Zero-Valent Iron-Supported Magnetic Hydrochar Derived from Kitchen Waste for Efficient Fenton-like Degradation of Tetracycline Hydrochloride
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Instruments
2.2. Preparation of HTC
2.3. Preparation of Fe@HTC
2.4. Preparation of Fe@HTC−T
2.5. Characterization of Materials
2.6. Catalytic Degradation Experiments
3. Results and Discussion
3.1. Characterization of Synthesized Catalyst
3.2. TC–HCl Removal Using the Synthesized Catalyst
3.3. Kinetic Analysis of TC–HCl Degradation
3.4. Comparison of Tetracycline Removal Efficiency Using Different Catalysts
4. Proposed Degradation Mechanism of TC–HCl by Fe@HTC–800 Composite
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, Q.; Gao, Y.; Ke, J.; Show, P.L.; Ge, Y.; Liu, Y.; Guo, R.; Chen, J. Antibiotics: An Overview on the Environmental Occurrence, Toxicity, Degradation, and Removal Methods. Bioengineered 2021, 12, 7376–7416. [Google Scholar] [CrossRef]
- Cao, J.; Lai, L.; Lai, B.; Yao, G.; Chen, X.; Song, L. Degradation of Tetracycline by Peroxymonosulfate Activated with Zero-valent Iron: Performance, Intermediates, Toxicity and Mechanism. Chem. Eng. J. 2019, 364, 45–56. [Google Scholar] [CrossRef]
- Cao, J.; Xiong, Z.; Lai, B. Effect of Initial pH on the Tetracycline(TC) Removal by Zero-valent Iron: Adsorption, Oxidation and Reduction. Chem. Eng. J. 2018, 343, 492–499. [Google Scholar] [CrossRef]
- Li, J.; Yao, R.; Deng, B.; Li, Z.; Tuo, K.; Fan, C.; Liu, G.; Pu, S. A Facile Construction of Bifunctional Core-shell-shell Structured Magnetic Metal-organic Frameworks for Detection and Removal of Tetracycline. Chem. Eng. J. 2023, 464, 142626. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, L.; Yu, N.; Zhang, Z.; Zheng, X.; Hu, X. Preparation of Fe3O4@C@TiO2 and Its Application for Oxytetracycline Hydrochloride Adsorption. Rare Met. 2017, 39, 1333–1340. [Google Scholar] [CrossRef]
- Ma, Y.; Lu, T.; Tang, J.; Li, P.; Mašek, O.; Yang, L.; Wu, L.; He, L.; Ding, Y.; Gao, F.; et al. One-pot Hydrothermal Synthesis of Magnetic N-doped Sludge Biochar for Efficient Removal of Tetracycline from Various Environmental Waters. Sep. Purif. Technol. 2022, 297, 121426. [Google Scholar] [CrossRef]
- Ren, H.; Pan, Y.; Zhong, J.; Wang, J.; Lu, Z.; He, Q.; Zhou, S.; Liao, X.; Liu, Y.; An, T.; et al. An Antibiotic-destructase-activated Fenton-like Catalyst for Synergistic Removal of Tetracycline Residues from Aquatic Environment. Chem. Eng. J. 2023, 459, 141576. [Google Scholar] [CrossRef]
- Lu, L.; Zhang, Y.; Yuan, Z.; Xu, J.; Li, M.; Wu, Y.; Wang, L.; Huang, S.; Rao, Y. Easily Fabricated Harcp/hap Photocatalyst for Efficient and Fast Removal of Tetracycline Under Natural Sunlight. Chem. Eng. J. 2021, 412, 128620. [Google Scholar] [CrossRef]
- Li, N.; Zhou, L.; Jin, X.; Owens, G.; Chen, Z. Simultaneous Removal of Tetracycline and Oxytetracycline Antibiotics from Wastewater Using a ZIF-8 Metal Organic-framework. J. Hazard. Mater. 2019, 366, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Hu, S.; Zhao, H.; Luo, X.; Liu, Y.; Deng, C.; Yu, Y.; Hu, T.; Shan, S.; Zhi, Y.; et al. High-performance Fe-doped ZIF-8 Adsorbent for Capturing Tetracycline from Aqueous Solution. J. Hazard. Mater. 2021, 416, 126046. [Google Scholar] [CrossRef]
- Choi, W.; Termin, A.; Hoffmann, M.R. The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. J. Phys. Chem. 1994, 98, 13669–13679. [Google Scholar] [CrossRef]
- Ahmadi, M.; Motlagh, H.R.; Jaafarzadeh, N.; Mostoufi, A.; Saeedi, R.; Barzegar, G.; Jorfi, S. Enhanced Photocatalytic Degradation of Tetracycline and Real Pharmaceutical Wastewater Using Mwcnt/TiO2 Nano-composite. J. Environ. Manag. 2017, 186, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Yu, S.; Li, C. Fabrication of Aligned Carbon Nanofiber Doped with SnO2-Sb for Efficient Electrochemical Removal of Tetracycline. Chem. Eng. J. 2022, 441, 136052. [Google Scholar] [CrossRef]
- Qi, X.; Xiong, J.; Zhao, C.; Ru, S. Unraveling the Key Driving Factors Involved in Cometabolism Enhanced Aerobic Degradation of Tetracycline in Wastewater. Water Res. 2022, 226, 119285. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, Y.; Gao, X.; Yang, Z.; Wang, H.; Zhang, X. Performance and Mechanism of In Situ Prepared NF@CoMnNi-LDH Composites to Activate PMS for Degradation of Enrofloxacin in Water. Water 2025, 17, 24. [Google Scholar] [CrossRef]
- Wang, Y.; Xia, W.; Jiao, G.; Wang, J.; Gong, Y.; Yin, Q.; Jiang, H.; Zhang, X. Boosting catalytic activity of Fe-based perovskite by compositing with Co oxyhydroxide for peroxymonosulfate activation and ofloxacin degradation, Colloids Surf. A Physicochem. Eng. Asp. 2025, 705, 135706. [Google Scholar] [CrossRef]
- Al-Gariaa, A.M.; Elasala, G.S.; Ismail, E.H.; Khalil, M.M.H.; El-Sewify, I.M. Photodegradation of antibacterial cefotaxime using Mn doped ZnO nanosphere. Inorg. Chem. Commun. 2023, 158, 111434. [Google Scholar] [CrossRef]
- Radwan, A.; Mohamed, S.O.; Khalil, M.M.H.; El-Sewify, I.M. Effective adsorption of fluorescent congo red azo dye from aqueous solution by green synthesized nanosphere ZnO/CuO composite using propolis as bee byproduct extract. Sci. Rep. 2024, 14, 9061. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Huang, X.; Tian, Y.; Cao, M.; Zhou, L.; Zhou, Y.; Lu, J.; Lei, J.; Zhou, Y.; Wang, L.; et al. High-efficiency Adsorption of Tetracycline by Cooperation of Carbon and Iron in a Magnetic Fe/Porous Carbon Hybrid with Effective Fenton Regeneration. Appl. Surf. Sci. 2021, 538, 147813. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, Z.; Wu, Q. Activation of Persulfate by Magnetic Zirconium-doped Manganese Ferrite for Efficient Degradation of Tetracycline. Chem. Eng. J. 2021, 423, 130283. [Google Scholar] [CrossRef]
- Guo, C.; Wang, K.; Hou, S.; Wan, L.; Lv, J.; Zhang, Y.; Qu, X.; Chen, S.; Xu, J. H2O2 and/or TiO2 Photocatalysis Under Uv Irradiation for the Removal of Antibiotic Resistant Bacteria and Their Antibiotic Resistance Genes. J. Hazard. Mater. 2017, 323, 710–718. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yu, I.K.; Tsang, D.C.; Cao, X.; Lin, D.; Wang, L.; Graham, N.J.; Alessi, D.S.; Komárek, M.; Ok, Y.S.; et al. Multifunctional Iron-biochar Composites for the Removal of Potentially Toxic Elements, Inherent Cations, and Hetero-chloride from Hydraulic Fracturing Wastewater. Environ. Int. 2019, 124, 521–532. [Google Scholar] [CrossRef] [PubMed]
- Pirsaheb, M.; Moradi, S.; Shahlaei, M.; Wang, X.; Farhadian, N. A New Composite of Nano Zero-valent Iron Encapsulated in Carbon Dots for Oxidative Removal of Bio-refractory Antibiotics from Water. J. Clean. Prod. 2019, 209, 1523–1532. [Google Scholar] [CrossRef]
- Jin, P.; Cao, Z.; He, B. Cu0@CuOx-NC Modified Zn2In2S5 for Photo-self-Fenton System Coupling H2O2 In-situ Production and Decomposition. Chemosphere 2023, 332, 138820. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Zheng, M.; Fu, C.; Li, G.; Xiong, Y.; Qiu, W.; Zhang, T.; Zhang, J.; Zheng, C. Effect of Low-level H2O2 and Fe(II) on the Uv Treatment of Tetracycline Antibiotics and the Toxicity of Reaction Solutions to Zebrafish Embryos. Chem. Eng. J. 2020, 394, 125021. [Google Scholar] [CrossRef]
- He, Z.; Xu, X.; Wang, B.; Lu, Z.; Shi, D.; Wu, W. Evaluation of Iron-loaded Granular Activated Carbon Used as Heterogeneous Fenton Catalyst for Degradation of Tetracycline. J. Environ. Manag. 2022, 322, 116077. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, F.; Vione, D. Effect of pH on Zero Valent Iron Performance in Heterogeneous Fenton and Fenton-like Processes: A Review. Molecules 2018, 23, 3127. [Google Scholar] [CrossRef] [PubMed]
- Grčić, I.; Papić, S.; Žižek, K.; Koprivanac, N. Zero-valent Iron (ZVI) Fenton Oxidation of Reactive Dye Wastewater Under UV-C and Solar Irradiation. Chem. Eng. J. 2012, 195–196, 77–90. [Google Scholar] [CrossRef]
- Son, H.; Im, J.; Zoh, K. A Fenton-like Degradation Mechanism for 1,4-dioxane Using Zero-valent Iron (Fe0) and UV Light. Water Res. 2009, 43, 1457–1463. [Google Scholar] [CrossRef]
- Bergendahl, J.A.; Thies, T.P. Fenton’s Oxidation of Mtbe with Zero-valent Iron. Water Res. 2004, 38, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Devi, L.G.; Rajashekhar, K.; Raju, K.A.; Kumar, S.G. Kinetic Modeling Based on the Non-linear Regression Analysis for the Degradation of Alizarin Red S by Advanced Photo Fenton Process Using Zero Valent Metallic Iron as the Catalyst. J. Mol. Catal. A Chem. 2009, 314, 88–94. [Google Scholar] [CrossRef]
- Jain, B.; Singh, A.K.; Kim, H.; Lichtfouse, E.; Sharma, V.K. Treatment of Organic Pollutants by Homogeneous and Heterogeneous Fenton Reaction Processes. Environ. Chem. Lett. 2018, 16, 947–967. [Google Scholar] [CrossRef]
- Wang, M.; Fang, G.; Liu, P.; Zhou, D.; Ma, C.; Zhang, D.; Zhan, J. Fe3O4@β-CD Nanocomposite as Heterogeneous Fenton-like Catalyst for Enhanced Degradation of 4-chlorophenol (4-CP). Appl. Catal. B Environ. 2016, 188, 113–122. [Google Scholar] [CrossRef]
- Pastrana-martínez, L.M.; Pereira, N.; Lima, R.; Faria, J.L.; Gomes, H.T.; Silva, A.M. Degradation of Diphenhydramine by Photo-Fenton Using Magnetically Recoverable Iron Oxide Nanoparticles as Catalyst. Chem. Eng. J. 2015, 261, 45–52. [Google Scholar] [CrossRef]
- Xu, L.; Wang, J. Fenton-like Degradation of 2,4-dichlorophenol Using Fe3O4 Magnetic Nanoparticles. Appl. Catal. B Environ. 2012, 123–124, 117–126. [Google Scholar] [CrossRef]
- Woo, K.; Lee, H.; Ahn, J.; Park, Y. Sol-Gel Mediated Synthesis of Fe2O3 Nanorods. Adv. Mater. 2003, 15, 1761–1764. [Google Scholar] [CrossRef]
- Silva, A.C.; Cepera, R.M.; Pereira, M.C.; Lima, D.Q.; Fabris, J.D.; Oliveira, L.C. Heterogeneous Catalyst Based on Peroxo-niobium Complexes Immobilized Over Iron Oxide for Organic Oxidation in Water. Appl. Catal. B Environ. 2011, 107, 237–244. [Google Scholar] [CrossRef]
- Tang, W.Z.; Chen, R.Z. Decolorization Kinetics and Mechanisms of Commercial Dyes by H2O2/Iron Powder System. Chemosphere 1996, 32, 947–958. [Google Scholar] [CrossRef]
- Boussahel, R.; Harik, D.; Mammar, M.; Lamara-mohamed, S. Degradation of Obsolete Ddt by Fenton Oxidation with Zero-valent Iron. Desalination 2007, 206, 369–372. [Google Scholar] [CrossRef]
- Shen, J.; Ou, C.; Zhou, Z.; Chen, J.; Fang, K.; Sun, X.; Li, J.; Zhou, L.; Wang, L. Pretreatment of 2,4-dinitroanisole (DNAN) Producing Wastewater Using a Combined Zero-valent Iron (ZVI) Reduction and Fenton Oxidation Process. J. Hazard. Mater. 2013, 260, 993–1000. [Google Scholar] [CrossRef] [PubMed]
- Bossa, N.; Carpenter, A.W.; Kumar, N.; Lannoy, C.D.; Wiesner, M. Cellulose Nanocrystal Zero-valent Iron Nanocomposites for Groundwater Remediation. Environ. Sci. Nano 2017, 4, 1294–1303. [Google Scholar] [CrossRef] [PubMed]
- Gopal, G.; Ravikumar KV, G.; Salma, M.; Chandrasekaran, N.; Mukherjee, A. Green Synthesized Fe/pd and In-situ Bentonite-fe/pd Composite for Efficient Tetracycline Removal. J. Environ. Chem. Eng. 2020, 8, 104126. [Google Scholar] [CrossRef]
- Nasiri, J.; Motamedi, E.; Naghavi, M.R.; Ghafoori, M. Removal of Crystal Violet from Water Using β-Cyclodextrin Functionalized Biogenic Zero-valent Iron Nanoadsorbents Synthesized Via Aqueous Root Extracts of Ferula Persica. J. Hazard. Mater. 2019, 367, 325–338. [Google Scholar] [CrossRef] [PubMed]
- Frost, R.L.; Xi, Y.; He, H. Synthesis, Characterization of Palygorskite Supported Zero-valent Iron and Its Application for Methylene Blue Adsorption. J. Colloid Interface Sci. 2010, 341, 153–161. [Google Scholar] [CrossRef]
- Luo, S.; Qin, P.; Shao, J.; Peng, L.; Zeng, Q.; Gu, J. Synthesis of Reactive Nanoscale Zero Valent Iron Using Rectorite Supports and Its Application for Orange II Removal. Chem. Eng. J. 2013, 223, 1–7. [Google Scholar] [CrossRef]
- Huang, T.; Liu, L.; Zhang, S.; Xu, J. Evaluation of Electrokinetics Coupled with a Reactive Barrier of Activated Carbon Loaded with a Nanoscale Zero-valent Iron for Selenite Removal from Contaminated Soils. J. Hazard. Mater. 2019, 368, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Cai, L.; Zhou, Z.; Yang, R.; Zeng, G.; Fu, R.; Lyu, S. Surfactant Enhanced Persulfate System for the Synergistic Oxidation and Reduction of Mixed Chlorinated Hydrocarbons. J. Hazard. Mater. 2024, 469, 133887. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Zhou, W.; Zhu, L. Enhanced Reactivity and Mechanisms of Mesoporous Carbon Supported Zero-valent Iron Composite for Trichloroethylene Removal in Batch Studies. Sci. Total Environ. 2020, 718, 137256. [Google Scholar] [CrossRef]
- Ahmad, S.; Liu, X.; Tang, J.; Zhang, S. Biochar-supported Nanosized Zero-valent Iron (nZVI/BC) Composites for Removal of Nitro and Chlorinated Contaminants. Chem. Eng. J. 2022, 431, 133187. [Google Scholar] [CrossRef]
- Yıldırım, G.M.; Bayrak, B. The Synthesis of Biochar-supported Nano Zero-valent Iron Composite and Its Adsorption Performance in Removal of Malachite Green. Biomass Convers. Biorefin. 2021, 12, 4785–4797. [Google Scholar] [CrossRef]
- Wang, T.; Zhai, Y.; Zhu, Y.; Li, C.; Zeng, G. A Review of the Hydrothermal Carbonization of Biomass Waste for Hydrochar Formation: Process Conditions, Fundamentals, and Physicochemical Properties. Renew. Sustain. Energy Rev. 2018, 90, 223–247. [Google Scholar] [CrossRef]
- Khanzada, A.K.; Al-hazmi, H.E.; Kurniawan, T.A.; Majtacz, J.; Piechota, G.; Kumar, G.; Ezzati, P.; Saeb, M.R.; Rabiee, N.; Karimi-maleh, H.; et al. Hydrochar as a Bio-based Adsorbent for Heavy Metals Removal: A Review of Production Processes, Adsorption Mechanisms, Kinetic Models, Regeneration and Reusability. Sci. Total Environ. 2024, 945, 173972. [Google Scholar] [CrossRef]
- Mäkelä, M.; Benavente, V.; Fullana, A. Hydrothermal Carbonization of Lignocellulosic Biomass: Effect of Process Conditions on Hydrochar Properties. Appl. Energy 2015, 155, 576–584. [Google Scholar] [CrossRef]
- Barasarathi, J.; Abdullah, P.S.; Uche, E.C. Application of Magnetic Carbon Nanocomposite from Agro-waste for the Removal of Pollutants from Water and Wastewater. Chemosphere 2022, 305, 135384. [Google Scholar] [CrossRef] [PubMed]
- Waseem, M.; Ahmad, A.; Sagir, M.; Younas, U.; Saeed, Z.; Pervaiz, M.; Ali, F.; Aljuwayid, A.M.; Habila, M.A.; Karri, R.R. Hydrothermal Synthesis of V2O5/TiO2 Decorated Graphitic Carbon Nitride Nanocomposite for Biomolecule Oxidation Inhibition and Dye Degradation Applications. Environ. Res. 2023, 234, 116440. [Google Scholar] [CrossRef]
- Yi, Y.; Tu, G.; Tsang, P.E.; Fang, Z. Insight into the Influence of Pyrolysis Temperature on Fenton-like Catalytic Performance of Magnetic Biochar. Chem. Eng. J. 2020, 380, 122518. [Google Scholar] [CrossRef]
- Yang, W.; Hong, P.; Yang, D.; Yang, Y.; Wu, Z.; Xie, C.; He, J.; Zhang, K.; Kong, L.; Liu, J. Enhanced Fenton-like Degradation of Sulfadiazine by Single Atom Iron Materials Fixed on Nitrogen-doped Porous Carbon. J. Colloid Interface Sci. 2021, 597, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, C.; Yao, Z.; Yang, M.; Wang, Y.; Xia, Q.; Jiang, Z. Preparation of Fenton-like Coating Catalyst on Q235 Carbon Steel by Plasma Electrolytic Oxidation in Silicate Electrolyte. Surf. Coat. Technol. 2016, 307, 1315–1321. [Google Scholar] [CrossRef]
- Xu, J.; Shi, L.; Wang, J.; Lu, S.; Wang, Y.; Gao, G.; Ding, S. Hierarchical Micro/Mesoporous Nitrogen-doped Carbons Derived from Hypercrosslinked Polymers for Highly Efficient Oxygen Reduction Reaction. Carbon 2018, 138, 348–356. [Google Scholar] [CrossRef]
- He, T.; Pan, X.; Zhou, W.; Ding, H.; Liu, M.; Xiang, M.; Lou, Q.; Han, L.; Zhang, Y.; Wu, Y.; et al. Construction of High-content A-iron on Zero-valent Iron @ Biochar Composite for the Ultra-efficient Removal of Oxytetracycline Hydrochloride: A Key Step of Ammonium Bicarbonate Pretreatment. Sep. Purif. Technol. 2023, 323, 124378. [Google Scholar] [CrossRef]
- Giler-molina, J.M.; Zambrano-intriago, L.A.; Quiroz-fernández, L.S.; Napoleão, D.C.; Vieira, J.D.S.; Oliveira, N.S.; Rodríguez-díaz, J.M. Degradation of Oxytetracycline in Aqueous Solutions: Application of Homogeneous and Heterogeneous Advanced Oxidative Processes. Sustainability 2020, 12, 8807. [Google Scholar] [CrossRef]
- Dong, H.; Jiang, Z.; Zhang, C.; Deng, J.; Hou, K.; Cheng, Y.; Zhang, L.; Zeng, G. Removal of Tetracycline by Fe/Ni Bimetallic Nanoparticles in Aqueous Solution. J. Colloid Interface Sci. 2018, 513, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Laat, J.D.; Le, G.T.; Legube, B. A Comparative Study of the Effects of Chloride, Sulfate and Nitrate Ions on the Rates of Decomposition of H2O2 and Organic Compounds by Fe(II)/H2O2 and Fe(III)/H2O2. Chemosphere 2004, 55, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Kiwi, J.; Lopez, A.; Nadtochenko, V. Mechanism and Kinetics of the OH-radical Intervention during Fenton Oxidation in the Presence of a Significant Amount of Radical Scavenger(Cl−). Environ. Sci. Technol. 2000, 34, 2162–2168. [Google Scholar] [CrossRef]
- Wang, A.; Hou, J.; Feng, Y.; Wu, J.; Miao, L. Removal of Tetracycline by Biochar-supported Biogenetic Sulfidated Zero Valent Iron: Kinetics, Pathways and Mechanism. Water Res. 2022, 225, 119168. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Zhang, H.; Zhang, C.; Zhao, Y.; Zhang, N.; Liang, J. Preparation of Sepiolite Nanofibers Supported Zero Valent Iron Composite Material for Catalytic Removal of Tetracycline in Aqueous Solution. Front. Chem. 2021, 9, 736285. [Google Scholar] [CrossRef]
- Chen, H.; Luo, H.; Lan, Y.; Dong, T.; Hu, B.; Wang, Y. Removal of Tetracycline from Aqueous Solutions Using Polyvinylpyrrolidone (PVP-K30) Modified Nanoscale Zero Valent Iron. J. Hazard. Mater. 2011, 192, 44–53. [Google Scholar] [CrossRef]
- Nie, M.; Li, Y.; He, J.; Xie, C.; Wu, Z.; Sun, B.; Zhang, K.; Kong, L.; Liu, J. Degradation of Tetracycline in Water Using Fe3O4 Nanospheres as Fenton-like Catalysts: Kinetics, Mechanisms and Pathways. New J. Chem. 2020, 44, 2847–2857. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Wang, S.; Yu, P.; Xu, Y.; Sun, Y. Highly Enhanced Heterogeneous Photo-Fenton Process for Tetracycline Degradation by Fe/SCN Fenton-like Catalyst. J. Environ. Manag. 2022, 312, 114856. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, A.; Pei, Z.; Liu, X.; Xu, B.; Jia, H. Efficient Photo-Fenton Degradation Performance, Mechanism, and Pathways of Tetracycline Hydrochloride Over Missing-linker Metal-organic Framework with Mix-valence Coordinatively Unsaturated Metal Sites. Sep. Purif. Technol. 2022, 287, 120568. [Google Scholar] [CrossRef]
- Zhu, W.; Zuo, W.; Wang, P.; Zhan, W.; Zhang, J.; Li, L.; Tian, Y.; Qi, H.; Huang, R. Fe-N-C Heterogeneous Fenton-like Catalyst for the Degradation of Tetracycline: Fe-N Coordination and Mechanism Studies. Chin. Chem. Lett. 2024, 35, 109341. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, J.; Chen, X.; Wang, L.; Cai, W. Coupling of Heterogeneous Advanced Oxidation Processes and Photocatalysis in Efficient Degradation of Tetracycline Hydrochloride by Fe-based MOFs: Synergistic Effect and Degradation Pathway. Chem. Eng. J. 2019, 369, 745–757. [Google Scholar] [CrossRef]
Sample | SBET (m2/g) | V (cm3/g) | DBJH (nm) |
---|---|---|---|
Fe@HTC | 60.55 | 0.170 | 9.086 |
Fe@HTC–800 | 91.78 | 0.065 | 3.786 |
Catalyst | Catalyst Dosage (g/L) | H2O2 (mM) | TC (mg/L) | pH | Removal Efficiency (%) | Reference |
---|---|---|---|---|---|---|
Fe@HTC–800 | 0.1 | 1 | 200 | 6.86 | 91.2% | This work |
BS−ZVI@MB | 1.2 | 50 | 3 | 7.2 | 100% | [65] |
nZVI/SEP | 1.0 | 1 | 20 | 7 | 92.6% | [66] |
PVP−K30 | 0.1 | - | 100 | 6.5 | 98.4% | [67] |
Fe3O4 nanospheres | 0.5 | 50 | 25 | 7 | 82% | [68] |
Fe−GAC | 0.4 | - | 10 | 2–5 | 89.4% | [26] |
Fe/SCN | 0.5 | 80 | 10 | 7 | 90.3% | [69] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, X.; Liu, R.; Cheng, A. Zero-Valent Iron-Supported Magnetic Hydrochar Derived from Kitchen Waste for Efficient Fenton-like Degradation of Tetracycline Hydrochloride. Sustainability 2025, 17, 1295. https://doi.org/10.3390/su17031295
Wan X, Liu R, Cheng A. Zero-Valent Iron-Supported Magnetic Hydrochar Derived from Kitchen Waste for Efficient Fenton-like Degradation of Tetracycline Hydrochloride. Sustainability. 2025; 17(3):1295. https://doi.org/10.3390/su17031295
Chicago/Turabian StyleWan, Xiaoman, Ruipeng Liu, and Ailing Cheng. 2025. "Zero-Valent Iron-Supported Magnetic Hydrochar Derived from Kitchen Waste for Efficient Fenton-like Degradation of Tetracycline Hydrochloride" Sustainability 17, no. 3: 1295. https://doi.org/10.3390/su17031295
APA StyleWan, X., Liu, R., & Cheng, A. (2025). Zero-Valent Iron-Supported Magnetic Hydrochar Derived from Kitchen Waste for Efficient Fenton-like Degradation of Tetracycline Hydrochloride. Sustainability, 17(3), 1295. https://doi.org/10.3390/su17031295