How Do Alliance Networks Affect Firms’ Capability of Influencing Technological Standardization? Configuration Analysis Based on the TOE Framework
Abstract
1. Introduction
2. Theoretical Foundation and Research Framework
2.1. Dominating Standardization vs. Supporting Standardization
2.2. Research Framework
2.2.1. Technology: Technological Composition of Alliance Networks
2.2.2. Organization: Alliance Network Structure
2.2.3. Environment: Technological and Institutional Contexts
3. Data and Method
3.1. Sample and Data
3.2. Measures
3.2.1. Outcome Variables
3.2.2. Condition Variables
3.3. Method
4. Results
4.1. Calibration
4.2. Analysis of Necessary Conditions
4.3. Analysis of Sufficient Conditions
4.3.1. Sufficient Conditions Analysis of Dominating Standardization
4.3.2. Sufficient Conditions Analysis of Supporting Standardization
4.4. Robustness Test
5. Conclusions and Implications
5.1. Conclusions
5.2. Theoretical and Practical Implications
5.3. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| TOE | Technology–Organization–Environment |
| fsQCA | Fuzzy-Set Qualitative Comparative Analysis |
| GMR | government-market relations |
References
- Blind, K.; Mangelsdorf, A. Motives to standardize, empirical evidence from Germany. Technovation 2016, 48–49, 13–24. [Google Scholar] [CrossRef]
- Wen, J.; Li, J.; Zhou, Q.; Zeng, D.; Harms, R. How firms support formal standardization: The role of alliance portfolio and internal technological diversity. Technol. Forecast. Soc. Change 2023, 196, 122854. [Google Scholar] [CrossRef]
- Koh, J.; Venkatraman, N. Joint venture formations and stock market reactions, an assessment in the information technology sector. Acad. Manag. J. 1991, 34, 869–892. [Google Scholar] [CrossRef]
- Wen, J.; Qualls, W.J.; Zeng, D. Standardization Alliance Networks, Standard-setting Influence, and New Product Outcomes. J. Prod. Innov. Manag. 2020, 37, 138–157. [Google Scholar] [CrossRef]
- Nambisan, S. Industry technical committees, technological distance, and innovation performance. Res. Policy 2013, 42, 928–940. [Google Scholar] [CrossRef]
- Axelrod, R.; Mitchell, W.; Thomas, R.E.; Bennett, D.S.; Bruderer, E. Coalition formation in standard-setting alliances. Manag. Sci. 1995, 41, 1493–1508. [Google Scholar] [CrossRef]
- Leiponen, A.E. Competing through cooperation, the organization of standard setting in wireless telecommunications. Manag. Sci. 2008, 54, 1904–1919. [Google Scholar] [CrossRef]
- Wakke, P.; Blind, K.; Ramel, F. The impact of participation within formal standardization on firm performance. J. Product. Anal. 2016, 45, 317–330. [Google Scholar] [CrossRef]
- Delcamp, H.; Leiponen, A. Innovating standards through informal consortia, The case of wireless telecommunications. Int. J. Ind. Organ. 2014, 36, 36–47. [Google Scholar] [CrossRef]
- Gawer, A.; Cusumano, M.A. Industry platforms and ecosystem innovation. J. Prod. Innov. Manag. 2014, 31, 417–433. [Google Scholar] [CrossRef]
- Wu, Y.; de Vries, H.J. Effects of participation in standardization on firm performance from a network perspective: Evidence from China. Technol. Forecast. Soc. Change 2022, 175, 121376. [Google Scholar] [CrossRef]
- Sun, Y.; Gong, X. Superior position equal to greater influence? The moderating role of technological complexity. J. Manuf. Technol. Manag. 2020, 31, 1457–1480. [Google Scholar] [CrossRef]
- Dokko, G.; Rosenkopf, L. Social capital for hire? Mobility of technical professionals and firm influence in wireless standards committees. Organ. Sci. 2010, 21, 677–695. [Google Scholar] [CrossRef]
- Wang, Y.; Zeng, D.; Li, J.; Wen, J. Does engagement in international alliances affect a firm’s influence on domestic standard-setting? The moderating role of government–market relations. Technol. Anal. Strateg. Manag. 2024, 36, 4657–4671. [Google Scholar] [CrossRef]
- Yu, X.; Li, S.; Shan, J.; Xu, Q. Can standard cooperation enhance enterprises’ standardization capability: The moderating role of technological capability. J. Eng. Technol. Manag. 2024, 73, 101828. [Google Scholar] [CrossRef]
- Rodan, S.; Galunic, C. More than network structure: How knowledge heterogeneity influences managerial performance and innovativeness. Strateg. Manag. J. 2004, 25, 541–562. [Google Scholar] [CrossRef]
- Runge, S.; Schwens, C.; Schulz, M. The invention performance implications of coopetition: How technological, geographical, and product market overlaps shape learning and competitive tension in R&D alliances. Strateg. Manag. J. 2022, 43, 266–294. [Google Scholar]
- Wen, J.; Qualls, W.J.; Zeng, D. To explore or exploit: The influence of inter-firm R&D network diversity and structural holes on innovation outcomes. Technovation 2021, 100, 102178. [Google Scholar]
- Dai, H.; Zeng, D.; Qualls, W.J.; Li, J. Do social ties matter for the emergence of dominant design? The moderating roles of technological turbulence and IRP enforcement. J. Eng. Technol. Manag. 2018, 47, 96–109. [Google Scholar] [CrossRef]
- Zhu, G.; Peng, Y.; Shi, C.; Liu, S.; Liu, H. Research on the driving paths and evolution of digital innovation in intelligent connected vehicle enterprises—A configurational analysis based on dynamic fsqca. Sustainability 2024, 16, 10545. [Google Scholar] [CrossRef]
- Carnabuci, G.; Operti, E. Where do firms’ recombinant capabilities come from? Intraorganizational networks, knowledge, and firms’ ability to innovate through technological recombination. Strateg. Manag. J. 2013, 34, 1591–1613. [Google Scholar] [CrossRef]
- Tornatzky, L.G.; Fleischer, M. The Processes of Technological Innovation; Lexington Book: Lanham, MD, USA, 1990. [Google Scholar]
- Wang, X.; Li, X. Digitization policy combination analysis based on technology-organization-environment framework. Sci. Res. 2022, 40, 841–851. (In Chinese) [Google Scholar] [CrossRef]
- Tamin, M.; Abdul Adis, A.A. The impact of TOE framework on E-commerce advantage among small medium enterprise (SME’s) digital channel in Malaysia. J. Distrib. Sci. 2022, 20, 33–46. [Google Scholar]
- Religia, Y.; Ekhsan, M.; Huda, M.; Fitriyanto, A.D. TOE framework for e-commerce adoption by MSMEs during the Covid-19 pandemic: Can trust moderate? Appl. Inf. Syst. Manag. 2023, 6, 47–54. [Google Scholar] [CrossRef]
- Basloom, R.S.; Mohamad, M.H.S.; Auzair, S.M. Applicability of public sector reform initiatives of the Yemeni government from the integrated TOE-DOI framework. Int. J. Innov. Stud. 2022, 6, 286–302. [Google Scholar] [CrossRef]
- Jais, R.; Ngah, A.H.; Rahi, S.; Rashid, A.; Ahmad, S.Z.; Mokhlis, S. Chatbots adoption intention in public sector in Malaysia from the perspective of TOE framework. The moderated and mediation model. J. Sci. Technol. Policy Manag. 2024. [Google Scholar] [CrossRef]
- Liu, J.; Liu, X.; Yang, J. TOE Configuration analysis of smart city construction in China under the concept of sustainable Development. Sustainability 2024, 16, 10708. [Google Scholar] [CrossRef]
- Phelps, C.C. A longitudinal study of the influence of alliance network structure and composition on firm exploratory innovation. Acad. Manag. J. 2010, 53, 890–913. [Google Scholar] [CrossRef]
- Wu, X.; Wang, W. Does technological proximity accelerate innovation speed in R&D collaboration? The evidence of rapid vaccine R&D for fighting the COVID-19 pandemic. Int. J. Technol. Manag. 2024, 94, 295–318. [Google Scholar]
- Li, Y.; Xiong, W.; Hu, X. The geography of intercity technological proximity: Evidence from China. Int. J. Urban Sci. 2023, 27, 355–370. [Google Scholar]
- Kobarg, S.; Stumpf-Wollersheim, J.; Welpe, I.M. More is not always better: Effects of collaboration breadth and depth on radical and incremental innovation performance at the project level. Res. Policy 2019, 48, 1–10. [Google Scholar] [CrossRef]
- Hao, B.; Ye, J.; Feng, Y.; Cai, Z. Explicit and tacit synergies between alliance firms and radical innovation: The moderating roles of interfirm technological diversity and environmental technological dynamism. RD Manag. 2020, 50, 432–446. [Google Scholar] [CrossRef]
- Penney, C.R.; Combs, J.G. A transaction cost perspective of alliance portfolio diversity. J. Manag. Stud. 2020, 57, 1073–1105. [Google Scholar] [CrossRef]
- Ranganathan, R.; Ghosh, A.; Rosenkopf, L. Competition–cooperation interplay during multifirm technology coordination: The effect of firm heterogeneity on conflict and consensus in a technology standards organization. Strateg. Manag. J. 2018, 39, 3193–3221. [Google Scholar] [CrossRef]
- Ardito, L.; Peruffo, E.; Natalicchio, A. The relationships between the internationalization of alliance portfolio diversity, individual incentives, and innovation ambidexterity: A microfoundational approach. Technol. Forecast. Soc. Change 2019, 148, 119714. [Google Scholar] [CrossRef]
- Lee, D.; Kirkpatrick-Husk, K.; Madhavan, R. Diversity in alliance portfolios and performance outcomes: A meta-analysis. J. Manag. 2017, 43, 1472–1497. [Google Scholar] [CrossRef]
- Martínez-Noya, A.; García-Canal, E. Innovation performance feedback and technological alliance portfolio diversity: The moderating role of firms’ R&D intensity. Res. Policy 2021, 50, 104321. [Google Scholar] [CrossRef]
- Guan, J.C.; Yan, Y. Technological proximity and recombinative innovation in the alternative energy field. Res. Policy 2016, 45, 1460–1473. [Google Scholar] [CrossRef]
- Knoben, J.; Oerlemans, L.A. Proximity and inter-organizational collaboration: A literature review. Int. J. Manag. Rev. 2006, 8, 71–89. [Google Scholar] [CrossRef]
- Buffa, F.; Beritelli, P.; Martini, U. Project networks and the reputation network in a community destination: Proof of the missing link. J. Destin. Mark. Manag. 2019, 11, 251–259. [Google Scholar] [CrossRef]
- Schildt, H.; Keil, T.; Maula, M. The temporal effects of relative and firm-level absorptive capacity on interorganizational learning. Strateg. Manag. J. 2012, 33, 1154–1173. [Google Scholar] [CrossRef]
- Nooteboom, B.; Van Haverbeke, W.; Duysters, G.; Gilsing, V.; Van den Oord, A. Optimal cognitive distance and absorptive capacity. Res. Policy 2007, 36, 1016–1034. [Google Scholar] [CrossRef]
- Afuah, A. Are network effects really all about size? The role of structure and conduct. Strateg. Manag. J. 2013, 34, 257–273. [Google Scholar] [CrossRef]
- Jiang, H.; Sun, S.; Xu, H.; Zhao, S.; Chen, Y. Enterprises’ network structure and their technology standardization capability in Industry 4.0. Syst. Res. Behav. Sci. 2020, 37, 749–765. [Google Scholar] [CrossRef]
- Liu, C.H. The effects of innovation alliance on network structure and density of cluster. Expert Syst. Appl. 2011, 38, 299–305. [Google Scholar] [CrossRef]
- Koka, B.R.; Prescott, J.E. Designing alliance networks: The influence of network position, environmental change, and strategy on firm performance. Strateg. Manag. J. 2008, 29, 639–661. [Google Scholar] [CrossRef]
- Mazzola, E.; Perrone, G.; Handfield, R. Change is good, but not too much: Dynamic positioning in the interfirm network and new product development. J. Prod. Innov. Manag. 2018, 35, 960–982. [Google Scholar] [CrossRef]
- Zhang, Y.Z. The Relationship Between Multi-Dimension Propinquity, Network Structure and Technology Standardization; Hunan University: Changsha, China, 2017. [Google Scholar]
- Lin, J.L.; Fang, S.C.; Fang, S.R.; Tsai, F.S. Network embeddedness and technology transfer performance in R&D consortia in Taiwan. Technovation 2009, 29, 763–774. [Google Scholar] [CrossRef]
- Li, F.; Chen, Y.; Wang, H. Overseas Resource Integration, Global Network Embeddedness Path and Knowledge Spillover. Stud. Sci. Sci. 2019, 37, 679–688. [Google Scholar]
- Burt, R.S. Structural Holes: The Social Structure of Competition; Harvard University Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Ng, P.M.; Lit, K.K.; Cheung, C.T. Remote work as a new normal? The technology-organization-environment (TOE) context. Technol. Soc. 2022, 70, 102022. [Google Scholar] [CrossRef] [PubMed]
- Huo, B.; Wang, B.; Li, Z. How to deal with technological turbulence for improving innovation performance. Technol. Anal. Strateg. Manag. 2024, 36, 549–562. [Google Scholar] [CrossRef]
- National Development and Reform Commission; State Administration for Market Regulation. Outline for National Standardization Development. 2021. Available online: http://www.gov.cn/zhengce/2021-10/10/content_5641727.htm (accessed on 20 October 2025).
- De Leeuw, T.; Gilsing, V.; Duysters, G. Greater adaptivity or greater control? Adaptation of IOR portfolios in response to technological change. Res. Policy 2019, 48, 1586–1600. [Google Scholar] [CrossRef]
- Efrat, K.; Shoham, A. Born global firms: The differences between their short-and long-term performance drivers. J. World Bus. 2012, 47, 675–685. [Google Scholar] [CrossRef]
- North, D.C. Institutions, Institutional Change and Economic Performance; Cambridge University: Cambridge, UK, 1990. [Google Scholar]
- Krammer, S.M.S. Human resource policies and firm innovation: The moderating effects of economic and institutional context. Technovation 2022, 110, 102366. [Google Scholar] [CrossRef]
- Fan, G.; Wang, X.L.; Ma, G.R. Contribution of Marketization to China’s Economic Growth. Econ. Res. J. 2011, 46, 4–16. [Google Scholar]
- Colonnelli, E.; Li, B.; Liu, E. Investing with the government: A field experiment in China. J. Political Econ. 2024, 132, 248–294. [Google Scholar] [CrossRef]
- Yang, J.; Zeng, D.; Zhang, J.; Dai, H. How tie strength in alliance network affects the emergence of dominant design: The mediating effects of exploration and exploitation innovation. Technol. Anal. Strateg. Manag. 2022, 34, 112–124. [Google Scholar] [CrossRef]
- Xu, L.; Zeng, D. When does the diverse partnership of R&D alliances promote new product development? The contingent effect of the knowledge base. Technol. Soc. 2021, 65, 101590. [Google Scholar] [CrossRef]
- Feng, K.; Karreman, B.; Zeng, D.; Pennings, E. R&D collaboration, social coordination, and standardization: Evidence from the Chinese automotive industry. J. Technol. Transf. 2024, 49, 158–190. [Google Scholar]
- Bolli, T.; Seliger, F.; Woerter, M. Technological diversity, uncertainty and innovation performance. Appl. Econ. 2020, 52, 1831–1844. [Google Scholar] [CrossRef]
- Eagle, N.; Macy, M.; Claxton, R. Network diversity and economic development. Science 2010, 328, 1029–1031. [Google Scholar] [CrossRef]
- Jaffe, A.B. Characterizing the “technological position” of firms, with application to quantifying technological opportunity and research spillovers. Res. Policy 1989, 18, 87–97. [Google Scholar] [CrossRef]
- Borgatti, S.P.; Everett, M.G.; Johnson, J.C. Centrality. In Analyzing Social Networks; SAGE Publications Ltd.: London, UK, 2013; pp. 189–208. [Google Scholar]
- Zou, S.; Zeng, D.; Zhang, L.; Chen, W. A study of network relationship, technology diversity and technology standardization capability of enterprises. Sci. Res. Manag. 2017, 38, 12–20. (In Chinese) [Google Scholar]
- Dess, G.G.; Beard, D.W. Dimensions of organizational task environments. Adm. Sci. Q. 1984, 29, 52–73. [Google Scholar] [CrossRef]
- Kumar, S.; Sahoo, S.; Ali, F.; Cobanoglu, C. Rise of fsQCA in tourism and hospitality research: A systematic literature review. Int. J. Contemp. Hosp. Manag. 2024, 36, 2165–2193. [Google Scholar] [CrossRef]
- Urueña, A.; EArenas, Á.; Hidalgo, A. Understanding workers’ adoption of productivity mobile applications: A fuzzy set qualitative comparative analysis (fsQCA). Econ. Res. -Ekon. Istraživanja 2018, 31, 967–981. [Google Scholar] [CrossRef]
- Ragin, C.C. Redesigning Social Inquiry: Fuzzy Sets and Beyond; University of Chicago Press: Chicago, IL, USA, 2009. [Google Scholar]
- Fiss, P.C. Building better causal theories: A fuzzy set approach to typologies in organization research. Acad. Manag. J. 2011, 54, 393–420. [Google Scholar] [CrossRef]
- Lou, S.; Yao, C.; Zhang, D. How to promote green innovation of high-pollution firms? A fuzzy-set QCA approach based on the TOE framework. Environ. Dev. Sustain. 2025, 27, 4911–4935. [Google Scholar] [CrossRef]
- Schneider, M.R.; Schulze-Bentrop, C.; Paunescu, M. Mapping the institutional capital of high-tech firms: A fuzzy-set analysis of capitalist variety and export performance. J. Int. Bus. Stud. 2010, 41, 246–266. [Google Scholar] [CrossRef]
- Du, Y.; Kim, P.H. One size does not fit all: Strategy configurations, complex environments, and new venture performance in emerging economies. J. Bus. Res. 2021, 124, 272–285. [Google Scholar] [CrossRef]
- Greckhamer, T.; Furnari, S.; Fiss, P.C.; Aguilera, R.V. Studying configurations with qualitative comparative analysis: Best practices in strategy and organization research. Strateg. Organ. 2018, 16, 482–495. [Google Scholar] [CrossRef]
- Thomann, E.; Maggetti, M. Designing research with qualitative comparative analysis (QCA): Approaches, challenges, and tools. Sociol. Methods Res. 2020, 49, 356–386. [Google Scholar] [CrossRef]
- Gligor, D.M.; Golgeci, I.; Rego, C.; Russo, I.; Bozkurt, S.; Pohlen, T.; Hiatt, B.; Garg, V. Examining the use of fsQCA in B2B marketing research: Benefits, current state and agenda for future research. J. Bus. Ind. Mark. 2022, 37, 1542–1552. [Google Scholar] [CrossRef]
- Martins, G.H.; Ferreira, L.T.; Miranda, S.G. Green buying behavior and the theory of consumption values: A fuzzy-set approach. J. Bus. Res. 2016, 69, 1484–1491. [Google Scholar] [CrossRef]
- van de Kaa, G.; Janssen, M.; Rezaei, J. Standards battles for business-to-government data exchange: Identifying success factors for standard dominance using the Best Worst Method. Technol. Forecast. Soc. Change 2018, 137, 182–189. [Google Scholar] [CrossRef]
- Howell, S.T. Government intervention in innovation. Annu. Rev. Financ. Econ. 2024, 16, 367–390. [Google Scholar] [CrossRef]

| Condition and Outcome Variables | Full Membership | Crossover Point | Full Non-Membership | |
|---|---|---|---|---|
| Outcome Variables | Dominating standardization (DS) | 1.000 | 0.000 | 0.000 |
| Supporting standardization (SS) | 11.550 | 2.000 | 1.000 | |
| Conditioning Variables | Network technological diversity (NTD) | 2.786 | 2.661 | 2.368 |
| Network technological proximity (NTP) | 0.607 | 0.445 | 0.244 | |
| Network size (NS) | 133.100 | 44.500 | 6.450 | |
| Network density (ND) | 1.000 | 0.598 | 0.302 | |
| Technological turbulence (TT) | 0.067 | 0.021 | 0.011 | |
| Government-market relationship (GMR) | 8.890 | 7.130 | 6.261 | |
| Conditions | High Level of Dominating Standardization | High Level of Supporting Standardization | ||
|---|---|---|---|---|
| Consistency | Coverage | Consistency | Coverage | |
| Network Technological Diversity (NTD) | 0.793 | 0.805 | 0.832 | 0.756 |
| ~Network Technological Diversity (~NTD) | 0.703 | 0.828 | 0.531 | 0.560 |
| Network Technological Proximity (NTP) | 0.727 | 0.774 | 0.691 | 0.659 |
| ~Network Technological Proximity (~NTP) | 0.710 | 0.793 | 0.621 | 0.621 |
| Network Size (NS) | 0.709 | 0.797 | 0.857 | 0.863 |
| ~Network Size (~NS) | 0.695 | 0.736 | 0.499 | 0.473 |
| Network Density (ND) | 0.644 | 0.687 | 0.446 | 0.426 |
| ~Network Density (~ND) | 0.671 | 0.749 | 0.829 | 0.828 |
| Technological Turbulence (TT) | 0.701 | 0.806 | 0.505 | 0.520 |
| ~Technological Turbulence (~TT) | 0.766 | 0.793 | 0.866 | 0.803 |
| Government-market relationship (GMR) | 0.738 | 0.802 | 0.647 | 0.630 |
| ~Government-market relationship(~GMR) | 0.742 | 0.811 | 0.657 | 0.643 |
| Condition | High Level of Dominating Standardization | |
|---|---|---|
| Configuration S1 | Configuration S2 | |
| Network Technological Diversity (NTD) | ▲ | ◯ |
| Network Technological Proximity (NTP) | ⊗ | |
| Network Density (ND) | ◯ | ▲ |
| Network Size (NS) | ⬤ | ◯ |
| Technological Turbulence (TT) | ◯ | ▲ |
| Institutional Government-market relationship (GMR) | ⊗ | |
| Consistency | 0.923 | 0.992 |
| Raw coverage | 0.548 | 0.296 |
| Unique coverage | 0.362 | 0.110 |
| Overall solution consistency | 0.932 | |
| Overall solution coverage | 0.657 | |
| Condition | High Level of Supporting Standardization | ||
|---|---|---|---|
| Configuration H1a | Configuration H1b | Configuration H2 | |
| Network Technological Diversity (NTD) | ▲ | ||
| Network Technological Proximity (NTP) | ⬤ | ⬤ | |
| Network Density (ND) | ◯ | ◯ | ⊗ |
| Network Size (NS) | ⬤ | ⬤ | ⬤ |
| Technological Turbulence (TT) | ◯ | ⊗ | |
| Institutional Government-market relationship (GMR) | ◯ | ||
| Consistency | 0.971 | 0.982 | 0.954 |
| Raw coverage | 0.535 | 0.466 | 0.632 |
| Unique coverage | 0.006 | 0.017 | 0.120 |
| Overall solution consistency | 0.951 | ||
| Overall solution coverage | 0.672 | ||
| Condition | High Level of Dominating Standardization | |
|---|---|---|
| Configuration S1 | Configuration S2 | |
| Network Technological Diversity (NTD) | ▲ | ◯ |
| Network Technological Proximity (NTP) | ⊗ | |
| Network Density (ND) | ◯ | ▲ |
| Network Size (NS) | ⬤ | ◯ |
| Technological Turbulence (TT) | ◯ | ▲ |
| Institutional Government-market relationship (GMR) | ⊗ | |
| Consistency | 0.900 | 0.985 |
| Raw coverage | 0.501 | 0.218 |
| Unique coverage | 0.386 | 0.103 |
| Overall solution consistency | 0.911 | |
| Overall solution coverage | 0.604 | |
| Condition | High Level of Supporting Standardization | |||
|---|---|---|---|---|
| Configuration H1a | Configuration H1b | Configuration H2a | Configuration H2b | |
| Network Technological Diversity (NTD) | ▲ | ◯ | ||
| Network Technological Proximity (NTP) | ⬤ | ⬤ | ▲ | |
| Network Density (ND) | ◯ | ◯ | ⊗ | ⊗ |
| Network Size (NS) | ⬤ | ⬤ | ⬤ | |
| Technological Turbulence (TT) | ◯ | ⊗ | ⊗ | |
| Institutional Government-market relationship (GMR) | ◯ | ◯ | ||
| Consistency | 0.979 | 0.992 | 0.969 | 0.992 |
| Raw coverage | 0.465 | 0.391 | 0.583 | 0.262 |
| Unique coverage | 0.009 | 0.032 | 0.152 | 0.002 |
| Overall solution consistency | 0.964 | |||
| Overall solution coverage | 0.651 | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, J.; Tan, D.; Wang, H.; Gao, Y. How Do Alliance Networks Affect Firms’ Capability of Influencing Technological Standardization? Configuration Analysis Based on the TOE Framework. Sustainability 2025, 17, 9499. https://doi.org/10.3390/su17219499
Wen J, Tan D, Wang H, Gao Y. How Do Alliance Networks Affect Firms’ Capability of Influencing Technological Standardization? Configuration Analysis Based on the TOE Framework. Sustainability. 2025; 17(21):9499. https://doi.org/10.3390/su17219499
Chicago/Turabian StyleWen, Jinyan, Donghua Tan, Honglue Wang, and Yanxiao Gao. 2025. "How Do Alliance Networks Affect Firms’ Capability of Influencing Technological Standardization? Configuration Analysis Based on the TOE Framework" Sustainability 17, no. 21: 9499. https://doi.org/10.3390/su17219499
APA StyleWen, J., Tan, D., Wang, H., & Gao, Y. (2025). How Do Alliance Networks Affect Firms’ Capability of Influencing Technological Standardization? Configuration Analysis Based on the TOE Framework. Sustainability, 17(21), 9499. https://doi.org/10.3390/su17219499
