Cloud Computing and Green Total Factor Productivity in Urban China: Evidence from a Spatial Difference-in-Differences Approach
Abstract
1. Introduction
2. Theoretical Framework
2.1. Cloud Computing and Urban Green Total Factor Productivity
2.2. Cloud Computing and Green Innovation
2.3. Cloud Computing and Resource Allocation Efficiency
3. Research Design
3.1. Green Total Factor Productivity
3.2. Spatial Statistic Method
3.2.1. Spatial Weight Matrix
3.2.2. Hot Spot Analysis
3.2.3. Moran Index
3.3. Spatial Difference-in-Differences Approach
3.3.1. Spatial Durbin Difference-in-Differences Model
3.3.2. Spatial Autoregressive Event-Study Model
3.3.3. The Model of Mechanism Analysis
3.4. Data
4. Result
4.1. Spatial and Temporal Distribution of GTFP
4.2. Spatial Statistic Analysis of Green Total Factor Productivity
4.2.1. Hot Spots Analysis of Green Total Factor Productivity
4.2.2. The Moran’s Index of Green Total Factor Productivity
4.3. Baseline Results
4.4. Parallel Trends Test
4.5. Placebo Test
4.6. Robustness Test
4.6.1. Considering the Impact of Administrative Levels
4.6.2. Changing the Explained Variable
4.6.3. Dropping the Anticipated Effects of Policies
4.6.4. Heterogeneous DID
4.6.5. Control for the Effects of Economic Development and Digital Infrastructure
4.6.6. Control for the Effects of Sample Timing Selection
4.6.7. Measuring GTFP Using Other Energy Inputs
5. Mechanism Analysis and Discussion
5.1. Mechanism Analysis
5.2. Heterogeneity Analysis
5.3. The Impact of Industrial Agglomeration
5.4. Mitigating the Siphon Effect of Cloud Computing
6. Conclusions
- (1)
- Constructing city-level green data cloud platforms to activate the emission reduction empowerment function of data elements. The empirical findings of this paper indicate that urban cloud computing can promote the improvement of urban GTFP. As a new-generation information technology, cloud computing can enhance data processing capabilities; therefore, it is necessary to further integrate regional data to leverage the data processing advantages of cloud computing. ① Comprehensively advance the development of unified city-level green data cloud platforms. Integrate multi-dimensional data including enterprise production energy consumption, carbon emission monitoring, park environmental quality, and renewable energy output, break down data silos among departments and enterprises, and form a green data resource pool covering the urban economic system. ② Guide enterprises to connect green-related data from production, operation, and management processes to the cloud, enabling accurate identification of high-energy-consuming links and emission reduction potential. The dynamic effects analysis in this paper reveals that the promotional effect of urban cloud computing on urban GTFP exhibits a certain time lag, with a significant positive effect emerging only after two periods. Therefore, governments need to further facilitate the adoption of cloud computing across different economic entities and encourage enterprises to proactively utilize cloud computing. ③ Support research institutions and enterprises in conducting joint R&D on green technologies based on cloud platforms. This facilitates the transformation of data elements into green productive forces, thereby enhancing urban GTFP from the perspective of technological innovation.
- (2)
- Cultivating cloud-based green resource collaboration platforms to promote the formation of cross entity emission reduction collaboration networks. ① Support leading enterprises in fields such as new energy, environmental protection, and high-tech manufacturing within cities to build cross entity cloud-based green resource sharing platforms. ② The empirical results indicate that urban cloud computing exhibits a significant negative siphon effect. Therefore, it is necessary to further promote cooperation among different economic entities and leverage the positive spillover mechanisms of technology. For instance, prioritize the integration of clean energy data resources, low-carbon technology resources, and idle green computing resources. Encourage large enterprises to open up redundant cloud computing resources and support small, medium, and micro enterprises in carrying out lightweight innovation activities such as low-carbon product design and carbon emission accounting. ③ Industrial agglomeration can mitigate the siphon effect of urban cloud computing on urban GTFP. It can promote the establishment of platform collaboration incentive mechanisms in industrial agglomeration areas, providing incentive measures such as carbon credits and policy preferences to enterprise clusters that actively share green resources. This, in turn, fosters the formation of a collaborative model with data interoperability, facilitates coordinated emission reduction across upstream and downstream industrial chains within industrial agglomeration areas, and enhances urban green total factor productivity by optimizing the allocation efficiency of green factors.
- (3)
- Optimizing support policies for green cloud applications to reduce the corporate transformation cost. To address enterprises’ green transformation needs during cloud computing adoption, a differentiated policy support system is introduced. ① Fiscal subsidies and support should fully account for differences in regional economic scale. Heterogeneous results indicate that cloud computing exerts a stronger siphon effect in small-scale cities. Therefore, to advance the balanced development of urban GTFP, it is essential to strengthen subsidies for cloud computing in small-scale cities, for instance, by providing tax reductions or financial support to enterprises that deploy cloud computing applications such as cloud-based carbon management systems and green supply chain management platforms. ② Improve urban cloud computing infrastructure by promoting the adoption of low-carbon technologies (e.g., photovoltaic power supply and waste heat recovery) in data centers to reduce the carbon emission intensity of cloud computing infrastructure itself. Simultaneously, expand the integrated coverage of 5G, edge computing, and green cloud platforms to enhance the response efficiency of cloud computing’s green applications. ③ Further promoting the integrated development of urban agglomerations, reducing regional administrative monopoly, facilitating free factor mobility, and advancing urban international economic activities. In further analysis, this paper finds that the implementation of urban agglomeration integration policies, the reduction in administrative monopoly via the Anti-Monopoly Law, and the rollout of cross-border e-commerce comprehensive pilot zone policies are effective pathways to mitigate the siphon effect of cloud computing on urban GTFP. Therefore, to enhance the positive spillover effects of urban cloud computing on GTFP, government policy formulation should further advance regional integrated development, shifting toward directions that promote cross-regional exchange and cooperation, enable free factor mobility, and drive international economic and trade development.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| GTFP | Green Total factor productivity |
| DID | Difference-in-Differences |
| SDID | Spatial Difference in differences |
| SDM-DID | Spatial Durbin Difference-in-Differences model |
| SAR | Spatial autoregressive |
| SAR-event-study | Spatial autoregressive event-study method |
| SAR-DID | Spatial Autoregressive Difference-in-Differences model |
Appendix A




References
- Dai, S.; Tang, D.; Li, Y.; Lu, H. Digital Trade, Trade Openness, FDI, and Green Total Factor Productivity. Int. Rev. Financ. Anal. 2025, 97, 103777. [Google Scholar] [CrossRef]
- Lyu, Y.; Xiao, X.; Zhang, J. Does the Digital Economy Enhance Green Total Factor Productivity in China? The Evidence from a National Big Data Comprehensive Pilot Zone. Struct. Change Econ. Dyn. 2024, 69, 183–196. [Google Scholar] [CrossRef]
- Yang, S.; Chen, Y.; Chen, H.; Ye, B.; Shao, S. Digital Enterprise Distribution and Green Total Factor Productivity: A Spatial Agglomeration Perspective. Environ. Impact Assess. Rev. 2025, 112, 107832. [Google Scholar] [CrossRef]
- Kong, F.; Chen, H.; Bao, S. Analysis of the Dynamic Evolution, Regional Differences, and Influencing Factors of Green Total Factor Productivity in Grain: The Case of China. Environ. Impact Assess. Rev. 2026, 116, 108141. [Google Scholar] [CrossRef]
- Guo, D.; Li, L.; Pang, G. Does the Integration of Digital and Real Economies Promote Urban Green Total Factor Productivity? Evidence from China. J. Environ. Manag. 2024, 370, 122934. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y. Tourism Industry Development, Rural Digitalization, and Green Total Factor Productivity. Financ. Res. Lett. 2025, 81, 107419. [Google Scholar] [CrossRef]
- Chen, L.; Lu, Y.; Meng, Y. The Impact of Environmental Regulation on Green Total Factor Productivity: Evidence from China’s Provincial Level. Process Saf. Environ. Prot. 2025, 198, 107106. [Google Scholar] [CrossRef]
- Dai, G.; Lv, X.; Sun, J.; Gao, X. Impact of Marine Industrial Synergistic Agglomeration on Marine Green Total Factor Productivity—Evidence from China’s Coastal Areas. Reg. Stud. Mar. Sci. 2025, 90, 104469. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Xia, X.; Huang, Q. Impact of China Europe Railway Express Operation on Green Total Factor Productivity and Spatial Spillover Effect in Chinese Cities. Transp. Policy 2025, 172, 103763. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Z. How Does Climate Risk Impact Green Total Factor Productivity? A Greening and Digital Synergy Perspective. Financ. Res. Lett. 2025, 85, 108205. [Google Scholar] [CrossRef]
- Ma, T.; Li, J. Green Credit Policy, Financing Constraints, and Total Factor Productivity of Enterprises. Financ. Res. Lett. 2025, 85, 108060. [Google Scholar] [CrossRef]
- Zhang, L.; Bai, J.; Sun, H.; Deng, F.; Qian, Y. Climate Policy Uncertainty, Supply Chain Resilience and Enterprises’ Green Total Factor Productivity: Evidence from China. Int. Rev. Econ. Financ. 2025, 103, 104555. [Google Scholar] [CrossRef]
- Ling, D.; Li, X. Can Green Bonds Enhance Enterprises’ Total Factor Productivity? The Impacts of Macroeconomic Policy Adjustment and Ownership Heterogeneity. Financ. Res. Lett. 2025, 82, 107562. [Google Scholar] [CrossRef]
- Lei, L.; Feng, H.; Ren, J. Artificial Intelligence, Human Capital and Firm-Level Total Factor Productivity. Financ. Res. Lett. 2025, 85, 107897. [Google Scholar] [CrossRef]
- Li, H.; Wu, H.; Rao, J. Impact of Artificial Intelligence on Corporate Green Transformation. Financ. Res. Lett. 2025, 80, 107427. [Google Scholar] [CrossRef]
- Li, Z.; Liu, M.; Wang, L. Artificial Intelligence Development and Rural Labor Employment Quality. Int. Rev. Econ. Financ. 2025, 102, 104292. [Google Scholar] [CrossRef]
- Wang, J.; Li, J. Data Factors as a Source of Innovation: Evidence from Chinese Cloud Computing Listed Firms. In Proceedings of the 2023 8th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA), Chengdu, China, 26–28 April 2023; pp. 247–251. [Google Scholar]
- Lyu, Y.; Wang, W.; Wu, Y.; Zhang, J. How Does Digital Economy Affect Green Total Factor Productivity? Evidence from China. Sci. Total Environ. 2023, 857, 159428. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Zhou, Y.; Hao, Q. The Effect and Mechanism of Digital Economy on Green Total Factor Productivity—Empirical Evidence from China. J. Environ. Manag. 2024, 372, 123237. [Google Scholar] [CrossRef]
- Shi, P.; Zhang, H.; Sun, C.; Wang, X.; Li, X. The Driving Effect of Digital Finance on Green Total Factor Productivity—Analysis Based on Double/Debiased Machine Learning Model and Spatial Durbin Model. Financ. Res. Lett. 2025, 81, 107463. [Google Scholar] [CrossRef]
- Li, G.; Liao, F. Input Digitalization and Green Total Factor Productivity under the Constraint of Carbon Emissions. J. Clean. Prod. 2022, 377, 134403. [Google Scholar] [CrossRef]
- Yang, K.; Kuang, J. How Artificial Intelligence Applications Enhance Enterprise Green Total Factor Productivity? A Perspective on Human-Machine Matching and Labor Skill Structure. Econ. Anal. Policy 2025, 87, 926–947. [Google Scholar] [CrossRef]
- Jiang, Y. Government Digital Governance and Corporate Green Total Factor Productivity. Int. Rev. Econ. Financ. 2025, 102, 104338. [Google Scholar] [CrossRef]
- Li, D.; Wang, P. FinTech Development and Corporate Green Total Factor Productivity. Int. Rev. Financ. Anal. 2025, 107, 104567. [Google Scholar] [CrossRef]
- Wen, J.; Hai, H.; Zhang, Y.; Chen, Z.; Li, L. Does Digital Transformation Impact Green Total Factor Productivity? Evidence from National Big Data Comprehensive Pilot Zones in China. Econ. Anal. Policy 2025, 86, 2207–2221. [Google Scholar] [CrossRef]
- Xue, D.; Zhu, Z. Digital Transformation of Energy Enterprises, ESG Performance, and Green Total Factor Productivity. Financ. Res. Lett. 2025, 86, 108398. [Google Scholar] [CrossRef]
- Liu, D.; Li, Y.; You, J.; Balezentis, T.; Shen, Z. Digital Inclusive Finance and Green Total Factor Productivity Growth in Rural Areas. J. Clean. Prod. 2023, 418, 138159. [Google Scholar] [CrossRef]
- Sallehudin, H.; Aman, A.H.M.; Razak, R.C.; Ismail, M.; Bakar, N.A.A.; Fadzil, A.F.M.; Baker, R. Performance and Key Factors of Cloud Computing Implementation in the Public Sector. Int. J. Bus. Soc. 2021, 21, 134–152. [Google Scholar] [CrossRef]
- Chang, I.-C.; Liu, C.-C.; Wu, T.-L. Does Cloud Computing Influence Enterprise Performance? J. Organ. End User Comput. JOEUC 2021, 33, 1–15. [Google Scholar] [CrossRef]
- Yu, H.; Lu, X.; Pan, Z. An Authorized Public Auditing Scheme for Dynamic Big Data Storage in Cloud Computing. IEEE Access 2020, 8, 151465–151473. [Google Scholar] [CrossRef]
- Katz, R.; Jung, J. Economic Spillovers from Cloud Computing: Evidence from OECD Countries. Inf. Technol. Dev. 2024, 30, 173–194. [Google Scholar] [CrossRef]
- Al-Azzawi, T.; Kaya, T. The Impact of Cloud Computing on Organizational Performance. Int. J. Cloud Appl. Comput. 2021, 11, 136–151. [Google Scholar] [CrossRef]
- Floerecke, S.; Lehner, F.; Schweikl, S. Cloud Computing Ecosystem Model: Evaluation and Role Clusters. Electron. Mark. 2021, 31, 923–943. [Google Scholar] [CrossRef]
- Son, I.; Lee, D.; Lee, J.-N.; Chang, Y.B. Market Perception on Cloud Computing Initiatives in Organizations: An Extended Resource-Based View. Inf. Manag. 2014, 51, 653–669. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, S.; Wei, J.; Tong, Y. Assessing Cloud Computing Value in Firms through Socio-Technical Determinants. Inf. Manag. 2020, 57, 103369. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, R.; Lyu, J.; Ma, X. The Butterfly Effect of Cloud Computing on the Low-Carbon Economy. Technol. Forecast. Soc. Chang. 2024, 204, 123433. [Google Scholar] [CrossRef]
- Golightly, L.; Chang, V.; Xu, Q.A.; Gao, X.; Liu, B.S. Adoption of Cloud Computing as Innovation in the Organization. Int. J. Eng. Bus. Manag. 2022, 14, 18479790221093992. [Google Scholar] [CrossRef]
- Blichfeldt, H.; Faullant, R. Performance Effects of Digital Technology Adoption and Product & Service Innovation—A Process-Industry Perspective. Technovation 2021, 105, 102275. [Google Scholar] [CrossRef]
- Marchesani, F.; Masciarelli, F.; Doan, H.Q. Innovation in Cities a Driving Force for Knowledge Flows: Exploring the Relationship between High-Tech Firms, Student Mobility, and the Role of Youth Entrepreneurship. Cities 2022, 130, 103852. [Google Scholar] [CrossRef]
- Wang, J.; Dong, K.; Sha, Y.; Yan, C. Envisaging the Carbon Emissions Efficiency of Digitalization: The Case of the Internet Economy for China. Technol. Forecast. Soc. Change 2022, 184, 121965. [Google Scholar] [CrossRef]
- Wang, J.; Wang, B.; Dong, K.; Dong, X. How Does the Digital Economy Improve High-Quality Energy Development? The Case of China. Technol. Forecast. Soc. Change 2022, 184, 121960. [Google Scholar] [CrossRef]
- Shahbaz, M.; Wang, J.; Dong, K.; Zhao, J. The Impact of Digital Economy on Energy Transition across the Globe: The Mediating Role of Government Governance. Renew. Sustain. Energy Rev. 2022, 166, 112620. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, Q. An Energy Efficient On-Demand Multi-Path Routing Protocol for Wireless Body Area Network. Int. J. Comput. Sci. Eng. 2024, 27, 238–247. [Google Scholar] [CrossRef]
- Zhang, T.; Shi, Z.-Z.; Shi, Y.-R.; Chen, N.-J. Enterprise Digital Transformation and Production Efficiency: Mechanism Analysis and Empirical Research. Econ. Res.-Ekon. Istraživanja 2022, 35, 2781–2792. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, H.; Chen, J.; Fan, Z. An Empirical Analysis of the Impact of Digital Economy on Manufacturing Green and Low-Carbon Transformation under the Dual-Carbon Background in China. Int. J. Environ. Res. Public Health 2022, 19, 13192. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Ye, F.; Xiao, H.; Xie, W.; Liu, B.; Wang, L. The Digital Economy, Spatial Spillovers and Forestry Green Total Factor Productivity. J. Clean. Prod. 2023, 405, 136890. [Google Scholar] [CrossRef]
- Wang, M.; Yu, X.; Hong, X.; Yang, X. Can Digital Finance Promote Green Innovation Collaboration in Enterprises? Glob. Financ. J. 2025, 65, 101109. [Google Scholar] [CrossRef]
- Tian, L.; Li, Z.; Shi, B. Cloud Adoption and Corporate Innovation: Insights from Data as a Factor of Production. J. World Econ. 2025, 48, 178–210. [Google Scholar] [CrossRef]
- Nuo, X.; Ju, M.; Mao, X.; Wang, Y. Computility Deployment, Cross-Domain Data Flow and Enterprise Total Factor Productivity: Evidence from Intelligent Computing Centers. China Ind. Econ. 2025, 04, 61–79. [Google Scholar] [CrossRef]
- Zhang, Y.; Miao, Z.; Sun, Y. Impact of Green and Low-Carbon Technological Innovation on Green Total Factor Productivity of Industrial Sector: An Analysis Based on BAM-DEA Model. Sustain. Futures 2025, 10, 101036. [Google Scholar] [CrossRef]
- Babina, T.; Fedyk, A.; He, A.; Hodson, J. Artificial Intelligence, Firm Growth, and Product Innovation. J. Financ. Econ. 2024, 151, 103745. [Google Scholar] [CrossRef]
- Jia, F.; Zeng, S.; Gao, X. Can the Digital Economy Empower the Transportation Sector to Improve Green Total Factor Productivity? Int. J. Sustain. Transp. 2024, 18, 871–886. [Google Scholar] [CrossRef]
- Jiang, Y.; Han, G.; Yu, D. Digital Finance and Agricultural Green Total Factor Productivity: The Mediating Role of Digital Village Development. Financ. Res. Lett. 2024, 67, 105948. [Google Scholar] [CrossRef]
- Shan, H. Reestimating the Capital Stoack of China: 1952–2006. J. Quant. Tech. Econ. 2008, 10, 17–31. [Google Scholar]
- Wu, H.; Hao, Y.; Ren, S. How Do Environmental Regulation and Environmental Decentralization Affect Green Total Factor Energy Efficiency: Evidence from China. Energy Econ. 2020, 91, 104880. [Google Scholar] [CrossRef]
- Yi, L.; Zhang, W.; Liu, Y.; Zhang, W. An Analysis of the Impact of Market Segmentation on Energy Efficiency: A Spatial Econometric Model Applied in China. Sustainability 2021, 13, 7659. [Google Scholar] [CrossRef]
- Fullerton, T.M., Jr.; Walke, A.G. Empirical Evidence Regarding Electricity Consumption and Urban Economic Growth. Appl. Econ. 2019, 51, 1977–1988. [Google Scholar] [CrossRef]
- Alhamwi, A.; Medjroubi, W.; Vogt, T.; Agert, C. Modelling Urban Energy Requirements Using Open Source Data and Models. Appl. Energy 2018, 231, 1100–1108. [Google Scholar] [CrossRef]
- Polyviou, A.; Venters, W.; Pouloudi, N. Distant but Close: Locational, Relational and Temporal Proximity in Cloud Computing Adoption. J. Inf. Technol. 2024, 39, 71–93. [Google Scholar] [CrossRef]
- Jia, R.; Shao, S.; Yang, L. High-Speed Rail and CO2 Emissions in Urban China: A Spatial Difference-in-Differences Approach. Energy Econ. 2021, 99, 105271. [Google Scholar] [CrossRef]
- Hsieh, C.-T.; Klenow, P.J. Misallocation and Manufacturing TFP in China and India. Q. J. Econ. 2009, 124, 1403–1448. [Google Scholar] [CrossRef]
- Hongjun, G.; Liye, D.; Aiwu, Z. Energy Structure Dividend, Factor Allocation Efficiency and Regional Productivity Growth-- An Empirical Examination of Energy Restructuring in China. Energy Policy 2023, 172, 113307. [Google Scholar] [CrossRef]
- Feng, W.; Sun, S.; Yuan, H. Research on the Efficiency of Factor Allocation in the Pilot Free Trade Zones. Econ. Anal. Policy 2023, 79, 727–745. [Google Scholar] [CrossRef]
- Li, X.; Ma, L.; Tang, Y. Migration and Resource Misallocation in China. J. Dev. Econ. 2024, 167, 103218. [Google Scholar] [CrossRef]
- Callaway, B.; Sant’Anna, P.H.C. Difference-in-Differences with Multiple Time Periods. J. Econom. 2021, 225, 200–230. [Google Scholar] [CrossRef]
- Su, Z.; Liu, Y.; Gao, Y.; Park, K.-S.; Su, M. Critical Success Factors for Green Port Transformation Using Digital Technology. J. Mar. Sci. Eng. 2024, 12, 2128. [Google Scholar] [CrossRef]
- Wang, H.; Yan, T.; Huang, R.; Gao, J. Alleviating the Rural Household Energy Poverty in China: The Role of Digital Economy. Energy Econ. 2025, 142, 108160. [Google Scholar] [CrossRef]
- Yang, G.; Wang, H.; Fan, H.; Yue, Z. Carbon Reduction Effect of Digital Economy: Theoretical Analysis and Empirical Evidence. China Ind. Econ. 2023, 05, 80–98. [Google Scholar] [CrossRef]
- Chand, T.R.K.; Badarinath, K.V.S.; Elvidge, C.D.; Tuttle, B.T. Spatial Characterization of Electrical Power Consumption Patterns over India Using Temporal DMSP-OLS Night-time Satellite Data. Int. J. Remote Sens. 2009, 30, 647–661. [Google Scholar] [CrossRef]
- Liu, H.; Fang, W.; Yuan, P.; Dong, X. How Does Climate Change Affect Green Total Factor Productivity? Clim. Change 2025, 178, 112. [Google Scholar] [CrossRef]
- Xia, F.; Xu, J. Green Total Factor Productivity: A Re-Examination of Quality of Growth for Provinces in China. China Econ. Rev. 2020, 62, 101454. [Google Scholar] [CrossRef]
- Han, L.; Wojan, T.R.; Goetz, S.J. Cloud Computing and Rural Globalization: Evidence for the U.S. Nonfarm Economy. Telecommun. Policy 2024, 48, 102814. [Google Scholar] [CrossRef]
- Fan, J. Yangtze River Delta Integration, Regional Specialization, and the Spatial Relocation of Manufacturing. J. Manag. World 2004, 11, 77–84+96. [Google Scholar] [CrossRef]
- XiaoFeng, C.; ZhaoFeng, C. Level and Effect on Co -agglomeration of Producer Service and Manufacturing Industry: Empirical Evidence from the Eastern Area of China. Financ. Trade Res. 2014, 25, 49–57. [Google Scholar] [CrossRef]
- Xuesong, M.; Dingliang, W. The Internal Mechanism and Realization Path for the Modernization of Spatial Governance in Megacities from the Perspective of Deepening Coordinated Regional Development. Soc. Sci. Yunnan 2025, 05, 23–33. [Google Scholar]
- Xiaolin, W. The City of Traffic in the Digital Age: The Rise and Governance of the New City Form. Jiangsu Soc. Sci. 2022, 4, 62–72+242–243. [Google Scholar] [CrossRef]
- Xie, C.; Wang, M. A Study on the Impact of Transportation Infrastructure on the Spatial Distribution of Industrial Activities. J. Manag. World 2020, 36, 52–64+161+65–66. [Google Scholar] [CrossRef]
- Jiang, X.; Meng, L. Mainly Inner Circulation, Outer Circulation Empowerment and Higher Level Double Circulation: International Experience and Chinese Practice. J. Manag. World 2021, 37, 1–19. [Google Scholar] [CrossRef]
- Yu, C.; Yu, D. The Measurement of Local Administrative Monopoly Degree in China. Econ. Res. J. 2009, 44, 119–131. [Google Scholar]
- Lu, X.; Wang, S. Measurement of the Degree of Marketization of Factors, Decomposition of Regional Differences and Dynamic Evolution: Empirical Research Based on China’s Provincial Panel Data. South China J. Econ. 2021, 01, 37–63. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, Y. Competition Policy and Corporate Investment: Quasi-natural Experiments Based on the Implementation of the Anti-monopoly Law. Econ. Res. J. 2020, 55, 137–152. [Google Scholar]








| Variable | Obs. | Mean | SD | Min | Max |
|---|---|---|---|---|---|
| Panel A The data of basic result | |||||
| 6712 | 0.89 | 0.06 | 0.57 | 1.06 | |
| 6947 | 0.24 | 0.43 | 0.00 | 1.00 | |
| gove | 6898 | 0.17 | 0.11 | 0.01 | 0.68 |
| urban | 6947 | 38.47 | 24.34 | 10.01 | 100.00 |
| R2 | 6939 | 45.24 | 11.57 | 13.55 | 74.73 |
| LK | 6712 | 1.32 | 0.09 | 0.89 | 1.79 |
| lnedu | 6941 | 2.98 | 0.74 | 0.00 | 5.44 |
| lnpop | 6939 | 5.83 | 0.74 | 2.85 | 7.19 |
| consump | 6941 | 14.86 | 1.78 | 11.68 | 18.03 |
| Dsponge | 6947 | 0.04 | 0.19 | 0.00 | 1.00 |
| Dbigdata | 6947 | 0.09 | 0.29 | 0.00 | 1.00 |
| Panel B The data of mechanism analysis | |||||
| 5443 | 2.20 | 3.74 | 0.00 | 16.80 | |
| Green_Inno1 | 6652 | 3.15 | 1.97 | 0.00 | 10.08 |
| Green_Inno2 | 6652 | 3.53 | 1.89 | 0.00 | 9.30 |
| Labor_Miss | 6146 | 0.56 | 0.27 | 0.03 | 0.91 |
| Capital_Miss | 6712 | 0.93 | 0.08 | 0.68 | 0.99 |
| Miss_All | 6146 | 0.76 | 0.18 | 0.29 | 0.96 |
| Time | Moran’s I | p-Value | Time | Moran’s I | p-Value |
|---|---|---|---|---|---|
| 2000 | 0.267 *** | 0.000 | 2012 | 0.107 *** | 0.005 |
| 2001 | 0.265 *** | 0.000 | 2013 | 0.101 *** | 0.008 |
| 2002 | 0.256 *** | 0.000 | 2014 | 0.111 *** | 0.004 |
| 2003 | 0.230 *** | 0.000 | 2015 | 0.154 *** | 0.000 |
| 2004 | 0.217 *** | 0.000 | 2016 | 0.153 *** | 0.000 |
| 2005 | 0.090 ** | 0.018 | 2017 | 0.225 *** | 0.000 |
| 2006 | 0.110 *** | 0.004 | 2018 | 0.214 *** | 0.000 |
| 2007 | 0.115 *** | 0.003 | 2019 | 0.199 *** | 0.000 |
| 2008 | 0.086 ** | 0.023 | 2020 | 0.149 *** | 0.000 |
| 2009 | 0.060 | 0.107 | 2021 | 0.105 *** | 0.006 |
| 2010 | 0.106 *** | 0.006 | 2022 | 0.100 *** | 0.005 |
| 2011 | 0.105 *** | 0.006 | 2023 | 0.143 *** | 0.001 |
| (1) | (2) | (3) | (4) | (5) | (6) | |
|---|---|---|---|---|---|---|
| W01 | W01 | W01 | W01 | |||
| GTFP | GTFP | GTFP | GTFP | GTFP | GTFP | |
| 0.00564 *** | 0.00375 *** | 0.00283 *** | 0.00357 *** | 0.00368 *** | 0.00374 *** | |
| (0.0016) | (0.0011) | (0.0011) | (0.0011) | (0.0011) | (0.0011) | |
| gove | −0.0483 *** | −0.113 *** | −0.113 *** | −0.109 *** | −0.104 *** | |
| (0.0070) | (0.0076) | (0.0073) | (0.0073) | (0.0072) | ||
| R2 | −0.000654 *** | −0.000443 *** | −0.000386 *** | −0.000372 *** | −0.000422 *** | |
| (0.000054) | (0.000067) | (0.000063) | (0.000063) | (0.000063) | ||
| urban | −0.000237 *** | −0.0000469 | 0.00000509 | −0.00000433 | −0.0000283 | |
| (0.000027) | (0.000043) | (0.000042) | (0.000043) | (0.000043) | ||
| LK | 0.277 *** | 0.121 *** | 0.146 *** | 0.155 *** | 0.144 *** | |
| (0.010) | (0.010) | (0.010) | (0.010) | (0.010) | ||
| lnedu | −0.0190 *** | −0.00999 *** | −0.0122 *** | −0.0135 *** | −0.0127 *** | |
| (0.0016) | (0.0016) | (0.0015) | (0.0015) | (0.0015) | ||
| lnpop | 0.0252 *** | 0.0373 *** | 0.0370 *** | 0.0362 *** | 0.0333 *** | |
| (0.0018) | (0.0040) | (0.0038) | (0.0038) | (0.0038) | ||
| consump | 0.00918 *** | −0.00329 *** | −0.00287 *** | −0.00223 ** | −0.00308 *** | |
| (0.00095) | (0.00100) | (0.0010) | (0.0010) | (0.00100) | ||
| Dsponge | 0.0109 *** | 0.0101 *** | 0.0130 *** | 0.0134 *** | 0.0132 *** | |
| (0.0025) | (0.0019) | (0.0018) | (0.0018) | (0.0019) | ||
| Dbigdata | −0.0211 *** | −0.00793 *** | −0.00715 *** | −0.00631 *** | −0.00379 * | |
| (0.0031) | (0.0023) | (0.0022) | (0.0020) | (0.0020) | ||
| −0.0228 *** | −0.0154 *** | −0.0108 *** | −0.00692 *** | −0.00479 ** | −0.00736 *** | |
| (0.0027) | (0.0021) | (0.0025) | (0.0025) | (0.0019) | (0.0018) | |
| gove | 0.116 *** | 0.123 *** | 0.0600 *** | 0.0298 *** | 0.0197 * | |
| (0.011) | (0.012) | (0.014) | (0.011) | (0.011) | ||
| R2 | 0.000625 *** | 0.000589 *** | 0.000294 *** | 0.000104 | 0.000190 ** | |
| (0.000094) | (0.00011) | (0.00011) | (0.000091) | (0.000091) | ||
| urban | −0.000296 *** | −0.000580 *** | −0.000120 | −0.0000953 | −0.000126 * | |
| (0.000051) | (0.000067) | (0.000092) | (0.000076) | (0.000074) | ||
| LK | −0.435 *** | −0.0740 *** | 0.0723 *** | 0.0344 ** | 0.0600 *** | |
| (0.012) | (0.016) | (0.020) | (0.016) | (0.015) | ||
| lnedu | 0.0356 *** | 0.0110 *** | 0.000916 | 0.00534 ** | 0.00368 * | |
| (0.0029) | (0.0029) | (0.0029) | (0.0024) | (0.0022) | ||
| lnpop | −0.0616 *** | −0.0578 *** | −0.0528 *** | −0.0450 *** | −0.0366 *** | |
| (0.0034) | (0.0079) | (0.0074) | (0.0066) | (0.0061) | ||
| consump | 0.0112 *** | 0.00560 *** | 0.00489 ** | 0.00229 | 0.00483 *** | |
| (0.0016) | (0.0016) | (0.0020) | (0.0018) | (0.0016) | ||
| Dsponge | −0.0107 * | −0.0175 *** | −0.000875 | −0.0000359 | −0.00649 ** | |
| (0.0057) | (0.0043) | (0.0042) | (0.0031) | (0.0031) | ||
| Dbigdata | 0.0285 *** | 0.0152 *** | 0.0129 *** | 0.00929 *** | 0.00600 ** | |
| (0.0043) | (0.0034) | (0.0032) | (0.0028) | (0.0027) | ||
| 0.720 *** | 0.841 *** | 0.293 *** | 0.272 *** | 0.222 *** | 0.185 *** | |
| (0.0090) | (0.0073) | (0.018) | (0.018) | (0.015) | (0.015) | |
| Time FE | No | No | Yes | Yes | Yes | Yes |
| City FE | No | Yes | Yes | Yes | Yes | Yes |
| Adj.R2 | 0.62 | 0.79 | 0.051 | 0.14 | 0.13 | 0.13 |
| N | 6704 | 6704 | 6712 | 6704 | 6704 | 6704 |
| (1) | (2) | (3) | (4) | (5) | (6) | |
|---|---|---|---|---|---|---|
| W01 | W01 | |||||
| Excluding Samples of Municipalities | Excluding Samples of Provincial Capital Cities | Excluding Samples of Municipalities | Excluding Samples of Provincial Capital Cities | Excluding Samples of Municipalities | Excluding Samples of Provincial Capital Cities | |
| 0.00316 *** | 0.00265 ** | 0.00320 *** | 0.00260 ** | 0.00323 *** | 0.00257 ** | |
| (0.0011) | (0.0011) | (0.0011) | (0.0011) | (0.0011) | (0.0011) | |
| −0.00637 *** | −0.0103 *** | −0.00480 ** | −0.00745 *** | −0.00713 *** | −0.00914 *** | |
| (0.0025) | (0.0025) | (0.0019) | (0.0019) | (0.0018) | (0.0018) | |
| (0.0020) | (0.0021) | (0.0018) | (0.0018) | (0.0016) | (0.0016) | |
| 0.271 *** | 0.248 *** | 0.220 *** | 0.204 *** | 0.181 *** | 0.181 *** | |
| (0.018) | (0.019) | (0.015) | (0.016) | (0.015) | (0.015) | |
| X | Yes | Yes | Yes | Yes | Yes | Yes |
| WX | Yes | Yes | Yes | Yes | Yes | Yes |
| Time FE | Yes | Yes | Yes | Yes | Yes | Yes |
| City FE | Yes | Yes | Yes | Yes | Yes | Yes |
| Adj.R2 | 0.15 | 0.16 | 0.14 | 0.15 | 0.13 | 0.15 |
| N | 6609 | 6189 | 6609 | 6189 | 6609 | 6189 |
| (1) | (2) | (3) | (4) | (5) | (6) | |
|---|---|---|---|---|---|---|
| W01 | W01 | |||||
| GTFP-SBM | GTFP-SBM | GTFP-SBM | GTFP-SBM | GTFP-SBM | GTFP-SBM | |
| 0.00357 *** | 0.00353 *** | 0.00314 ** | 0.00364 *** | 0.00373 *** | 0.00371 *** | |
| (0.0013) | (0.0011) | (0.0013) | (0.0011) | (0.0013) | (0.0011) | |
| −0.0108 *** | −0.00693 *** | −0.00286 | −0.00468 ** | −0.00814 *** | −0.00710 *** | |
| (0.0029) | (0.0024) | (0.0022) | (0.0018) | (0.0021) | (0.0018) | |
| ρ | 0.260 *** | 0.281 *** | 0.210 *** | 0.230 *** | 0.168 *** | 0.189 *** |
| (0.020) | (0.018) | (0.016) | (0.015) | (0.015) | (0.015) | |
| X | No | Yes | No | Yes | No | Yes |
| WX | No | Yes | No | Yes | No | Yes |
| Time FE | Yes | Yes | Yes | Yes | Yes | Yes |
| City FE | Yes | Yes | Yes | Yes | Yes | Yes |
| Adj.R2 | 0.036 | 0.15 | 0.034 | 0.14 | 0.028 | 0.13 |
| N | 6938 | 6704 | 6938 | 6704 | 6938 | 6704 |
| (1) | (2) | (3) | (4) | (5) | (6) | |
|---|---|---|---|---|---|---|
| W01 | W01 | |||||
| GTFP | GTFP | GTFP | GTFP | GTFP | GTFP | |
| 0.00359 *** | 0.00309 ** | 0.00365 *** | 0.00315 ** | 0.00365 *** | 0.00308 ** | |
| (0.0012) | (0.0013) | (0.0012) | (0.0013) | (0.0012) | (0.0013) | |
| −0.00905 *** | −0.0103 *** | −0.00658 *** | −0.00740 *** | −0.00909 *** | −0.0105 *** | |
| (0.0025) | (0.0026) | (0.0020) | (0.0020) | (0.0019) | (0.0020) | |
| ρ | 0.256 *** | 0.234 *** | 0.218 *** | 0.209 *** | 0.173 *** | 0.159 *** |
| (0.019) | (0.019) | (0.016) | (0.016) | (0.015) | (0.015) | |
| X | Yes | Yes | Yes | Yes | Yes | Yes |
| WX | Yes | Yes | Yes | Yes | Yes | Yes |
| Time FE | Yes | Yes | Yes | Yes | Yes | Yes |
| City FE | Yes | Yes | Yes | Yes | Yes | Yes |
| Adj.R2 | 0.14 | 0.14 | 0.13 | 0.13 | 0.13 | 0.13 |
| N | 6456 | 6206 | 6456 | 6206 | 6456 | 6206 |
| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | |
|---|---|---|---|---|---|---|---|---|---|
| W01 | W01 | W01 | |||||||
| GTFP | GTFP | GTFP | GTFP | GTFP | GTFP | GTFP | GTFP | GTFP | |
| 0.00342 *** | 0.00342 *** | 0.00346 *** | 0.00303 *** | 0.00251 ** | 0.00320 *** | 0.00289 ** | 0.00280 ** | 0.00297 *** | |
| (0.0011) | (0.0011) | (0.0011) | (0.0011) | (0.0010) | (0.0011) | (0.0011) | (0.0011) | (0.0011) | |
| lngdp | −0.0692 *** | −0.0693 *** | −0.0678 *** | −0.0629 *** | −0.0629 *** | −0.0624 *** | |||
| (0.0081) | (0.0083) | (0.0082) | (0.0083) | (0.0085) | (0.0084) | ||||
| lnper_gdp | 0.0745 *** | 0.0758 *** | 0.0718 *** | 0.0689 *** | 0.0697 *** | 0.0670 *** | |||
| (0.0082) | (0.0084) | (0.0082) | (0.0085) | (0.0087) | (0.0085) | ||||
| Dinformation | 0.00490 *** | 0.00526 *** | 0.00468 *** | 0.00301 * | 0.00268 * | 0.00252 | |||
| (0.0016) | (0.0016) | (0.0016) | (0.0016) | (0.0016) | (0.0016) | ||||
| Dboard | 0.00576 *** | 0.00674 *** | 0.00587 *** | 0.00530 *** | 0.00542 *** | 0.00525 *** | |||
| (0.0012) | (0.0011) | (0.0012) | (0.0012) | (0.0012) | (0.0012) | ||||
| −0.00783 *** | −0.00587 *** | −0.00863 *** | −0.00721 *** | −0.00422 ** | −0.00736 *** | −0.00794 *** | −0.00662 *** | −0.00854 *** | |
| (0.0025) | (0.0019) | (0.0019) | (0.0025) | (0.0017) | (0.0019) | (0.0025) | (0.0019) | (0.0018) | |
| lngdp | 0.0127 | 0.00158 | −0.00269 | 0.0286 | 0.0196 | 0.00856 | |||
| (0.022) | (0.029) | (0.025) | (0.023) | (0.029) | (0.025) | ||||
| lnper_gdp | −0.00313 | 0.00847 | 0.0187 | −0.0205 | −0.00967 | 0.00643 | |||
| (0.022) | (0.029) | (0.025) | (0.023) | (0.029) | (0.025) | ||||
| Dinformation | 0.00845 ** | 0.00264 | 0.00465 | 0.00631 | 0.00298 | 0.00300 | |||
| (0.0042) | (0.0030) | (0.0033) | (0.0041) | (0.0031) | (0.0032) | ||||
| Dboard | 0.00295 | 0.00411 ** | 0.00187 | 0.00169 | 0.00363 * | 0.000602 | |||
| (0.0027) | (0.0021) | (0.0021) | (0.0027) | (0.0022) | (0.0020) | ||||
| ρ | 0.263 *** | 0.211 *** | 0.172 *** | 0.267 *** | 0.201 *** | 0.182 *** | 0.261 *** | 0.208 *** | 0.171 *** |
| (0.019) | (0.016) | (0.015) | (0.018) | (0.016) | (0.015) | (0.018) | (0.016) | (0.015) | |
| X | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| WX | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Time FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| City FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Adj.R2 | 0.16 | 0.15 | 0.14 | 0.15 | 0.32 | 0.14 | 0.16 | 0.15 | 0.15 |
| N | 6704 | 6704 | 6704 | 6704 | 6704 | 6704 | 6704 | 6704 | 6704 |
| (1) | (2) | (3) | (4) | (5) | (6) | |
|---|---|---|---|---|---|---|
| W01 | W01 | |||||
| GTFP | GTFP | GTFP | GTFP | GTFP | GTFP | |
| 0.00356 *** | 0.00272 ** | 0.00336 *** | 0.00296 *** | 0.00189 ** | 0.00271 *** | |
| (0.0012) | (0.0012) | (0.0012) | (0.00091) | (0.00096) | (0.00094) | |
| −0.00618 ** | −0.00410 ** | −0.00527 *** | −0.00497 ** | −0.00393 ** | −0.00339 ** | |
| (0.0026) | (0.0020) | (0.0020) | (0.0021) | (0.0016) | (0.0015) | |
| ρ | 0.445 *** | 0.363 *** | 0.332 *** | 0.377 *** | 0.300 *** | 0.251 *** |
| (0.017) | (0.014) | (0.014) | (0.018) | (0.015) | (0.014) | |
| X | Yes | Yes | Yes | Yes | Yes | Yes |
| WX | Yes | Yes | Yes | Yes | Yes | Yes |
| Time FE | Yes | Yes | Yes | Yes | Yes | Yes |
| City FE | Yes | Yes | Yes | Yes | Yes | Yes |
| Adj.R2 | 0.19 | 0.16 | 0.15 | 0.17 | 0.095 | 0.15 |
| N | 6426 | 6426 | 6426 | 6704 | 6708 | 6704 |
| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | |
|---|---|---|---|---|---|---|---|---|---|
| W01 | W01 | W01 | |||||||
| Knowledge Spillover | Knowledge Spillover | Knowledge Spillover | Green_Inno1 | Green_Inno1 | Green_Inno1 | Green_Inno2 | Green_Inno2 | Green_Inno2 | |
| 0.616 *** | 0.579 *** | 0.599 *** | 0.0826 *** | 0.0809 *** | 0.0927 *** | 0.0625 *** | 0.0727 *** | 0.0794 *** | |
| (0.12) | (0.12) | (0.12) | (0.026) | (0.026) | (0.026) | (0.021) | (0.022) | (0.022) | |
| ρ | 0.134 *** | 0.167 *** | 0.114 *** | 0.360 *** | 0.292 *** | 0.243 *** | 0.415 *** | 0.287 *** | 0.265 *** |
| (0.019) | (0.017) | (0.016) | (0.015) | (0.013) | (0.013) | (0.015) | (0.013) | (0.013) | |
| Control variables | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Time FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| City FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Adj.R2 | 0.065 | 0.077 | 0.066 | 0.18 | 0.18 | 0.16 | 0.18 | 0.15 | 0.14 |
| N | 5304 | 5304 | 5304 | 6508 | 6508 | 6508 | 6508 | 6508 | 6508 |
| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | |
|---|---|---|---|---|---|---|---|---|---|
| W01 | W01 | W01 | |||||||
| Labor_Miss | Labor_Miss | Labor_Miss | Capital_Miss | Capital_Miss | Capital_Miss | Miss_All | Miss_All | Miss_All | |
| −0.00948 ** | −0.00922 ** | −0.00990 *** | −0.00100 ** | −0.000928 * | −0.000931 * | −0.00817 *** | −0.00782 *** | −0.00832 *** | |
| (0.0037) | (0.0037) | (0.0038) | (0.00051) | (0.00051) | (0.00051) | (0.0029) | (0.0028) | (0.0029) | |
| ρ | 0.388 *** | 0.332 *** | 0.285 *** | 0.238 *** | 0.161 *** | 0.217 *** | 0.330 *** | 0.298 *** | 0.250 *** |
| (0.020) | (0.017) | (0.016) | (0.021) | (0.018) | (0.017) | (0.021) | (0.017) | (0.017) | |
| Control variables | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Time FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| City FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Adj.R2 | 0.14 | 0.14 | 0.13 | 0.11 | 0.096 | 0.12 | 0.084 | 0.096 | 0.081 |
| N | 4513 | 4513 | 4513 | 5077 | 5077 | 5077 | 4513 | 4513 | 4513 |
| (1) | (2) | (3) | (4) | (5) | (6) | |
|---|---|---|---|---|---|---|
| W01 | W01 | |||||
| Large-Scale Cities | Small-Scale Cities | Large-Scale Cities | Small-Scale Cities | Large-Scale Cities | Small-Scale Cities | |
| 0.00299 ** | 0.00357 ** | 0.00278 * | 0.00411 ** | 0.00307 ** | 0.00341 ** | |
| (0.0014) | (0.0017) | (0.0014) | (0.0017) | (0.0014) | (0.0017) | |
| −0.00530 ** | −0.0111 *** | −0.00224 | −0.0106 *** | −0.00706 *** | −0.00791 *** | |
| (0.0024) | (0.0027) | (0.0021) | (0.0024) | (0.0020) | (0.0024) | |
| ρ | 0.145 *** | 0.143 *** | 0.170 *** | 0.123 *** | 0.147 *** | 0.130 *** |
| (0.020) | (0.023) | (0.019) | (0.020) | (0.019) | (0.019) | |
| X | Yes | Yes | Yes | Yes | Yes | Yes |
| WX | Yes | Yes | Yes | Yes | Yes | Yes |
| Time FE | Yes | Yes | Yes | Yes | Yes | Yes |
| City FE | Yes | Yes | Yes | Yes | Yes | Yes |
| Adj.R2 | 0.17 | 0.082 | 0.18 | 0.084 | 0.17 | 0.081 |
| N | 3387 | 3298 | 3387 | 3298 | 3387 | 3298 |
| (1) | (2) | (3) | (4) | (5) | (6) | |
|---|---|---|---|---|---|---|
| W01 | W01 | |||||
| Coastal Regions | No-Coastal Regions | Coastal Regions | No-Coastal Regions | Coastal Regions | No-Coastal Regions | |
| 0.00619 ** | 0.00355 *** | 0.00643 *** | 0.00364 *** | 0.00716 *** | 0.00333 *** | |
| (0.0025) | (0.0012) | (0.0025) | (0.0012) | (0.0024) | (0.0012) | |
| 0.0137 *** | −0.00959 *** | 0.0149 *** | −0.00701 *** | 0.0123 *** | −0.00790 *** | |
| (0.0047) | (0.0026) | (0.0038) | (0.0020) | (0.0035) | (0.0020) | |
| ρ | 0.194 *** | 0.240 *** | 0.183 *** | 0.194 *** | 0.214 *** | 0.155 *** |
| (0.037) | (0.020) | (0.032) | (0.017) | (0.030) | (0.016) | |
| X | Yes | Yes | Yes | Yes | Yes | Yes |
| WX | Yes | Yes | Yes | Yes | Yes | Yes |
| Time FE | Yes | Yes | Yes | Yes | Yes | Yes |
| City FE | Yes | Yes | Yes | Yes | Yes | Yes |
| Adj.R2 | 0.33 | 0.090 | 0.32 | 0.086 | 0.35 | 0.077 |
| N | 987 | 5674 | 987 | 5674 | 987 | 5674 |
| (1) | (2) | (3) | (4) | (5) | (6) | |
|---|---|---|---|---|---|---|
| W01 | W01 | |||||
| Urban Agglomeration | No-Urban Agglomeration | Urban Agglomeration | No-Urban Agglomeration | Urban Agglomeration | No-Urban Agglomeration | |
| 0.00578 *** | 0.00160 | 0.00574 *** | 0.00170 | 0.00598 *** | 0.00153 | |
| (0.0016) | (0.0015) | (0.0016) | (0.0015) | (0.0016) | (0.0015) | |
| −0.00781 ** | 0.00325 | −0.00374 | 0.000710 | −0.00819 *** | 0.000714 | |
| (0.0035) | (0.0026) | (0.0028) | (0.0021) | (0.0027) | (0.0022) | |
| ρ | 0.271 *** | 0.203 *** | 0.223 *** | 0.186 *** | 0.201 *** | 0.162 *** |
| (0.024) | (0.020) | (0.021) | (0.018) | (0.021) | (0.018) | |
| X | Yes | Yes | Yes | Yes | Yes | Yes |
| WX | Yes | Yes | Yes | Yes | Yes | Yes |
| Time FE | Yes | Yes | Yes | Yes | Yes | Yes |
| City FE | Yes | Yes | Yes | Yes | Yes | Yes |
| Adj.R2 | 0.17 | 0.13 | 0.16 | 0.13 | 0.17 | 0.11 |
| N | 3343 | 3352 | 3343 | 3352 | 3343 | 3352 |
| (1) | (2) | (3) | |
|---|---|---|---|
| W01 | |||
| GTFP | GTFP | GTFP | |
| 0.00868 ** | 0.00709 ** | 0.00527 | |
| (0.0036) | (0.0036) | (0.0036) | |
| −0.00460 | −0.00286 | −0.00100 | |
| (0.0037) | (0.0037) | (0.0037) | |
| 0.0229 *** | 0.0126 ** | 0.0257 *** | |
| (0.0065) | (0.0063) | (0.0063) | |
| 0.0302 *** | 0.0197 *** | 0.0231 *** | |
| (0.0079) | (0.0063) | (0.0056) | |
| −0.0361 *** | −0.0236 *** | −0.0301 *** | |
| (0.0081) | (0.0064) | (0.0059) | |
| −0.0270 ** | −0.0156 * | −0.0308 *** | |
| (0.011) | (0.0089) | (0.0083) | |
| ρ | 0.269 *** | 0.215 *** | 0.182 *** |
| (0.019) | (0.016) | (0.015) | |
| X | Yes | Yes | Yes |
| WX | Yes | Yes | Yes |
| Time FE | Yes | Yes | Yes |
| City FE | Yes | Yes | Yes |
| Adj.R2 | 0.13 | 0.12 | 0.12 |
| N | 6704 | 6704 | 6704 |
| (1) | (2) | (3) | |
|---|---|---|---|
| W01 | |||
| GTFP | GTFP | GTFP | |
| Inter | 0.00218 | 0.00116 | 0.00158 |
| (0.0023) | (0.0023) | (0.0023) | |
| 0.00335 *** | 0.00383 *** | 0.00391 *** | |
| (0.0012) | (0.0012) | (0.0012) | |
| Inter | 0.000337 | −0.00305 | −0.00248 |
| (0.0025) | (0.0024) | (0.0024) | |
| Inter | 0.00811 ** | 0.0104 *** | 0.00926 *** |
| (0.0036) | (0.0031) | (0.0029) | |
| −0.00878 *** | −0.00728 *** | −0.00958 *** | |
| (0.0027) | (0.0021) | (0.0020) | |
| Inter | −0.000500 | 0.00132 | 0.00206 |
| (0.0032) | (0.0028) | (0.0028) | |
| ρ | 0.267 *** | 0.220 *** | 0.184 *** |
| (0.018) | (0.015) | (0.015) | |
| X | Yes | Yes | Yes |
| WX | Yes | Yes | Yes |
| Time FE | Yes | Yes | Yes |
| City FE | Yes | Yes | Yes |
| Adj.R2 | 0.15 | 0.14 | 0.13 |
| N | 6704 | 6704 | 6704 |
| (1) | (2) | (3) | |
|---|---|---|---|
| W01 | |||
| GTFP | GTFP | GTFP | |
| Dmonopoly | 0.00615 ** | 0.00623 ** | 0.000537 |
| (0.0028) | (0.0028) | (0.0042) | |
| 0.00276 ** | 0.00288 ** | 0.00667 *** | |
| (0.0012) | (0.0012) | (0.0016) | |
| Dmonopoly | 0.00333 | 0.00142 | 0.00158 |
| (0.0035) | (0.0033) | (0.0048) | |
| Dmonopoly | 0.0134 ** | 0.00972 ** | 0.0242 *** |
| (0.0057) | (0.0045) | (0.0067) | |
| −0.00958 *** | −0.00666 *** | −0.0136 *** | |
| (0.0027) | (0.0021) | (0.0027) | |
| Dmonopoly | −0.00432 | 0.000510 | 0.000951 |
| (0.0051) | (0.0044) | (0.0061) | |
| ρ | 0.269 *** | 0.221 *** | 0.183 *** |
| (0.018) | (0.015) | (0.015) | |
| X | Yes | Yes | Yes |
| WX | Yes | Yes | Yes |
| Time FE | Yes | Yes | Yes |
| City FE | Yes | Yes | Yes |
| Adj.R2 | 0.15 | 0.13 | 0.21 |
| N | 6704 | 6704 | 6704 |
| (1) | (2) | (3) | |
|---|---|---|---|
| W01 | |||
| GTFP | GTFP | GTFP | |
| DEtrade | 0.00165 | 0.00257 | 0.00110 |
| (0.0034) | (0.0035) | (0.0051) | |
| 0.00315 *** | 0.00317 *** | 0.00640 *** | |
| (0.0011) | (0.0011) | (0.0015) | |
| DEtrade | 0.00914 *** | 0.00853 ** | 0.0103 ** |
| (0.0033) | (0.0034) | (0.0049) | |
| DEtrade | 0.0153 | 0.0113 | 0.0206 * |
| (0.010) | (0.0086) | (0.012) | |
| −0.0103 *** | −0.00601 *** | −0.0107 *** | |
| (0.0025) | (0.0019) | (0.0025) | |
| DEtrade | −0.0150 | −0.00941 | −0.0195 * |
| (0.0098) | (0.0084) | (0.012) | |
| ρ | 0.272 *** | 0.214 *** | 0.183 *** |
| (0.018) | (0.015) | (0.014) | |
| X | Yes | Yes | Yes |
| WX | Yes | Yes | Yes |
| Time FE | Yes | Yes | Yes |
| City FE | Yes | Yes | Yes |
| Adj.R2 | 0.15 | 0.14 | 0.21 |
| N | 6704 | 6704 | 6704 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, L.; Zhang, W.; Ding, Y. Cloud Computing and Green Total Factor Productivity in Urban China: Evidence from a Spatial Difference-in-Differences Approach. Sustainability 2025, 17, 9828. https://doi.org/10.3390/su17219828
Yi L, Zhang W, Ding Y. Cloud Computing and Green Total Factor Productivity in Urban China: Evidence from a Spatial Difference-in-Differences Approach. Sustainability. 2025; 17(21):9828. https://doi.org/10.3390/su17219828
Chicago/Turabian StyleYi, Liangjun, Wei Zhang, and Yiling Ding. 2025. "Cloud Computing and Green Total Factor Productivity in Urban China: Evidence from a Spatial Difference-in-Differences Approach" Sustainability 17, no. 21: 9828. https://doi.org/10.3390/su17219828
APA StyleYi, L., Zhang, W., & Ding, Y. (2025). Cloud Computing and Green Total Factor Productivity in Urban China: Evidence from a Spatial Difference-in-Differences Approach. Sustainability, 17(21), 9828. https://doi.org/10.3390/su17219828

