 2013, 110, 225–233. [Google Scholar] [CrossRef]
- Xiaofeng, B.; Xiaoqin, Z.; Zifu, L.; Jiewen, N.; Xue, B. Properties and applications of biochars derived from different biomass feedstock sources. Int. J. Agric. Biol. Eng. 2017, 10, 242–250. [Google Scholar]
- Masud, M.; Jiu-Yu, L.; Ren-Kou, X. Use of alkaline slag and crop residue biochars to promote base saturation and reduce acidity of an acidic Ultisol. Pedosphere 2014, 24, 791–798. [Google Scholar] [CrossRef]
- Gul, S.; Whalen, J.K.; Thomas, B.W.; Sachdeva, V.; Deng, H. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agric. Ecosyst. Environ. 2015, 206, 46–59. [Google Scholar] [CrossRef]
- Rajkovich, S.; Enders, A.; Hanley, K.; Hyland, C.; Zimmerman, A.R.; Lehmann, J. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol. Fertil. Soils 2012, 48, 271–284. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, X.; Chen, L.; Wang, Z.; Xia, Y.; Zhang, Y.; Wang, H.; Luo, X.; Xing, B. Enhanced growth of halophyte plants in biochar-amended coastal soil: Roles of nutrient availability and rhizosphere microbial modulation. Plant Cell Environ. 2018, 41, 517–532. [Google Scholar] [CrossRef]
- Usman, A.R.A.; Al-Wabel, M.I.; Abdulaziz, A.-H.; Mahmoud, W.-A.; El-Naggar, A.H.; Ahmad, M.; Abdulelah, A.-F.; Abdulrasoul, A.-O. Conocarpus biochar induces changes in soil nutrient availability and tomato growth under saline irrigation. Pedosphere 2016, 26, 27–38. [Google Scholar] [CrossRef]
- Kabir, E.; Kim, K.-H.; Kwon, E.E. Biochar as a tool for the improvement of soil and environment. Front. Environ. Sci. 2023, 11, 1324533. [Google Scholar] [CrossRef]
- Alkharabsheh, H.M.; Seleiman, M.F.; Battaglia, M.L.; Shami, A.; Jalal, R.S.; Alhammad, B.A.; Almutairi, K.F.; Al-Saif, A.M. Biochar and its broad impacts in soil quality and fertility, nutrient leaching and crop productivity: A review. Agronomy 2021, 11, 993. [Google Scholar] [CrossRef]
- Burrell, L.D.; Zehetner, F.; Rampazzo, N.; Wimmer, B.; Soja, G. Long-term effects of biochar on soil physical properties. Geoderma 2016, 282, 96–102. [Google Scholar] [CrossRef]
- Quin, P.R.; Cowie, A.; Flavel, R.; Keen, B.; Macdonald, L.; Morris, S.; Singh, B.P.; Young, I.; Van Zwieten, L. Oil mallee biochar improves soil structural properties—A study with X-ray micro-CT. Agric. Ecosyst. Environ. 2014, 191, 142–149. [Google Scholar] [CrossRef]
- Laird, D.A.; Fleming, P.; Davis, D.D.; Horton, R.; Wang, B.; Karlen, D.L. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 2010, 158, 443–449. [Google Scholar] [CrossRef]
- Wardle, D.A.; Nilsson, M.-C.; Zackrisson, O. Fire-derived charcoal causes loss of forest humus. Science 2008, 320, 629. [Google Scholar] [CrossRef]
- Luo, Y.; Durenkamp, M.; De Nobili, M.; Lin, Q.; Brookes, P. Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Biol. Biochem. 2011, 43, 2304–2314. [Google Scholar] [CrossRef]
- Singh, B.P.; Cowie, A.L. Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil. Sci. Rep. 2014, 4, 3687. [Google Scholar] [CrossRef]
- Hannet, G.; Singh, K.; Fidelis, C.; Farrar, M.B.; Muqaddas, B.; Bai, S.H. Effects of biochar, compost, and biochar-compost on soil total nitrogen and available phosphorus concentrations in a corn field in Papua New Guinea. Environ. Sci. Pollut. Res. 2021, 28, 27411–27419. [Google Scholar] [CrossRef]
- Darby, I.; Xu, C.-Y.; Wallace, H.M.; Joseph, S.; Pace, B.; Bai, S.H. Short-term dynamics of carbon and nitrogen using compost, compost-biochar mixture and organo-mineral biochar. Environ. Sci. Pollut. Res. 2016, 23, 11267–11278. [Google Scholar] [CrossRef]
- Razzaghi, F.; Obour, P.B.; Arthur, E. Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma 2020, 361, 114055. [Google Scholar] [CrossRef]
- Liu, Z.; Dugan, B.; Masiello, C.A.; Gonnermann, H.M. Biochar particle size, shape, and porosity act together to influence soil water properties. PLoS ONE 2017, 12, e0179079. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Biochar and soil physical properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef]
- Gul, S.; Whalen, J.K. Biochemical cycling of nitrogen and phosphorus in biochar-amended soils. Soil Biol. Biochem. 2016, 103, 1–15. [Google Scholar] [CrossRef]
- Farrar, M.B.; Wallace, H.M.; Xu, C.-Y.; Nguyen, T.T.N.; Tavakkoli, E.; Joseph, S.; Bai, S.H. Short-term effects of organo-mineral enriched biochar fertiliser on ginger yield and nutrient cycling. J. Soils Sediments 2019, 19, 668–682. [Google Scholar] [CrossRef]
- Akbar, W.A.; Ilyas, M.; Arif, M.; Rahim, H.U.; Munsif, F.; Mudassir, M.; Fahad, S.; Jalal, F.; Zaheer, S. Biochar from on-farm feedstocks for sustainable potassium management in soils. In Sustainable Agriculture Reviews 61: Biochar to Improve Crop Production and Decrease Plant Stress Under a Changing Climate; Springer: Berlin/Heidelberg, Germany, 2023; pp. 219–229. [Google Scholar]
- Bilias, F.; Kalderis, D.; Richardson, C.; Barbayiannis, N.; Gasparatos, D. Biochar application as a soil potassium management strategy: A review. Sci. Total Environ. 2023, 858, 159782. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Basir, A.; Fahad, S.; Adnan, M.; Saleem, M.H.; Iqbal, A.; Amanullah; Al-Huqail, A.A.; Alosaimi, A.A.; Saud, S. Biochar optimizes wheat quality, yield, and nitrogen acquisition in low fertile calcareous soil treated with organic and mineral nitrogen fertilizers. Front. Plant Sci. 2022, 13, 879788. [Google Scholar] [CrossRef]
- Zhang, Q.; Song, Y.; Wu, Z.; Yan, X.; Gunina, A.; Kuzyakov, Y.; Xiong, Z. Effects of six-year biochar amendment on soil aggregation, crop growth, and nitrogen and phosphorus use efficiencies in a rice-wheat rotation. J. Clean. Prod. 2020, 242, 118435. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Bahar, M.M.; Sarkar, B.; Donne, S.W.; Ok, Y.S.; Palansooriya, K.N.; Kirkham, M.B.; Chowdhury, S.; Bolan, N. Biochar and its importance on nutrient dynamics in soil and plant. Biochar 2020, 2, 379–420. [Google Scholar] [CrossRef]
T. No | Treatment Name | Description |
---|---|---|
1 | CK | Control (no treatments) |
2 | 5-BC+60-N | 5 tons ha−1 biochar (BC) with 60 kg ha−1 Urea (N) |
3 | 10-BC+60-N | 10 tons ha−1 BC with 60 kg ha−1 N |
4 | 15-BC+60-N | 15 tons ha−1 BC with 60 kg ha−1 N |
5 | 5-BC+90-N | 5 tons ha−1 BC with 90 kg ha−1 N |
6 | 10-BC+90-N | 10 tons ha−1 BC with 90 kg ha−1 N |
7 | 15-BC+90-N | 15 tons ha−1 BC with 90 kg ha−1 N |
8 | 5-BC+120-N | 5 tons ha−1 BC with 120 kg ha−1 N |
9 | 10-BC+120-N | 10 tons ha−1 BC with 120 kg ha−1 N |
10 | 15-BC+120-N | 15 tons ha−1 BC with 120 kg ha−1 N |
Soil pH | Soil EC | SOM | SBD | SP | STN | Avai. P | Avai. K | Ph | Sl | G. spike−1 | TGW | GY | BY | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Soil pH | 1.0 | |||||||||||||
Soil EC | 0.8 | 1.0 | ||||||||||||
SOM | 0.7 | 0.9 | 1.0 | |||||||||||
SBD | −0.8 | −0.9 | −1.0 | 1 | ||||||||||
SP | 0.9 | 0.9 | 0.8 | −0.83 | 1.00 | |||||||||
STN | 0.9 | 0.9 | 0.9 | −0.94 | 0.93 | 1.00 | ||||||||
Avai. P | 0.8 | 0.9 | 0.8 | −0.87 | 0.90 | 0.97 | 1.00 | |||||||
Avai. K | 0.9 | 0.8 | 0.7 | −0.74 | 0.92 | 0.87 | 0.92 | 1.00 | ||||||
Ph | 0.9 | 0.9 | 0.9 | −0.89 | 0.93 | 0.96 | 0.97 | 0.95 | 1.00 | |||||
Sl | 1.0 | 0.9 | 0.8 | −0.86 | 0.97 | 0.92 | 0.89 | 0.94 | 0.96 | 1.00 | ||||
G. spike−1 | 0.8 | 0.9 | 0.9 | −0.92 | 0.87 | 0.89 | 0.87 | 0.83 | 0.91 | 0.90 | 1.00 | |||
TGW | 1.0 | 0.9 | 0.8 | −0.85 | 0.96 | 0.92 | 0.89 | 0.94 | 0.95 | 0.98 | 0.86 | 1.00 | ||
GY | 1.0 | 0.9 | 0.9 | −0.88 | 0.96 | 0.94 | 0.90 | 0.92 | 0.96 | 0.99 | 0.90 | 0.97 | 1.00 | |
BY | 0.8 | 0.9 | 0.9 | −0.98 | 0.86 | 0.95 | 0.85 | 0.71 | 0.87 | 0.86 | 0.88 | 0.85 | 0.89 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, B.; Rahim, H.U.; Mian, I.A.; Ali, W. Synergistic Biochar–Nitrogen Application Enhances Soil Fertility and Compensates for Nutrient Deficiency, Improving Wheat Production in Calcareous Soil. Sustainability 2025, 17, 2321. https://doi.org/10.3390/su17052321
Ahmad B, Rahim HU, Mian IA, Ali W. Synergistic Biochar–Nitrogen Application Enhances Soil Fertility and Compensates for Nutrient Deficiency, Improving Wheat Production in Calcareous Soil. Sustainability. 2025; 17(5):2321. https://doi.org/10.3390/su17052321
Chicago/Turabian StyleAhmad, Bilal, Hafeez Ur Rahim, Ishaq Ahmad Mian, and Waqas Ali. 2025. "Synergistic Biochar–Nitrogen Application Enhances Soil Fertility and Compensates for Nutrient Deficiency, Improving Wheat Production in Calcareous Soil" Sustainability 17, no. 5: 2321. https://doi.org/10.3390/su17052321
APA StyleAhmad, B., Rahim, H. U., Mian, I. A., & Ali, W. (2025). Synergistic Biochar–Nitrogen Application Enhances Soil Fertility and Compensates for Nutrient Deficiency, Improving Wheat Production in Calcareous Soil. Sustainability, 17(5), 2321. https://doi.org/10.3390/su17052321