Estimation of Environmental Indicators in High Mountain Cattle Ranching Agroecosystems
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Information on Livestock Systems
2.3. Soil Organic Carbon (SOC)
2.4. Carbon Footprint of the Studied Livestock Systems
2.4.1. Enteric Methane
- EF = methane emission factor (kg CH4/animal/year);
- GE = gross energy intake (MJ/animal/day);
- Ym = methane conversion factor expressed as a percentage of gross energy in feed converted to methane;
- 55.65 (MJ/per kg CH4) is the energy content of methane.
2.4.2. Methane from Manure Management
2.4.3. Excreted Nitrous Oxide
2.5. Water Footprint of the Livestock Systems
2.5.1. Water Drinking by Animals
2.5.2. Water Used in Pasture Production
2.5.3. Water Used in Services
2.6. Statistical Analysis
3. Results and Discussion
3.1. Characteristics of the Livestock Systems
3.2. Productive Paramenters of the Livestock Systems
3.3. SOC Estimation in Vegetation Covers
3.4. CF Estimation in the Livestock Systems
3.5. WF Estimation in the Livestock Systems
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bustamante, C.; Rojas, L. Reflexiones sobre transiciones ganaderas bovinas en Colombia, desafíos y oportunidades. Biodivers. Pract. 2018, 3, 1–29. [Google Scholar]
- ICA (Instituto Colombiano de Agricultura). Censo Pecuario Nacional. 2023. Available online: https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/censos-2016/censo-2018 (accessed on 3 June 2024).
- Avellaneda, L.M.; León, T.E.; Torres, E. Impact of potato cultivation and cattle farming on physicochemical parameters and enzymatic activities of Neotropical high Andean Páramo ecosystem soils. Sci. Total Environ. 2018, 631–632, 1600–1610. [Google Scholar] [CrossRef] [PubMed]
- Molina, R.A.; Sánchez, H. Sostenibilidad de sistemas ganaderos bovinos de alta montaña en Colombia. Rev. Investig. Agrar. Ambient. 2017, 8, 29–36. [Google Scholar] [CrossRef]
- Teague, R.; Barnes, M. Grazing management that regenerates ecosystem function and grazingland livelihoods. Afr. J. Range Forage Sci. 2017, 34, 77–86. [Google Scholar] [CrossRef]
- Solomon, T.; Gupta, V.; Ncho, C.M. Balancing Livestock Environmental Footprints with Forestry-Based Solutions: A Review. Ecologies 2023, 4, 714–730. [Google Scholar] [CrossRef]
- Hao, X.; Yang, J.; Dong, S.; He, F.; Zhang, Y. The influence of grazing intensity on soil organic carbon storage in grassland of China: A meta-analysis. Sci. Total Environ. 2024, 924, 171439. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, M.; Wang, X.; Wang, C. The impact of diferent grazing intensity and management measures on soil organic carbon density in Zhangye grassland. Sci. Rep. 2024, 14, 17556. [Google Scholar] [CrossRef]
- Kumar, S.; Dixit, A.K.; Prasad, M.; Rai, S.K.; Mahanta, S.K.; Singh, S.; Radotra, S.; Ghosh, P.K. Effects of grazing intensity and pasture type on soil organic carbon stock in the semi-arid tropics of India. Trop. Grassl.-Forrajes Trop. 2023, 11, 41–51. [Google Scholar] [CrossRef]
- Páez, E.M.; Corredor, E.S.; Fonseca, J.A. La huella hídrica y la huella de carbono: Herramientas para estimar el impacto de la ganadería bovina. Pensam. Y Acción 2018, 24, 81–92. [Google Scholar]
- Yerena, J.I.; Jiménez, J.; Rodríguez, E.A.; Aguírre, O.A.; González, M.A.; Treviño, E.J. Dinámica de la captura de carbono en pastizales abandonados del noreste de méxico. Trop. Subtrop. Agroecosyst. 2014, 17, 113–121. [Google Scholar]
- Heinke, J.; Lannerstad, M.; Gerten, D.; Havlík, P.; Herrero, M.; Notenbaert, A.M.O.; Holger, H.; Muller, C. Water use in global livestock production—Opportunities and constraints for increasing water productivity. Water Resour. Res. 2020, 56, e2019WR026995. [Google Scholar] [CrossRef]
- Gerbens, P.W.; Mekonnen, M.M.; Hoekstra, A.Y. The water footprint of poultry, pork and beef: A comparative study in different countries and production systems. Water Resour. Ind. 2013, 1, 25–36. [Google Scholar] [CrossRef]
- Ibidhi, R.; Salem, H.B. Water footprint of livestock products and production systems: A review. Anim. Prod. Sci. 2020, 60, 1369–1380. [Google Scholar] [CrossRef]
- Gaillac, R.; Marbach, S. The carbon footprint of meat and dairy proteins: A practical perspective to guide low carbon footprint dietary choices. J. Clean. Prod. 2021, 321, 128766. [Google Scholar] [CrossRef]
- Mazzetto, A.M.; Falconer, S.; Ledgard, S. Mapping the carbon footprint of milk production from cattle: A systematic review. J. Dairy Sci. 2022, 105, 9713–9725. [Google Scholar] [CrossRef]
- Desjardins, R.L.; Worth, D.E.; Vergé, X.P.C.; Maxime, D.; Dyer, J.; Cerkowniak, D. Carbon Footprint of Beef Cattle. Sustainability 2012, 4, 3279–3301. [Google Scholar] [CrossRef]
- Bermudez, C.E.; Arenas, N.E.; Moreno, V. Caracterización socio-económica y ambiental en pequeños y medianos predios ganaderos en la región del Sumapaz, Colombia. Rev. UDCA Actual. Divulg. Cient. 2017, 20, 199–208. [Google Scholar]
- Sala, O.; Yahdjian, L.; Havstad, K.; Aguiar, M. Rangeland Systems Processes, Management and Challenges; Springer Open: Cham, Switzerland, 2017; Volume 14, pp. 467–489. [Google Scholar] [CrossRef]
- Molina, R.A.; Campos, R.; Sánchez, H.; Giraldo, L.; Atzori, A.S. Sustainable Feedbacks of Colombian Paramos Involving Livestock, Agricultural Activities, and Sustainable Development Goals of the Agenda 2030. Systems 2019, 7, 52. [Google Scholar] [CrossRef]
- Castañeda, A.; Montes, C. Carbono alamcenado en Páramo Andino. Entramado 2017, 13, 210–221. [Google Scholar] [CrossRef]
- Corporación Autónoma Regional del Valle del Cauca. GeoVisor. 2022. Available online: https://geo.cvc.gov.co/visor_avanzado/ (accessed on 3 June 2024).
- Molina, R.A.; Gaona, R.C.; Atzori, A.S.; Sánchez, L.F.; Guerrero, H.S. Application of a system dynamics model to evaluate the implementation of payment for environmental services as a reconversion mechanism in high mountain farming. Ecol. Model. 2023, 484, 110469. [Google Scholar] [CrossRef]
- FAO. Soil Organic Carbon: The hidden potential. In Banking (Issue March); FAO: Rome, Italy, 2017; Available online: https://www.inter-reseaux.org/en/ressource/fao-soil-organic-carbon-the-hidden-potential/ (accessed on 24 June 2024).
- Molina, R.A. Sostenibilidad de los Sistemas Ganaderos Ubicados en el Parque Natural Nacional de las Hermosas y su Zona de Influencia. Master’s Thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2011. Available online: https://repositorio.unal.edu.co/handle/unal/7347 (accessed on 3 June 2024).
- Hatfield, J.L.; Mangino, J.; McAllister, T.A. Chapter 10. Emissions from Livestock and Manure Management. In 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Agriculture, Forestry and Other Land Use; IPCC: Geneva, Switzerland, 2006; Volume 4, Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_10_Ch10_Livestock.pdf (accessed on 3 June 2024).
- Gerber, P.; Vellinga, T.; Opio, C.; Steinfeld, H. Productivity gains and green house gas emissions intensity in dairy systems. Livest. Sci. 2011, 139, 100–108. [Google Scholar] [CrossRef]
- Serra, M. Estimation of Carbon Footprint in Dairy Cattle Farms of Southern Italy. Ph.D. Thesis, Università degli Studi di Sassari, Sassari, Italy, 2013. Available online: https://iris.uniss.it/handle/11388/250597 (accessed on 3 June 2024).
- Klein, C.; Novoa, R.S.A.; Ogle, S. Chapter 11: N2O Emissions from Managed Soils, and CO2 Emissions from Lime and Urea Application. In 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Agriculture, Forestry and Other Land Use; IPCC: Geneva, Switzerland, 2006; Volume 4, Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_11_Ch11_N2O&CO2.pdf (accessed on 3 June 2024).
- Foster, P.; Ramaswamy, V. Chapter 2: Changes in Atmospheric Constituents and in Radiative Forcing. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; p. 105. Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg1-chapter2-1.pdf (accessed on 3 June 2024).
- Internationl Dairy Federation. A common carbon footprint approach for dairy: The IDF guide to standard lifecycle assessment methodology for the dairy sector. Bull. Int. Dairy Fed. 2010, 445, 1–40. [Google Scholar]
- Chapagain, A.K.; Hoekstra, A.Y. Water Footprints of Nations; UNESCO-IHE Delft Institute for Water Education: Delft, The Netherlands, 2004; Available online: https://www.waterfootprint.org/resources/Report16Vol1.pdf (accessed on 3 June 2024).
- Meyer, U.; Everinghoff, D.; Gadeken, G.; Flachowsky, G. Investigations on the water intake of lactating dairy cows. Livest. Prod. Sci. 2004, 90, 117–121. [Google Scholar] [CrossRef]
- Winchester, C.F.; Morris, M.J. Water intake rates of cattle. J. Anim. Sci. 1956, 15, 722–740. [Google Scholar] [CrossRef]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55. [Google Scholar] [CrossRef]
- Franco, L.H.; Calero, D.; Durán, C. Manejo y Utilización de Forrajes Multipropósito. Proyecto: Evaluación de Tecnologías por métodos Participativos para la Implementación de Sistemas Ganaderos Sostenibles en el norte del Departamento del Valle del Cauca; Centro Internacional de Agricultura Tropical (CIAT), Universidad Nacional de Colombia Palmira: Palmira, Colombia, 2006. Available online: https://repositorio.unal.edu.co/bitstream/handle/unal/8429/9789584411754.pdf?sequence=1 (accessed on 3 June 2024).
- Montoya, S.; Chará, J.D.; Murgueitio, E.; Correa, G.A.; Barahona, R. Producción forrajera y consumo en ganaderías colombianas con diversos sistemas de pastoreo incluyendo sistemas silvopastoriles. Livest. Res. Rural Dev. 2023, 35, 1. [Google Scholar]
- Nosetti, L.; Herrero, M.; Pol, M.; Maldonado, M.; Iramain, M.; Flores, M. Cuantificación y caracterización de agua y efluentes en establecimientos lecheros: Demanda de agua y manejo de efluentes. InVet 2000, 4, 37–43. [Google Scholar]
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzalez, L.A.; Tablada, E.M. InfoStat; Versión 2020; Universidad Nacional de Córdoba: Córdoba, Argentina, 2024; Available online: http://www.infostat.com.ar/index.php?mod=page&id=34 (accessed on 3 June 2024).
- DANE. Encuesta Nacional Agropecuaria: Tomo 2 Resultados [Informe]. Available online: https://www.dane.gov.co (accessed on 4 June 2024).
- Fedegan. Ganadería Colombiana: Hoja de Ruta 2018–2022; Fedegan: Bogotá, Colombia, 2018; ISBN 978-958-8498-80-5. [Google Scholar]
- Naranjo, L.F.; Rodríguez, N.; Uron, C.A. Caracterización bromatológica de pastos en seis municipios del Departamento de Norte de Santander; Colombia: Bromatological characterization of pastures in six municipalities of the Department of Norte de Santander; Colombia. Sci. Et Tech. 2023, 27, 245–252. [Google Scholar] [CrossRef]
- González, R.; Barahona, R.; Bolívar, D.M.; Chirinda, N.; Arango, J.; Pantévez, H.A.; Correa, G.; Sánchez, M.S. Technical and environmental characterization of dual-purpose cattle farms and ways of improving production: A case study in Colombia. Pastoralism 2020, 10, 19. [Google Scholar] [CrossRef]
- Gómez, F.Z.; Ramírez, L.M. Contenidos de carbono y nitrógeno del suelo en un agroecosistema altoandino del Valle del Cauca, Colombia. Rev. UDCA Actual. Divulg. Cient. 2022, 25, e2057. [Google Scholar] [CrossRef]
- Alves, L.A.; de Oliveira Denardin, L.G.; Martins, A.P.; Bayer, C.; Veloso, M.G.; Bremm, C.; Carvalho, P.C.D.F.; Machado, D.R.; Tiecher, T. The effect of crop rotation and sheep grazing management on plant production and soil C and N stocks in a long term integrated crop-livestock system in Southern Brazil. Soil Tillage Res. 2020, 203, 104678. [Google Scholar] [CrossRef]
- Páez, E. Medición de Huellas Ambientales Como Indicadores de Sostenibilidad en Unidades de Producción Ganadera Bovina en la Región Centro del Departamento de Boyacá (Colombia). Bachelor’s Thesis, Universidad Católica de Ávila, Bogotá, Colombia, 2016. Available online: https://dialnet.unirioja.es/servlet/dctes?codigo=180196 (accessed on 3 June 2024).
- Martínez, C.; Ruíz, X.; Morales, S. Huella hídrica de una finca ganadera lechera bajo las condiciones agroecológicas del valle del Cauca. Biotecnol. En El Sect. Agropecu. 2016, 14, 47–56. [Google Scholar] [CrossRef]
- Corredor, E.S.; Castro, E.S.; Páez, E.M. Water footprint estimation from milk production in Tunja, Boyacá. Rev. Cienc. Y Agric. 2017, 14, 7–17. [Google Scholar] [CrossRef]
Cattle Inventory | Pasture Chemical Composition | Reproductive Variables | |||
---|---|---|---|---|---|
Animal Groups | n | DM (%) | 18.1 ± 4.9 | CI (months) | 14.87 ± 1.7 |
Dairy cows | 193 | OM (%) | 67.5 ± 5.9 | ICC (days) | 165.6 ± 53.4 |
Prepartum dry cows | 93 | CP (%) | 15.9 ± 5.1 | BR (%) | 77.54 ± 7.4 |
Heifers | 130 | NDF (%) | 60.4 ± 3.4 | AFC (months) | 41.63 ± 6.7 |
Prepubertal heifers | 137 | ADF (%) | 30.2 ± 3.4 | ||
Calves | 166 | EE (%) | 3.7 ± 0.64 | ||
Weaned calves | 297 | ASH (%) | 9.4 ± 0.83 | ||
Fattening steers | 90 | GE (kcal/kg) | 4011.8 ± 227.2 | ||
Bulls | 15 | ||||
Total | 1121 |
GHGs | kg/Year | CO2eq (kg/Year) |
---|---|---|
CH4 enteric | 61,738.93 | 1,543,473.22 |
CH4 excreted | 1218.90 | 30,472.56 |
N2O excreted | 1830.44 | 545,470.51 |
Study Area | FC < 1 Years | MC < 1 Years | F = 1–2 Years | M = 1–2 Years | F = 2–3 Years | M = 2–3 Years | F > 3 Years | M > 3 Years |
---|---|---|---|---|---|---|---|---|
No. Animals | 83 | 83 | 137 | 297 | 130 | 90 | 286 | 15 |
LW (kg) | 90 | 100 | 220 | 250 | 380 | 390 | 430 | 500 |
NEm (MJ/kgDM) | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | |
DE% (as % gross energy) | 55 | |||||||
DMI (kg/day) | 2.85 | 3.08 | 5.57 | 6.13 | 8.39 | 8.56 | 10.32 | 10.65 |
GFC (kg/day) | 9.0 | 10.0 | 22.0 | 25.0 | 38.0 | 39.0 | 43.0 | 50.0 |
DW (l/animal/day) | 9.78 | 10.59 | 19.12 | 21.05 | 28.81 | 29.38 | 57.50 | 36.54 |
WS (washing facilities—l/day) | 20 | |||||||
PWR (m3/ha/year) | 6196.40 | 6196.40 | 6196.40 | 6196.40 | 6196.40 | 6196.40 | 6196.40 | 6196.40 |
GFP (kg/ha/year) | 40,000 | 40,000 | 40,000 | 40,000 | 40,000 | 40,000 | 40,000 | 40,000 |
AGFC (kg/year) | 3285 | 3650 | 8030 | 9125 | 13,870 | 14,235 | 15,695 | 18,250 |
GWC (m3/animal/year) | 508.88 | 565.42 | 1243.93 | 1413.55 | 2148.60 | 2205.14 | 2431.31 | 2827.11 |
BW (m3/year) | 296.36 | 320.73 | 956.32 | 2281.80 | 1367.25 | 965.18 | 6002.74 | 200.08 |
GW(m3/year) | 2087.8 | |||||||
GrW (m3/year) | 42,236.96 | 46,929.96 | 170,417.95 | 419,825.23 | 279,318.07 | 198,462.84 | 695,354.98 | 42,406.59 |
Water Type | m3/Year | % |
---|---|---|
Blue water | 12,390 | 0.65 |
Gray water | 2088 | 0.11 |
Green water | 1,894,953 | 99.24 |
Total | 1,909,431 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molina Benavides, R.A.; Campos Gaona, R.; Vélez Terranova, M.; Atzori, A.S.; Calero Quintero, D.; Sánchez Guerrero, H. Estimation of Environmental Indicators in High Mountain Cattle Ranching Agroecosystems. Sustainability 2025, 17, 1135. https://doi.org/10.3390/su17031135
Molina Benavides RA, Campos Gaona R, Vélez Terranova M, Atzori AS, Calero Quintero D, Sánchez Guerrero H. Estimation of Environmental Indicators in High Mountain Cattle Ranching Agroecosystems. Sustainability. 2025; 17(3):1135. https://doi.org/10.3390/su17031135
Chicago/Turabian StyleMolina Benavides, Raúl Andrés, Rómulo Campos Gaona, Mauricio Vélez Terranova, Alberto Stanislao Atzori, David Calero Quintero, and Hugo Sánchez Guerrero. 2025. "Estimation of Environmental Indicators in High Mountain Cattle Ranching Agroecosystems" Sustainability 17, no. 3: 1135. https://doi.org/10.3390/su17031135
APA StyleMolina Benavides, R. A., Campos Gaona, R., Vélez Terranova, M., Atzori, A. S., Calero Quintero, D., & Sánchez Guerrero, H. (2025). Estimation of Environmental Indicators in High Mountain Cattle Ranching Agroecosystems. Sustainability, 17(3), 1135. https://doi.org/10.3390/su17031135