An Evaluation of the Public Service of the Integrated Municipal Management of Urban Solid Waste in the Galapagos and the Amazonian Region of Ecuador
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.2.1. Diagnosis of the Current Situation
- 1.
- Type of generator:
- Residential
- ▪
- Urban
- ▪
- Rural
- Not residential
- ▪
- Associated generators: shops, restaurants, hotels, and public and private institutions.
- ▪
- Other generators: educational institutions, markets, street sweeping, and public cleaning services.
- 2.
- Categorization of the canton based on the current population using a geometric method.
- 3.
- Definition of sample size.
- 4.
- Per capita production (PPC) calculation.
2.2.2. Evaluation of the Phases of Integrated Solid Waste Management
- The scale of the compliance of the aspects and indicators was from 1 to 10, where 10 meant that the aspect and the indicator were within the established or expected parameters and 1 meant an indicator with problematic performance at the established values.
- A weighting factor was used to determine the degree of the importance of compliance with the aspects and indicators provided.
- To determine the level of conformities and non-conformities found, the following Equations (1) and (2) were applied [9,43]. Table 3 lists the scale of the compliance of the aspects and indicators in a qualitative manner. Colors were also utilized to indicate compliance for the qualification of poor (red), average (orange), and good (green) levels.
Level Grading | Description | |
---|---|---|
Qualitative | Quantitative | |
Deficient | 1 | Indicator with problematic performance according to established values. |
Regular | 5 | When performance is potentially problematic or presents some non-serious deficiency. |
Good | 10 | When indicator is within suggested or expected parameters. |
2.2.3. Selection Standards for the GIRS Management Model
- The current management model for non-hazardous solid waste in the canton.
- The direct institutional management of the canton is strengthened.
- The creation of a public company.
2.2.4. Tariff Model for Comprehensive MSW Management
- (1B) = a fixed value.
- (SBUC) = a value that may maintain an annual increase depending on the SBU.
- (EACD) = a variable value depending on the customer’s consumption.
3. Results
3.1. Diagnosis of the Current Situation of the Social and Physical Components of the Final Disposal Sites
3.1.1. Francisco de Orellana Canton, Orellana Province
3.1.2. Loreto Canton, Orellana Province
3.1.3. Aguarico Canton, Orellana Province
3.1.4. Santa Cruz Canton, Galápagos Province
3.2. Evaluation of Phases of MSW’s Comprehensive Management
3.2.1. Technical Aspects
3.2.2. Environmental Aspects
3.2.3. Economic Aspects
3.2.4. Social Aspects
3.2.5. Legal Aspects
3.3. Proposal for Integrated MSW Management Model
3.4. Tariff Model for Comprehensive MSW Management
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malinauskaite, J.; Jouhara, H.; Czajczyńska, D.; Stanchev, P.; Katsou, E.; Rostkowski, P.; Thorne, R.J.; Colón, J.; Ponsá, S.; Al-Mansour, F.; et al. Municipal Solid Waste Management and Waste-to-Energy in the Context of a Circular Economy and Energy Recycling in Europe. Energy 2017, 141, 2013–2044. [Google Scholar] [CrossRef]
- Abdoli, M.A.; Rezaei, M.; Hasanian, H. Integrated Solid Waste Management in Megacities. Glob. J. Environ. Sci. Manag. 2016, 2, 289–298. [Google Scholar] [CrossRef]
- Mohsenizadeh, M.; Tural, M.K.; Kentel, E. Municipal Solid Waste Management with Cost Minimization and Emission Control Objectives: A Case Study of Ankara. Sustain. Cities Soc. 2020, 52, 101807. [Google Scholar] [CrossRef]
- Heidari, R.; Yazdanparast, R.; Jabbarzadeh, A. Sustainable Design of a Municipal Solid Waste Management System Considering Waste Separators: A Real-World Application. Sustain. Cities Soc. 2019, 47, 101457. [Google Scholar] [CrossRef]
- Tsai, F.M.; Bui, T.D.; Tseng, M.L.; Wu, K.J. A Causal Municipal Solid Waste Management Model for Sustainable Cities in Vietnam under Uncertainty: A Comparison. Resour. Conserv. Recycl. 2020, 154, 104599. [Google Scholar] [CrossRef]
- Correal, M.; Faleiro, C.; Piamonte, C.; Rihm, J.; Zambrano, M. Sostenibilidad Financiera de La Gestión de Residuos Sólidos En América Latina y El Caribe. Banco Interamericano. Desarrollo 2023, 71. [Google Scholar] [CrossRef]
- Showket, I.; Pal, P.; Pal, S. Implementation Analysis of Solid Waste Management in Ludhiana City of Punjab. Environ. Chall. 2021, 2, 11. [Google Scholar] [CrossRef]
- Zhang, H. Study on the Internal Force of Geomembrane of Landfill in Heavy Metal Contaminated Area. Earth Sci. Res. J. 2020, 24, 111–118. [Google Scholar] [CrossRef]
- Souza, A.; Montenegro, S.; Faceli, K.; Casadei, V. Technologies and Decision Support Systems to Aid Solid-Waste Management: A Systematic Review. Waste Manag. 2017, 59, 567–584. [Google Scholar] [CrossRef]
- Sánchez-Muñoz, M.D.P.; Cruz-Cerón, J.G.; Maldonado-Espinel, P.C. Gestión de Residuos Sólidos Urbanos en América Latina: Un Análisis Desde la Perspectiva de la Generación. Rev. Finanz. Politica Econ. 2020, 11, 321–336. [Google Scholar] [CrossRef]
- Cruz, G.; Navarrete, D.; Monzón, C.; Espinoza, A.; Nájera, H. Mapping Solid Waste Governance Modes in a Mexican Municipality. Sustain. Environ. 2023, 9, 1–18. [Google Scholar] [CrossRef]
- Hoang, G.M.; Ha, H.T.T.; Le, N.T.; Toan, N. Evaluation of Municipal Waste Collection Performance Using Operational Data. Glob. J. Environ. Sci. Manag. 2024, 10, 69–82. [Google Scholar] [CrossRef]
- Adedara, M.; Taiwo, R.; Bork, H. Municipal Solid Waste Collection and Coverage Rates in Sub-Saharan African Countries: A Comprehensive Systematic Review and Meta-Analysis. Waste 2023, 1, 389–413. [Google Scholar] [CrossRef]
- Tsui, T.H.; Wong, J.W.C. A Critical Review: Emerging Bioeconomy and Waste-to-Energy Technologies for Sustainable Municipal Solid Waste Management. Waste Dispos. Sustain. Energy 2019, 1, 151–167. [Google Scholar] [CrossRef]
- Maalouf, A.; El-Fadel, M. Effect of a Food Waste Disposer Policy on Solid Waste and Wastewater Management with Economic Implications of Environmental Externalities. Waste Manag. 2017, 69, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Novillo, N. Cambio Climático y Conflictos Socioambientales En Ciudades Intermedias de América Latina y El Caribe. Let. Verdes. Rev. Latinoam. Estud. Socioambientales 2018, 24, 124–142. [Google Scholar] [CrossRef]
- Lopez, A.; Iannacone, J. La Gestión Integral de Residuos Sólidos Urbanos En América Latina. Paid. XXI 2021, 11, 453–474. [Google Scholar] [CrossRef]
- Rodríguez, A.; Baca, K. Generación de Residuos Sólidos Urbanos (RSU): Análisis de Una Década de Gestión En Países de Europa y América. Rev. Ecuat. Med. Cienc. Biol. 2021, 42, 49–61. [Google Scholar] [CrossRef]
- Silva, R.; Sanches, A.; Ortiz, W.; Gómez, M.; Teixeira, S. The State-of-the-Art of Organic Waste to Energy in Latin America and the Caribbean: Challenges and Opportunities. Renew. Energy 2020, 156, 509–525. [Google Scholar] [CrossRef]
- Rodrigo, J.; Rodrigo, M.; Romero, C.; Suárez, P. Do Solid Waste Landfills Really Affect Land Use Change? Answers Using the Weighted Environmental Index (WEI). Remote Sens. 2022, 14, 5502. [Google Scholar] [CrossRef]
- Fernández, G.; Lupaca, R.; Días, D. Gobiernos Municipales y Gestión Integral de Residuos Sólidos En América Latina: Una Revisión Sistemática. Climatologica 2024, 24, 981–986. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadística y Censo Boletín Técnico No 05-2021-GAD Municipales. Estadística de Información Ambiental Económica En Gobiernos Autónomos Descentralizados Municipales. 2022. Available online: https://www.ecuadorencifras.gob.ec/municipales-2022/ (accessed on 9 June 2024).
- Peñafiel, P.; Herrera, R.; Toulkeridis, T.; Ruíz, C. Management of Domestic Solid Waste in Rural Communities—A Case Study of the Río Blanco Community, Ecuador. Green World J. 2022, 5, 1–12. [Google Scholar] [CrossRef]
- Muñoz, E.; García, A.; Bayas, H.; Chinchilima, C.; Pando, W. Estudio de Caracterización, Cuantificación y Diagnóstico de Los Desechos Especiales, Peligrosos y No Peligrosos, Generados En Los Cantones Santa Cruz, Isabela y San Cristóbal. 2019. Available online: https://www.scribd.com/document/491260228/INFORME-FINAL-GALAPAGOS-Veolia-pdf (accessed on 6 July 2024).
- Poma, P.; Polanco, M.; Toulkeridis, T.; Ramón, C. Estimation of Biogas Generated in Two Landfills in South-Central Ecuador. Atmosphere 2021, 12, 1365. [Google Scholar] [CrossRef]
- Fudala, S.; Pierpaoli, M.; Kulbat, E.; Luczkiewicz, A. A Modern Solid Waste Management Strategy—The Generation of New by-Products. Waste Manag. 2016, 49, 516–529. [Google Scholar] [CrossRef] [PubMed]
- Nanda, S.; Berruti, F. Municipal Solid Waste Management and Landfilling Technologies: A Review. Environ. Chem. Lett. 2020, 19, 1433–1456. [Google Scholar] [CrossRef]
- Mera, C. Participación Ciudadana En La Gestión de Residuos Sólidos Domiciliarios de La Zona Céntrica de La Ciudad de Manta. MQRInvestigar 2024, 8, 5014–5024. [Google Scholar] [CrossRef]
- Turcott, D.; López, A.; Cuartas, M.; García, A. Using Indicators as a Tool to Evaluate Municipal Solid Waste Management: A Critical Review. Waste Manag. 2018, 80, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Poma, P.; Usca, M.; Toulkeridis, T. Evaluation of the Environmental Impacts Generated by the Management of Urban Solid Waste in the Open Waste Dump in Loreto, Eastern Ecuador; Springer: Cham, Switzerland, 2023; pp. 466–481. [Google Scholar] [CrossRef]
- Ministra del Ambiente, A. y T.E. Guía Para La Cuantificación y Caracterización de Residuos y Desechos Sólidos No Peligrosos En Cantones Del Ecuador. 2023; p. 116. Available online: https://www.ambiente.gob.ec/proyecto-gestion-integral-de-residuos-solidos-y-economia-circular-inclusiva-greci/ (accessed on 23 April 2024).
- Mora, A.; Larrea, J. La Tasa de Recolección de Residuos Sólidos: Análisis Desde La Perspectiva Tributaria Ambiental. Iuris Dictio 2021, 27, 39–53. [Google Scholar] [CrossRef]
- Jaramillo, J.; Chacha, A.; Herrera, R.; Peñafiel, P. Domestic Solid Waste Management in Rural Areas—Case Study of the Waorani Nampa Community, Ecuadorian Amazon. Green World J. 2023, 6, 1–12. [Google Scholar] [CrossRef]
- Vélez, A.; Peñafiel, P.; Heredia, M.; Barreno, S.; Chávez, J. Propuesta de Sistema de Gestión de Residuos Sólidos Domésticos En La Comunidad Waorani Gareno de La Amazonía Ecuatoriana. Cienc. Ambient. Sci. Cienc. 2019, 12, 33–45. [Google Scholar] [CrossRef]
- Win, K.; Yabar, H. Analysis of Household Waste Generation and Composition in Mandalay: Urban–Rural Comparison and Implications for Optimizing Waste Management Facilities. Waste 2024, 2, 490–509. [Google Scholar] [CrossRef]
- Pooja, Y.; Ranjan, S. Environmental Impact Assessment of Municipal Solid Waste Management Options Using Life Cycle Assessment: A Case Study. Environ. Sci. Pollut. Res. 2018, 25, 838–854. [Google Scholar] [CrossRef]
- Bayas, H. Primera Réplica Del Modelo Tarifario Basado En Volumen Para La Gestión de Residuos En Santa Cruz-Galápagos. FIGEMPA Investig. Desarro. 2024, 18, 101–117. [Google Scholar] [CrossRef]
- Heredia-r, M.; Cayambe, J.; Schorsch, C.; Toulkeridis, T.; Barreto, D.; Poma, P.; Villegas, G. Multitemporal Analysis as a Non-Invasive Technology Indicates a Rapid Change in Land Use in the Amazon: The Case of the ITT Oil Block. Environments 2021, 8, 139. [Google Scholar] [CrossRef]
- Turcott, D.; Romero, E.; Hernández, M.; López, A.; Mañon, M.; Lobo, A. Assessment of Some Governance Aspects in Waste Management Systems: A Case Study in Mexican Municipalities. J. Clean. Prod. 2021, 278, 12. [Google Scholar] [CrossRef]
- Cobos, S.; Guamán, J.; Zúñigam, J. Suitable Site Selection for Transfer Stations in a Solid Waste Management System Using Analytical Hierarchy Process as a Multi-criteria Decision Analysis: A Case Study in Azuay-Ecuador. Environ. Dev. Sustain. 2023, 25, 1944–1977. [Google Scholar] [CrossRef]
- Barragán, A.; Olmedo, J.; Curillo, J.; Zalamea, E. Assessment of Power Generation Using Biogas from Landfills in an Equatorial Tropical Context. Sustainability 2020, 12, 2669. [Google Scholar] [CrossRef]
- Cobos, S.; Solano, J.; Gárate, P. Criterios de Selección Para Un Sitio de Disposición Final de Residuos Sólidos No Peligrosos. Revisión de Normas Ambientales Latinoamericanas y Su Contraste Con La Norma Ecuatoriana. Rev. Int. Contam. Ambient. 2021, 16. [Google Scholar] [CrossRef]
- Ministerio del Ambiente, A. y T.E. Reglamento Al Código Orgánico Del Ambiente; Primer Suplemento No. 507: Ecuador, 2019. p. 144. Available online: https://www.ambiente.gob.ec/wp-content/uploads/downloads/2021/06/REGLAMENTO-AL-CODIGO-ORGANICO-DEL-AMBIENTE.pdf (accessed on 6 June 2024).
- Gobierno Autónomo Descentralizado Municipal del Cantón Aguarico Plan de Desarrollo y Ordenamiento Territorial (2019–2023). 2023; pp. 192–194. Available online: https://aguarico.gob.ec/?s=ordanansa+residuos (accessed on 26 June 2024).
- Jiménez Martínez, N.M. La Gestión Integral de Residuos Sólidos Urbanos En México: Entre La Intención y La Realidad. Let. Verdes. Rev. Latinoam. Estud. Socioambientales 2015, 17, 29–56. [Google Scholar] [CrossRef]
- Barreto, D.; Heredia, M.; Padilla, O.; Toulkeridis, T. Multitemporal Evaluation of the Recent Land Use Change in Santa Cruz Island, Galapagos, Ecuador; Springer: Cham, Switzelrand, 2020; pp. 519–534. [Google Scholar] [CrossRef]
- Cecchin, A. Material Flow Analysis for a Sustainable Resource Management in Island Ecosystems. Environ. Plan. Manag. 2017, 60, 1640–1659. [Google Scholar] [CrossRef]
- Diéguez, K.; Sarduy, L.; Decker, M. Characterization and Quantification of Municipal Solid Waste in Fátima, Ecuadorian Amazon Parish. J. Environ. Treat. Tech. 2021, 9, 392–401. [Google Scholar] [CrossRef]
- Burbano, D.; Ajila, F.; Poma, P. Water Quality Evaluation by WQI and ICOs for the Rivers of Joya de Los Sachas and Francisco de Orellana. F1000Research 2024, 1, 1–16. [Google Scholar] [CrossRef]
- Batista, M.; Gusmao, G.; Goncalves, O.; Alves, G.; Filho, W.; Rocha, I. A Framework for Sustainable and Integrated Municipal Solid Waste Management: Barriers and Critical Factors to Developing Countries. J. Clean. Prod. 2021, 312, 14. [Google Scholar] [CrossRef]
- Goel, S. Advances in Solid and Hazardous Waste Management. Sudha, G., Ed.; Springer: New York, NY, USA, 2017; ISBN 978-3-319-57076-1. [Google Scholar]
- Peñafiel, P.; Orejuela, J.; Barahona, M.; Guaicha, D.; Jungal, N. Caracterización de Residuos Plásticos Generados En La Provincia de Orellana-Ecuador. Rev. Cien. Acad. 2024, 4, 225–240. [Google Scholar] [CrossRef]
- Rojas, B.; Borja, J.; Poma, P.; Cárdenas, M. Estado Actual de La Gestión de Desechos Químicos En Los Rellenos Sanitarios Del Cantón Puerto Francisco de Orellana. Cienc. Salud 2020, 6, 1143–1159. [Google Scholar]
- Pizzitutti, F.; Walsh, S.J.; Rindfuss, R.R.; Gunter, R.; Quiroga, D.; Tippett, R.; Mena, C.F.; Pizzitutti, F.; Walsh, S.J.; Rindfuss, R.R.; et al. Scenario Planning for Tourism Management: A Participatory and System Dynamics Model Applied to the Galapagos Islands of Ecuador. J. Sustain. Tour. 2016, 9582, 22. [Google Scholar] [CrossRef]
- Ragazzi, M.; Catellani, R.; Rada, E.C.; Torretta, V.; Salazar-Valenzuela, X. Management of Urban Wastewater on One of the Galapagos Islands. Sustainability 2016, 8, 208. [Google Scholar] [CrossRef]
- Solíz, F.; Durango, S.; Solano, J.; Yépez, M. Cartografía de Los Residuos Sólidos En Ecuador 2020; Solíz, M., Ed.; Pato Chávez: Quito, Ecuador, 2020; ISBN 9789942837295. [Google Scholar]
- Qazi, W.; Abushammala, M.; Hasham, M. Multi-Criteria Decision Analysis of Waste-to-Energy Technologies for Municipal Solid Waste Management in Sultanate of Oman. Waste Manag. Res. 2018, 36, 594–605. [Google Scholar] [CrossRef] [PubMed]
- Quinteros, A.; González, K.; Delgado, M.; Casanova, M.; Quinteros, P.A. Modelo Multicriterio Para La Gestión Integral de Residuos Sólidos Urbanos En Quevedo—Ecuador. Rev. Cienc. Soc. 2020, XXVI, 328–352. [Google Scholar]
- Chicaiza, C.; Navarrete, V.; Camacho, C.; Chicaiza, Á. Evaluation of Municipal Solid Waste Management System of Quito—Ecuador through Life Cycle Assessment Approach. LALCA Rev. Lat.-Am. Avaliação Ciclo Vida 2020, 4, 13. [Google Scholar] [CrossRef]
- Ibarra, B.; Narváez, M. Análisis de La Disposición de los Desechos Sólidos y Generación de Biogás en El Relleno Sanitario de Ambato, Ecuador. AIDIS 2020, 13, 988–1006. [Google Scholar] [CrossRef]
- Rodríguez, A.; Mejías, R.; Vindas, C. Impacto de Las Medidas Implementadas en la Gestión Integral de Residuos Sólidos, En El Tecnológico de Costa Rica. Rev. Tecnol. Marcha 2021, 34, 3–15. [Google Scholar] [CrossRef]
- Ministerio del Ambiente, A. y T.E. Norma de Calidad Ambiental y de Descarga de Efluentes: Recurso Agua. Acuerdo Ministerial 097-A.; Registro Oficial—Edición Especial No. 387: Ecuador, 2015. pp. 6–26. Available online: https://www.cip.org.ec/attachments/article/1579/PROPUESTA%20ANEXO%201.pdf (accessed on 10 August 2024).
- Rodríguez, A.; Palomo, R.; Gonzáles, F. Transparencia y Economía Circular: Análisis y Valoración de La Gestión Municipal de Los Residuos Sólidos Urbanos. CIRIEC-Esp. Rev. Econ. Publica Soc. Coop. 2020, 233–272. [Google Scholar] [CrossRef]
- Villalba, M.; Dijkstra, G.; Scholten, P.; Sucozhañay, D. The Effectiveness of Inter-Municipal Cooperation for Integrated Sustainable Waste Management: A Case Study in Ecuador. Waste Manag. 2022, 150, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Burneo, D.; Cansino, J.M.; Yñiguez, R. Environmental and Socioeconomic Impacts of Urban Waste Recycling as Part of Circular Economy. The Case of Cuenca (Ecuador). Sustainability 2020, 12, 3406. [Google Scholar] [CrossRef]
- Hettiarachchi, H.; Meegoda, J.N.; Ryu, S. Organic Waste Buyback as a Viable Method to Enhance Sustainable Municipal Solid Waste Management in Developing Countries. Int. J. Environ. Res. Public Health 2018, 15, 2483. [Google Scholar] [CrossRef] [PubMed]
- Barbusiński, K.; Parzentna, A.; Kasperczyk, D. Removal of Odors (Mainly H2S and NH3) Using Biological Treatment Methods. Clean Technol. 2021, 3, 138–155. [Google Scholar] [CrossRef]
- Coban, A.; Ertis, I.; Cavdaroglu, N. Municipal Solid Waste Management via Multi-Criteria Decision Making Methods: A Case Study in Istanbul, Turkey. J. Clean. Prod. 2018, 180, 159–167. [Google Scholar] [CrossRef]
- Hidalgo, J.; Moreira, C.M.; Jervis, F.X.; Soto, M.; Amaya, J.L.; Banguera, L. Circular Economy of Expanded Polystyrene Container Production: Environmental Benefits of Household Waste Recycling Considering Renewable Energies. Energy Rep. 2022, 8, 306–311. [Google Scholar] [CrossRef]
- Moya, D.; Aldás, C.; Jaramillo, D.; Játiva, E.; Kaparaju, P. Waste-To-Energy Technologies: An Opportunity of Energy Recovery from Municipal Solid Waste, Using Quito—Ecuador as Case Study. Energy Procedia 2017, 134, 327–336. [Google Scholar] [CrossRef]
- He, R.; Sandoval-Reyes, M.; Scott, I.; Semeano, R.; Ferrão, P.; Matthews, S.; Small, M.J. Global Knowledge Base for Municipal Solid Waste Management: Framework Development and Application in Waste Generation Prediction. J. Clean. Prod. 2022, 377, 134501. [Google Scholar] [CrossRef]
- Istrate, I.R.; Iribarren, D.; Gálvez-Martos, J.L.; Dufour, J. Review of Life-Cycle Environmental Consequences of Waste-to-Energy Solutions on the Municipal Solid Waste Management System. Resour. Conserv. Recycl. 2020, 157, 104778. [Google Scholar] [CrossRef]
- Sun, L.; Fujii, M.; Tasaki, T.; Dong, H.; Ohnishi, S. Improving Waste to Energy Rate by Promoting an Integrated Municipal Solid-Waste Management System. Resour. Conserv. Recycl. 2018, 136, 289–296. [Google Scholar] [CrossRef]
- Ministerio del Ambiente, A. y T.E. Reglamento General a La Ley Orgánica de Economía Circular Inclusiva; Ecuador, 2023. pp. 1–28. Available online: https://procuraduria.utpl.edu.ec/NormativaExterna/REGLAMENTO%20GENERAL%20A%20LA%20LEY%20ORG%C3%81NICA%20DE%20ECONOM%C3%8DA%20CIRCULAR%20INCLUSIVA.pdf (accessed on 18 June 2024).
- Soudachanh, S.; Campitelli, A.; Salhofer, S. Identifying Priorities for the Development of Waste Management Systems in ASEAN Cities. Waste 2024, 2, 102–121. [Google Scholar] [CrossRef]
- Moreno, K.; Freire, G.; Caisa, D.; Moreno, A. Cadena de Suministros Verde: Análisis Estratégico de La Gestión de Residuos Sólidos En Pelileo-Ecuador. Rev. Ciencias Soc. 2021, XXVII, 293–308. [Google Scholar]
- García, R.; Socorro, A.; Maladonado, A. Manejo y Gestión Ambiental de Los Desechos Sólidos, Estudio de Casos. Univ. Soc. 2019, 11, 265–271. [Google Scholar]
- Zottele, A.; Nájera, L. Economía Circular: Contribución a La Agenda 2030. Rev. Mex. Econ. Finanz. Nueva Época 2022, 17, 1–17. [Google Scholar] [CrossRef]
- Fernández, J.M.; Grindlay, A.L.; Serrano, F.; Rodríguez, M.I.; Zamorano, M. Economic and Environmental Review of Waste-to-Energy Systems for Municipal Solid Waste Management in Medium and Small Municipalities. Waste Manag. 2017, 67, 360–374. [Google Scholar] [CrossRef] [PubMed]
- Santana, L.; Chiriboga, F.; Zanella, L. Análisis de Economía Circular y Finanzas Públicas Colaborativas. Rev. Científica Arbitr. Investig. Comun. Mark. Empres. REICOMUNICAR 2022, 5, 2–13. [Google Scholar]
- Salinas, L.; Gamboa, J.; Vega, F.; Salcedo, V. Modelo de Economía Circular En Ecuador: Análisis Descriptivo. Estud. Comtemporaneos Sur Glob. 2023, 4, 37. [Google Scholar] [CrossRef]
- Garabiza, B.; Produnte, E.; Quinde, K. La Aplicación Del Modelo de Economía Circular En Ecuador: Estudio de Caso. Espacios 2021, 4, 222–237. [Google Scholar] [CrossRef]
- Enríquez, K.; Aldana, C.; Abril, N.; Pesantez, C.; Aguas, M. Financiamiento Sostenible En Ecuador Año 2023 Un Análisis Desde La Taxonomía Verde. Cienc. Lat. 2023, 8, 18. [Google Scholar] [CrossRef]
- Singh, A. Managing the Uncertainty Problems of Municipal Solid Waste Disposal. J. Environ. Manag. 2019, 240, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Bing, X.; Bloemhof, J.M.; Ramos, T.R.P.; Barbosa-Povoa, A.P.; Wong, C.Y.; van der Vorst, J.G.A.J. Research Challenges in Municipal Solid Waste Logistics Management. Waste Manag. 2016, 48, 584–592. [Google Scholar] [CrossRef] [PubMed]
- Tsai, F.M.; Bui, T.D.; Tseng, M.L.; Lim, M.K.; Hu, J. Municipal Solid Waste Management in a Circular Economy: A Data-Driven Bibliometric Analysis. J. Clean. Prod. 2020, 275, 124132. [Google Scholar] [CrossRef]
- Medina, J.; Freire, A. Barreras Para La Implementación de La Economía Circular En Países En Vías de Desarrollo. Rev. Int. Adm. 2023, 14, 24. [Google Scholar] [CrossRef]
- Calero, D.; Carrión, A.; Montobbio, A. Gestión Locval Del Cambio Climatico:Planificación Participativa y Gobernanza Territorial; La Pradera: Quito, Ecuador, 2021; ISBN 9789978675663. [Google Scholar]
- Chen, Y.C.; Lo, S.L. Evaluation of Greenhouse Gas Emissions for Several Municipal Solid Waste Management Strategies. J. Clean. Prod. 2016, XXX, 606–612. [Google Scholar] [CrossRef]
- Portilla, J. Análisis Del Marco Normativo de Economía Circular En Ecuador Orientado Al Sector de Los Plásticos. FIGEMPA Investig. Desarro. 2022, 13, 38–47. [Google Scholar] [CrossRef]
- Abubakar, I.R.; Maniruzzaman, K.M.; Dano, U.L.; AlShihri, F.S.; AlShammari, M.S.; Ahmed, S.M.S.; Al-Gehlani, W.A.G.; Alrawaf, T.I. Environmental Sustainability Impacts of Solid Waste Management Practices in the Global South. Int. J. Environ. Res. Public Health 2022, 19, 12717. [Google Scholar] [CrossRef] [PubMed]
- Soltani, A.; Hewage, K.; Reza, B.; Sadiq, R. Multiple Stakeholders in Multi-Criteria Decision-Making in the Context of Municipal Solid Waste Management: A Review. Waste Manag. 2015, 35, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Becerra, D.; Gomez, Y.; Ramírez, L.; Barajas, A.; Solano, B.; Machuca, F. Procesos Avanzados de Oxidación Basados En Ozono Como Alternativa de Tratamiento Para Lixiviados de Rellenos Sanitarios. Cienc. Desarro. 2021, 12, 95–108. [Google Scholar]
- Niño, V.; Rodríguez, A.; Juárez, A.; Sampedro, M.; Reyes, M.; Silva, S. La Importancia de La Participación y Corresponsabilidad En El Manejo de Los Residuos Sólidos Urbanos. Acta Univ. Multidiscip. Sci. J. 2019, 29, 1–16. [Google Scholar] [CrossRef]
- Arcentales, A.; Palma, G. Gestión Integral de Residuos Sólidos y Su Impacto En Los Procesos Contables y Financiero Del Gobierno Autónomo Descentralizado Del Cantón Jaramijó, Provincia de Manabí 2020–2021. Rev. Científica Multidiscip. Arbitr. YACHASUN 2023, 7, 15. [Google Scholar]
- Imbiriba, B.; Ramos, J.; Silva, R.; Cattanio, J.; Couto, L.; Mitschein, T. Estimates of Methane Emissions and Comparison with Gas Mass Burned in CDM Action in a Large Landfill in Eastern Amazon. Waste Manag. 2020, 101, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Peña, C.; Civit, B.; Gallego-Schmid, A.; Druckman, A.; Caldeira-Pires, A.; Weidema, B.; Mieras, E.; Wang, F.; Fava, J.; Canals, L.M.I.; et al. Using Life Cycle Assessment to Achieve a Circular Economy. Int. J. Life Cycle Assess. 2021, 26, 215–220. [Google Scholar] [CrossRef]
- Negash, Y.T.; Sarmiento, L.S.C.; Tseng, M.L.; Lim, M.K.; Ali, M.H. Engagement Factors for Household Waste Sorting in Ecuador: Improving Perceived Convenience and Environmental Attitudes Enhances Waste Sorting Capacity. Resour. Conserv. Recycl. 2021, 175, 105893. [Google Scholar] [CrossRef]
- Byamba, B.; Ishikawa, M. Municipal Solid Waste Management in Ulaanbaatar, Mongolia: Systems Analysis. Sustainability 2017, 9, 896. [Google Scholar] [CrossRef]
- Merino, M.O. Los Problemas Ambientales En Ecuador y América Latina. Pentaciencias 2022, 4, 1–9. [Google Scholar]
- Solíz, M.; Cárdenas, D.; López, M.; Peláez, J.; Pérez, H.; Quincha, E.; Vinueza, M.; Quishpe, G.; Cadena, V.; Torres, D.; et al. Territorios En Sacrificio Comunidades Basurizadas; Solíz, M., López, C., Eds.; Primera: Quito, Ecuador, 2023; ISBN 978-9942-604-88-0. [Google Scholar]
- Morales, J. Capacidad Operativa de La Gestión de Desechos Sólidos en el Cantón Gonzalo Pizarro, Ecuador. Sapienza Int. J. Interdiscip. Stud. 2022, 3, 518–527. [Google Scholar] [CrossRef]
- Hasan, M.; Hassan, M.; Chowdhury, S. Waste Measurement for Biogas Generation to Fulfill the Electric Energy Demand of IUBAT: A Case Study. SN Appl. Sci. 2020, 2, 1–6. [Google Scholar] [CrossRef]
- Pincay, D.; Duque, G.; Sánchez, J.; Vázquez, P. Costo En El Tratamiento de Desechos Sólidos Del GAD Sevilla de Oro, Provincia Del Azuay- Ecuador. Rev. Venez. Gerenc. 2023, 9, 442–463. [Google Scholar] [CrossRef]
- Kalargaris, I.; Tian, G.; Gu, S. The Utilisation of Oils Produced from Plastic Waste at Different Pyrolysis Temperatures in a DI Diesel Engine. Energy 2017, 131, 179–185. [Google Scholar] [CrossRef]
Region | Monthly Total Spending on Integrated MSW | Tons Collected per Month | Average Price per Ton in USD |
---|---|---|---|
Sierra Region | 26,208.53 | 295.23 | 88.77 |
Coastal Region | 44,843.35 | 773.04 | 58.01 |
Amazon Region | 17,513.66 | 118.00 | 148.42 |
Insular Region | 49,655.06 | 213.55 | 232.53 |
Province | Sanitary Landfill | ||
Galápagos | 49,655.1 | 213.5 | 232.5 |
Orellana | 77,397.0 | 930.0 | 83.2 |
Province | Emerging Cell | ||
Galápagos | - | - | - |
Orellana | - | - | - |
Province | Dump | ||
Galápagos | 40,908.0 | 500.0 | 81.8 |
Orellana | 13,864.5 | 397.5 | 34.9 |
Canton Type | Population (Citizens) |
---|---|
Micro | <15,000 |
Little | 15,001–50,000 |
Middle | 50,001–200,000 |
Big | 200,001–1,000,000 |
Special | >1,000,000 |
Assessment | Level of Certainty | Level of Non-Conformity | Findings | Assessment |
---|---|---|---|---|
0–0.25% | Very Bad | Low | Major Non-Conformity | NC+ |
26–50% | Bad | Medium | Minor Non-Conformity | NC− |
51–70% | Average | High | ||
71–90% | Good | Very High | Conformity | C |
91–100% | Excellent | Excellent |
Estimated Population of the Canton in 2022 | Domestic Production (ton/day) | Non-Domestic Production (ton/day) | Special Production (ton/day) | Cantonal Production (ton/day) | Average Cantonal PCP (kg/inhab/day) |
---|---|---|---|---|---|
98,530 | 49.27 | 34.51 | 0.20 | 83.97 | 0.85 |
58.7% | 41.1% | 0.2% | 100% |
Sources of Waste and Solid Waste Generation | Organic Waste | Recyclable Waste | Scrap | Total % | |
---|---|---|---|---|---|
Urban (URB) | 67.30% | 12.40% | 20.30% | 100% | |
Rural (RUR) | 63.30% | 17.40% | 19.30% | 100% | |
Commercial Establishments (CE) | 32.7% | 38.8% | 28.5% | 100% | |
Hotels (H) | 59.4% | 20.7% | 19.9% | 100% | |
Markets (M) | 67.90% | 19.00% | 13.10% | 100% | |
Public and Private Institutions (PPI) | 20.80% | 44.30% | 34.90% | 100% | |
Educational Institutions (IE) | 18.6% | 55.4% | 26.0% | 100% | |
Restaurants (R) | 75.7% | 9.3% | 15.0% | 100% | |
Industrialists and environmental Managers (IGA) | from the sampling process | 32.7% | 33.5% | 33.8% | 100% |
about entry permits | 0.08% | --- | 99.9% | 100% | |
Cleaning and sanitation of public spaces and streets (AL) | 71.6% | 10.3% | 18.2% | 100% |
Types of MSW | Composition (%) | ||
---|---|---|---|
Useful | Organics | Organic Matter—Compostables | 58.44% |
Recyclables | Paper | 3.59 | |
Cardboard | 3.76 | ||
Glass | 2.42 | ||
Plastic | 5.34 | ||
Tetra brik (multilayer packaging) | 3.95 | ||
Metals | 0.88 | ||
Textiles (fabrics) | 1.26 | ||
Rubber, leather, rubber | 0.55 | ||
Unusable | Waste | Single-use plastic bags, snack wrappers, cookie wrappers, candy wrappers, among others | 6.29 |
Sanitary waste (toilet paper/diapers/sanitary napkins, pet droppings, etc.) | 6.56 | ||
Batteries | 0.10 | ||
Styrofoam (expanded polystyrene) | 2.73 | ||
Inert waste (earth, stones, ceramics, bricks, among others) | 3.79 | ||
Residues of medical use | 0.32 | ||
Other uncategorized waste | 0.02 |
Estimated Population 2023 | Domiciliary Production (ton/day) | Non-Domiciliary Production (ton/day) |
---|---|---|
28,108 | 14.66 | 4.8 |
Special Production (ton/day) | Cantonal Production (ton/day) | Average Cantonal PCP (ton/day) |
0.06 | 19.5 | 0.7 |
Estimated Population 2019 | Domestic kg/inhab/day | Commercial kg/inhab/day | Institutional kg/inhab/day |
19,852 | 4.117 | 0.355 | 0.007 |
Restaurants kg/inhab/day | Hotels kg/inhab/day | Boats kg/inhab/day | Cantonal kg/inhab/day |
0.092 | 0.017 | 0.009 | 0.911 |
Description | Household Waste % by Wt | Commercial % by Wt | Industrial % by Wt | Establishment Health % by Wt | Religious Worship % by Wt | Official Entities % by Wt |
---|---|---|---|---|---|---|
Organic matter | 56.5 | 14.1 | - | 24.5 | 5.5 | 11.5 |
Paper and cardboard | 5.0 | 30.3 | 61.3 | 20.0 | 8.4 | 32.7 |
Ferrous metals | 0.4 | -- | -- | -- | -- | -- |
Non-ferrous metals | 1.6 | -- | -- | -- | -- | -- |
Low-density plastic | 5.3 | 9.0 | 4.5 | 18.7 | 5.1 | 8.7 |
High-density plastic PHDE | 3.6 | 8.4 | 7.1 | 6.3 | 0.3 | 10.3 |
Rubber | 1.7 | 2.4 | -- | - | 6.5 | -- |
Inert matter | 4.5 | 19.4 | -- | 1.7 | 13.2 | 13.7 |
Glass | 3.7 | 4.2 | 4.0 | 7.4 | 7.2 | 13.3 |
Wood | 1.0 | 1.7 | 5.8 | -- | -- | -- |
Textiles | 2.8 | 1.4 | 1.5 | 3.8 | 34.8 | -- |
Toilet paper, diapers, towels | 10.8 | 7.8 | 13.7 | 8.4 | 14.6 | 9.2 |
Tetrapak | 1.2 | 0.1 | -- | 1.0 | -- | 0.06 |
PET plastics | 1.2 | 1.3 | 2.0 | 8.2 | 4.6 | 0.5 |
Disposable (plates, cups) | 0.7 | -- | -- | 0.08 | -- | -- |
Batteries | 0.1 | -- | -- | --- | -- | -- |
User | Price (USD) |
---|---|
Residential 0 kwh | 0.28 |
Residential 25 kwh | 1.00 |
Residential 100 kwh | 2.92 |
Residential 130 kwh | 4.59 |
Residential 300 kwh | 5.68 |
Residential 700 kwh | 9.83 |
Sources of Waste and Solid Waste Generation | Organic Waste | Recyclable Waste | Scrap | Total % |
---|---|---|---|---|
Urban (UR) | 74.3% | 18.1% | 7.6% | 100% |
Rural (RU) | 45.7% | 30.0% | 24.3% | 100% |
Commercial establishments (EC) | 57.0% | 33.9% | 9.1% | 100% |
Hotels (H) | 54.6% | 28.8% | 16.6% | 100% |
Markets (M) | 92.9% | 5.2% | 1.9% | 100% |
Restaurants (R) | 78.7% | 13.5% | 7,9% | 100% |
Public and private institutions (IPP) | 41.2% | 38.8% | 20.0% | 100% |
Educational institutions (IE) | 44.9% | 38.1% | 17.0% | 100% |
Sweeping and cleaning of streets and public spaces (BL) | 81.2% | 15.9% | 2.9% | 100% |
Public and private specials (ES) | 25.9% | 37.9% | 36.2% | 100% |
Types of MSW | Composition (%) | ||
---|---|---|---|
Useful | Organic | Organic matter (food waste, weeds, pruning, bones, and the like) | 63.12 |
Recyclables | Paper (white, newspaper, and mixed) | 3.21 | |
Cardboard (plain white, cardboard, brown, corrugated, and mixed) | 4.62 | ||
Glass (transparent, colored, and windows) | 1.48 | ||
Plastic (PET, HDPE, LDPE, PP, PS, and PVC) | 9.42 | ||
Tetra brik (multilayer packaging) | 2.56 | ||
Metals (tin cans, steel, iron, aluminum, and others) | 1.10 | ||
Textiles (fabrics) | 1.51 | ||
Rubber, leather, and rubber | 0.50 | ||
Unusable | Waste | Single-use plastic bags (snack, cookie, and candy wrappers, among others) | 1.58 |
Sanitary waste (toilet paper/diapers/sanitary napkins and pet excrement) | 6.71 | ||
Batteries | 0.01 | ||
Styrofoam | 0.10 | ||
Inert waste (dirt, stones, ceramics, and bricks, among others) | 2.46 | ||
Medicine residues | 0.03 | ||
Other uncategorized waste | 1.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poma, P.; Polanco, M.; Usca, K.; Casella, C.; Toulkeridis, T. An Evaluation of the Public Service of the Integrated Municipal Management of Urban Solid Waste in the Galapagos and the Amazonian Region of Ecuador. Sustainability 2025, 17, 1066. https://doi.org/10.3390/su17031066
Poma P, Polanco M, Usca K, Casella C, Toulkeridis T. An Evaluation of the Public Service of the Integrated Municipal Management of Urban Solid Waste in the Galapagos and the Amazonian Region of Ecuador. Sustainability. 2025; 17(3):1066. https://doi.org/10.3390/su17031066
Chicago/Turabian StylePoma, Paulina, María Polanco, Karla Usca, Claudio Casella, and Theofilos Toulkeridis. 2025. "An Evaluation of the Public Service of the Integrated Municipal Management of Urban Solid Waste in the Galapagos and the Amazonian Region of Ecuador" Sustainability 17, no. 3: 1066. https://doi.org/10.3390/su17031066
APA StylePoma, P., Polanco, M., Usca, K., Casella, C., & Toulkeridis, T. (2025). An Evaluation of the Public Service of the Integrated Municipal Management of Urban Solid Waste in the Galapagos and the Amazonian Region of Ecuador. Sustainability, 17(3), 1066. https://doi.org/10.3390/su17031066