Synthesis of Zirconium Catalysts Supported on Activated Carbon for Catalytic Oxidative Desulfurization of Dibenzothiophene from N-Octane
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents Preparation
2.2. Preparation of Zr@AC
2.3. Catalytic Oxidative Desulfurization Experiment
2.4. Material Characterization
2.5. Detection and Analysis of Sulfur
3. Results and Discussion
3.1. Desulfurization Effect of Different Desulfurization Systems
3.2. Influence of Reaction Conditions on the Effectiveness of CODS
3.2.1. Effect of Catalyst Dosage on Desulfurization Performance
3.2.2. Effect of Oxygen-Sulfur Ratio (O/S) on Desulfurization Performance
3.2.3. Effect of Reaction Temperature on Desulfurization Performance
3.2.4. Effect of Oxidation Reaction Time on Desulfurization Performance
3.2.5. Effect of Different Initial Sulfur Concentrations on Desulfurization Performance
3.3. Characterization of Zr@AC
3.3.1. XRD Analysis
3.3.2. FTIR Analysis
3.3.3. SEM Analysis
3.3.4. N2 Adsorption–Desorption and BET Analysis
3.4. Reaction Kinetics of Catalytic Oxidative Desulfurization
3.5. Catalyst Reuse Performance and the Performance Comparison
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Cheng, M.; Gao, J.; Li, J. Review of the Influencing Factors of Secondary Organic Aerosol Formation and Aging Mechanism Based on Photochemical Smog Chamber Simulation Methods. J. Environ. Sci. 2023, 123, 545–559. [Google Scholar] [CrossRef] [PubMed]
- Lamonier, C. Transportation Fuels: Desulfurizing Diesel. Nat. Energy 2017, 2, 17019. [Google Scholar] [CrossRef]
- Quist, A.J.L.; Johnston, J.E. Respiratory and Nervous System Effects of a Hydrogen Sulfide Crisis in Carson, California. Sci. Total Environ. 2024, 906, 167480. [Google Scholar] [CrossRef]
- Timko, M.T.; Wang, J.A.; Burgess, J.; Kracke, P.; Gonzalez, L.; Jaye, C.; Fischer, D.A. Roles of Surface Chemistry and Structural Defects of Activated Carbons in the Oxidative Desulfurization of Benzothiophenes. Fuel 2016, 163, 223–231. [Google Scholar] [CrossRef]
- Lobo, C.B.; Correa Deza, M.A.; Arnau, G.V.; Ferrero, M.A.; Juárez Tomás, M.S. Dibenzothiophene Removal by Environmental Bacteria with Differential Accumulation of Intracellular Inorganic Polyphosphate. Bioresource Technol. 2023, 387, 129582. [Google Scholar] [CrossRef]
- Guo, S.; Yu, Q.; Zhao, S.; Tang, X.; Wang, Y.; Ma, Y.; Long, Y.; Yi, H. Research Progress on the Adsorption of Sulfocompounds in Flue Gas. Chem. Eng. J. 2023, 476, 146677. [Google Scholar] [CrossRef]
- Tran, T.Y.; Younis, S.A.; Heynderickx, P.M.; Kim, K.-H. Validation of Two Contrasting Capturing Mechanisms for Gaseous Formaldehyde Between Two Different Types of Strong Metal-Organic Framework Adsorbents. J. Hazard. Mater. 2022, 424, 127459. [Google Scholar] [CrossRef]
- Plavniece, A.; Volperts, A.; Dobele, G.; Zhurinsh, A.; Kaare, K.; Kruusenberg, I.; Kaprans, K.; Knoks, A.; Kleperis, J. Wood and Black Liquor-Based N-Doped Activated Carbon for Energy Application. Sustainability 2021, 13, 9237. [Google Scholar] [CrossRef]
- Yang, C.; de Falco, G.; Florent, M.; Bandosz, T.J. Empowering Carbon Materials Robust Gas Desulfurization Capability Through an Inclusion of Active Inorganic Phases: A Review of Recent Approaches. J. Hazard. Mater. 2022, 437, 129414. [Google Scholar] [CrossRef]
- Wang, L.; Sun, M.; Zhu, S.; Zhang, M.; Ma, Y.; Xie, D.; Li, S.; Mominou, N.; Jing, C. Cu-Ni Bimetallic Single Atoms Supported on TiO2@NG Core-Shell Material for the Removal of Dibenzothiophene Under Visible Light. Sep. Purif. Technol. 2021, 279, 119646. [Google Scholar] [CrossRef]
- Guan, X.; Wang, Y.; Cai, W. A Composite Metal-Organic Framework Material with High Selective Adsorption for Dibenzothiophene. Chin. Chem. Lett. 2019, 30, 1310–1314. [Google Scholar] [CrossRef]
- Dalvi, P.; Dey, A.; Gogate, P.R. Ultrasound-Assisted Synthesis of a N-TiO2/Fe3O4@ZnO Complex and Its Catalytic Application for Desulfurization. Sustainability 2022, 14, 16201. [Google Scholar] [CrossRef]
- Saha, B.; Vedachalam, S.; Dalai, A.K. Review on Recent Advances in Adsorptive Desulfurization. Fuel Process. Technol. 2021, 214, 106685. [Google Scholar] [CrossRef]
- Jia, L.; Song, X.; Sun, L.; Zhang, S.; Li, K.; Ning, P. Catalytic Effect of Phosphorus on SO2 Oxidation in Liquid Phase: Experimental and Theoretical Studies. Chem. Eng. J. 2022, 429, 132376. [Google Scholar] [CrossRef]
- Li, X.; Han, J.; Liu, Y.; Dou, Z.; Zhang, T. Summary of Research Progress on Industrial Flue Gas Desulfurization Technology. Sep. Purif. Technol. 2022, 281, 119849. [Google Scholar] [CrossRef]
- Niu, H.; Wang, X.-B.; Luo, J.; Liu, J.; Li, C.; Li, W.-Y.; Liang, C. C-S Cleavage of Dibenzothiophenes with or Without Steric Hindrance by the Interface Between PtSx and ZnO. Chem. Eng. J. 2023, 470, 144115. [Google Scholar] [CrossRef]
- Munnik, P.; De Jongh, P.E.; De Jong, K.P. Recent Developments in the Synthesis of Supported Catalysts. Chem. Rev. 2015, 115, 6687–6718. [Google Scholar] [CrossRef]
- Teimouri, A.; Mahmoudsalehi, M.; Salavati, H. Catalytic Oxidative Desulfurization of Dibenzothiophene Utilizing Molybdenum and Vanadium Oxides Supported on MCM-41. Int. J. Hydrogen Energ. 2018, 43, 14816–14833. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, Q.; Zhang, J.; Yang, L.; Ma, Z.; Wang, L.; Li, H.; Bai, L.; Wei, D.; Wang, W.; et al. Cellulose Nanocrystal Shelled with Poly(Ionic Liquid)/Polyoxometalate Hybrid as Efficient Catalyst for Aerobic Oxidative Desulfurization. J. Colloid Interface Sci. 2019, 554, 572–579. [Google Scholar] [CrossRef]
- Nejati, F.M.; Shahhosseini, S.; Rezaee, M. Cobalt-Based Sandwich-Type Polyoxometalate Supported on Amino-Silane Decorated Magnetic Graphene Oxide: A Recoverable Catalyst for Extractive-Catalytic Oxidative Desulfurization of Model Oil. J. Environ. Chem. Eng. 2022, 10, 107949. [Google Scholar] [CrossRef]
- Heidarinejad, Z.; Dehghani, M.H.; Heidari, M.; Javedan, G.; Ali, I.; Sillanpää, M. Methods for Preparation and Activation of Activated Carbon: A Review. Environ. Chem. Lett. 2020, 18, 393–415. [Google Scholar] [CrossRef]
- Yuan, J.; Chen, J.; Wang, Z.; Yin, R.; Zhu, X.; Yang, K.; Peng, Y.; Li, J. Identification of Active Sites over Metal-Free Carbon Catalysts for Flue Gas Desulfurization. Environ. Sci. Technol. 2023, 57, 2575–2583. [Google Scholar] [CrossRef]
- Meng, B.; Cao, E.; Jia, L.; Zheng, Y.; Cui, Y. Cu-Fe Oxide Supported on Na2CO3-Modified Activated Carbon Boost H2S Removal at Low Temperature. Sep. Purif. Technol. 2025, 361, 131415. [Google Scholar] [CrossRef]
- Saleh, T.A.; AL-Hammadi, S.A.; Abdullahi, I.M.; Mustaqeem, M. Synthesis of Molybdenum Cobalt Nanocatalysts Supported on Carbon for Hydrodesulfurization of Liquid Fuels. J. Mol. Liq. 2018, 272, 715–721. [Google Scholar] [CrossRef]
- Saleh, T.A. Global Trends in Technologies and Nanomaterials for Removal of Sulfur Organic Compounds: Clean Energy and Green Environment. J. Mol. Liq. 2022, 359, 119340. [Google Scholar] [CrossRef]
- Liu, M.; Zang, Z.; Zhang, S.; Ouyang, G.; Han, R. Enhanced Fluoride Adsorption from Aqueous Solution by Zirconium (IV)-Impregnated Magnetic Chitosan Graphene Oxide. Int. J. Biol. Macromol. 2021, 182, 1759–1768. [Google Scholar] [CrossRef]
- Sun, H.; Li, L.; Zhang, H.; Yang, H.; Yang, T.; Shu, M.; Zhong, Z.; Yi, M.; Meng, B. Effect of Zirconium Modified Y Zeolite via In Situ Synthesis and Its Regulation on the Formation of Excellent NiW Catalyst for Ultra-Deep Hydrodesulfurization of 4,6-DMDBT. Chem. Eng. J. 2023, 478, 147514. [Google Scholar] [CrossRef]
- Zhang, B.; Xie, F.; Yuan, J.; Wang, L.; Deng, B. Meerwein-Ponndorf-Verley Reaction of Acetophenone over ZrO2-La2O3/MCM-41: Influence of Loading Order of ZrO2 and La2O3. Catal. Commun. 2017, 92, 46–50. [Google Scholar] [CrossRef]
- Zaboon, S.; Abid, H.R.; Yao, Z.; Gubner, R.; Wang, S.; Barifcani, A. Removal of Monoethylene Glycol from Wastewater by Using Zr-Metal Organic Frameworks. J. Colloid Interface Sci. 2018, 523, 75–85. [Google Scholar] [CrossRef]
- Liu, D.; Liu, Y.; He, H.; Liu, J.; Yang, X.; Zhang, L.; Tang, Y.; Zhu, H. Functional Bimetal/Carbon Composites Co/Zr@AC for Pesticide Atrazine Removal from Water. Molecules 2023, 28, 2071. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, C.; Yang, J.; Zhang, S. Catalytic Oxidation of Dibenzothiophene Using Cyclohexanone Peroxide. Energy Fuels 2007, 21, 7–10. [Google Scholar] [CrossRef]
- Yang, Q.; Hu, H.; Wang, S.-S. Preparation and Desulfurization Activity of Nano-CeO2/γ-Al2O3 Catalysts. Rare Met. 2018, 37, 554–560. [Google Scholar] [CrossRef]
- Yu, G.; Lu, S.; Chen, H.; Zhu, Z. Oxidative Desulfurization of Diesel Fuels with Hydrogen Peroxide in the Presence of Activated Carbon and Formic Acid. Energy Fuels 2005, 19, 447–452. [Google Scholar] [CrossRef]
- Abazari, R.; Esrafili, L.; Morsali, A.; Wu, Y.; Gao, J. PMo12@UiO-67 Nanocomposite as a Novel Non-Leaching Catalyst with Enhanced Performance Durability for Sulfur Removal from Liquid Fuels with Exceptionally Diluted Oxidant. Appl. Catal. B 2021, 283, 119582. [Google Scholar] [CrossRef]
- Dou, J.; Yu, J.; Tahmasebi, A.; Yin, F.; Gupta, S.; Li, X.; Lucas, J.; Na, C.; Wall, T. Ultrasonic-Assisted Preparation of Highly Reactive Fe-Zn Sorbents Supported on Activated-Char for Desulfurization of COG. Fuel Process. Technol. 2015, 135, 187–194. [Google Scholar] [CrossRef]
- Zang, N.; Qian, X.M.; Huang, P.; Shu, C.M. Thermal Hazard Analysis of Cyclohexanone Peroxide and Its Solutions. Thermochim. Acta 2013, 568, 175–184. [Google Scholar] [CrossRef]
- Dolatyari, A.; Ahmady, M.; Kazemi, A. A Novel Mathematical Model for Modeling Viscosity and Temperature Relationship for Dead Oils. Sci. Rep. 2024, 14, 22836. [Google Scholar] [CrossRef]
- Gao, Y.; Mirante, F.; De Castro, B.; Zhao, J.; Cunha-Silva, L.; Balula, S.S. An Effective Hybrid Heterogeneous Catalyst to Desulfurize Diesel: Peroxotungstate@Metal-Organic Framework. Molecules 2020, 25, 5494. [Google Scholar] [CrossRef] [PubMed]
- Saha, B.; Singh, A.; Sengupta, S. Study and Optimization of Adsorption of Sulfur Compounds Present in Fuel. RSC Adv. 2016, 6, 76434–76447. [Google Scholar] [CrossRef]
- Zia, Y.; Mohammadnejad, S.; Abdollahy, M. Destabilisation of Gold Cyanide Complex by Sulphur Species: A Computational Perspective. Hydrometallurgy 2020, 197, 105459. [Google Scholar] [CrossRef]
- Purohit, R.D.; Saha, S.; Tyagi, A.K. Combustion Synthesis of Nanocrystalline ZrO2 Powder: XRD, Raman Spectroscopy and TEM Studies. Mater. Sci. Eng. B 2006, 130, 57–60. [Google Scholar] [CrossRef]
- Yu, Y.; Dai, Y.; Wang, R.; Zhang, Y.; Bao, L.; Wu, Y.; Zhang, Y.; Wu, Q.; Shi, D.; Chen, K.; et al. Morphology Effect of ZrO2 on Tuning the C-H Bond Activation in Propane Dehydrogenation. ACS Catal. 2024, 14, 373–381. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Xu, Y. Effect of Doping Porous ZrO2 Solid Superacid Shell/Void/TiO2 Core Nanoparticles (ZVT) on Properties of Polyvinylidene Fluoride (PVDF) Membranes. Desalination 2015, 358, 84–93. [Google Scholar] [CrossRef]
- Huang, B.; Liu, Y.; Li, B.; Liu, S.; Zeng, G.; Zeng, Z.; Wang, X.; Ning, Q.; Zheng, B.; Yang, C. Effect of Cu(II) Ions on the Enhancement of Tetracycline Adsorption by Fe3O4@SiO2-Chitosan/Graphene Oxide Nanocomposite. Carbohyd. Polym. 2017, 157, 576–585. [Google Scholar] [CrossRef]
- Sritham, E.; Gunasekaran, S. FTIR Spectroscopic Evaluation of Sucrose-Maltodextrin-Sodium Citrate Bioglass. Food Hydrocoll. 2017, 70, 371–382. [Google Scholar] [CrossRef]
- Fauzi, N.I.M.; Fen, Y.W.; Eddin, F.B.K.; Daniyal, W.M.E.M.M. Structural and Optical Properties of Graphene Quantum Dots−Polyvinyl Alcohol Composite Thin Film and Its Potential in Plasmonic Sensing of Carbaryl. Nanomaterials 2022, 12, 4105. [Google Scholar] [CrossRef]
- Zhuravlev, Y.; Gordienko, K.; Dyagilev, D.; Luzgarev, S.; Ivanova, S.; Prosekov, A. Structural, Electronic, and Vibrational Properties of Choline Halides. Mater. Chem. Phys. 2020, 246, 122787. [Google Scholar] [CrossRef]
- Kampouraki, Z.C.; Giannakoudakis, D.A.; Triantafyllidis, K.S.; Deliyanni, E.A. Catalytic Oxidative Desulfurization of a 4,6-DMDBT Containing Model Fuel by Metal-Free Activated Carbons: The Key Role of Surface Chemistry. Green Chem. 2019, 21, 6685–6698. [Google Scholar] [CrossRef]
- Yang, C.; Zhao, K.; Cheng, Y.; Zeng, G.; Zhang, M.; Shao, J.; Lu, L. Catalytic Oxidative Desulfurization of BT and DBT from N-Octane Using Cyclohexanone Peroxide and Catalyst of Molybdenum Supported on 4A Molecular Sieve. Sep. Purif. Technol. 2016, 163, 153–161. [Google Scholar] [CrossRef]
- Meyer, J.; Wester, R. Ion-Molecule Reaction Dynamics. Annu. Rev. Phys. Chem. 2017, 68, 333–353. [Google Scholar] [CrossRef]
- Saleh, T.A.; Sulaiman, K.O.; AL-Hammadi, S.A.; Dafalla, H.; Danmaliki, G.I. Adsorptive Desulfurization of Thiophene, Benzothiophene and Dibenzothiophene over Activated Carbon Manganese Oxide Nanocomposite: With Column System Evaluation. J. Clean. Prod. 2017, 154, 401–412. [Google Scholar] [CrossRef]
- Chen, X.; Guo, Y.; Zhang, H.; Cheng, F.; Jiao, Z. Coke Powder Improving the Performance of Desulfurized Activated Carbon from the Cyclic Thermal Regeneration. Chem. Eng. J. 2022, 448, 137459. [Google Scholar] [CrossRef]
- Li, Q.; Hou, Y.; Han, X.; Wang, J.; Liu, Y.; Xiang, N.; Huang, Z. Promotional Effect of Cyclic Desulfurization and Regeneration for Selective Catalytic Reduction of NO by NH3 over Activated Carbon. J. Clean. Prod. 2020, 249, 119392. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, F.; Yang, W.; Li, Y. N-Doped Carbon Nanotube Encapsulated nZVI as a High-Performance Bifunctional Catalyst for Oxidative Desulfurization. Particuology 2023, 81, 109–118. [Google Scholar] [CrossRef]
- Li, J.; Liu, D.; Jiang, X.; Zhu, M.; Dai, B. Triazine-Based Covalent Organic Polymer as a High Aerobic Oxidative Desulfurization Performance Catalyst Under Mild Reaction Conditions. Mol. Catal. 2023, 547, 113326. [Google Scholar] [CrossRef]
- Feng, Z.; Zhu, Y.; Zhou, Q.; Wu, Y.; Wu, T. Magnetic WO3/Fe3O4 as Catalyst for Deep Oxidative Desulfurization of Model Oil. Mater. Sci. Eng. B 2019, 240, 85–91. [Google Scholar] [CrossRef]
- Yin, J.; Fu, W.; Zhang, J.; Liu, X.; Zhang, X.; Wang, C.; He, J.; Jiang, W.; Li, H.; Li, H. UiO-66(Zr)-Based Porous Ionic Liquids for Highly Efficient Extraction Coupled Catalytic Oxidative Desulfurization. Chem. Eng. J. 2023, 470, 144290. [Google Scholar] [CrossRef]










| Desulfurization System | Desulfurization Rate (%) |
|---|---|
| DBT is only extracted through DMAC | 85.70 |
| DBT is oxidized and extracted by CYHPO | 88.19 |
| DBT is oxidized and extracted by CYHPO in the presence of Zr@AC | 97.04 |
| Initial Sulfur Concentration/ppm | Residual Sulfur Concentration/ppm | Removal Amount/ppm |
|---|---|---|
| 500 | 11.05 | 488.95 |
| 400 | 9.56 | 390.44 |
| 300 | 9.23 | 290.77 |
| 200 | 9.18 | 190.82 |
| 100 | 9.07 | 90.93 |
| First-Order Kinetics | Second-Order Kinetics | ||||
|---|---|---|---|---|---|
| K1 | R2 | K2 | R2 | ||
| Zr@AC | 0.0289 | 0.9962 | 0.00143 | 0.9979 | |
| O/S | The first paragraph | 0.705 | 0.9991 | 0.032 | 0.9104 |
| The second paragraph | 0.085 | 0.7550 | 0.008 | 0.7695 | |
| Catalysts | DBT Removal Rate (%) | Reaction Time (min) | T(°C) | Catalyst Loading Capacity (g) | Oxidant | Reference |
|---|---|---|---|---|---|---|
| nZVI@CNT | 90 | 90 | 60 | 0.035 | H2O2 | [54] |
| MC-TCOP | 99.6 | 150 | 50 | 0.04 | O2 | [55] |
| WO3/Fe3O4 | 92.3 | 270 | 100 | 0.01 | TBHP | [56] |
| UiO-66-TPILs | 95.3 | 240 | 50 | 0.5 | H2O2 | [57] |
| Zr@AC | 97.04 | 50 | 100 | 0.1 | CYHPO | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Zhang, L.; Feng, S.; Chen, Y.; Zou, J.; He, H.; Zhang, Q. Synthesis of Zirconium Catalysts Supported on Activated Carbon for Catalytic Oxidative Desulfurization of Dibenzothiophene from N-Octane. Sustainability 2025, 17, 9483. https://doi.org/10.3390/su17219483
Yang C, Zhang L, Feng S, Chen Y, Zou J, He H, Zhang Q. Synthesis of Zirconium Catalysts Supported on Activated Carbon for Catalytic Oxidative Desulfurization of Dibenzothiophene from N-Octane. Sustainability. 2025; 17(21):9483. https://doi.org/10.3390/su17219483
Chicago/Turabian StyleYang, Caixia, Lin Zhang, Shaocui Feng, Yan Chen, Jianmei Zou, Huijun He, and Qing Zhang. 2025. "Synthesis of Zirconium Catalysts Supported on Activated Carbon for Catalytic Oxidative Desulfurization of Dibenzothiophene from N-Octane" Sustainability 17, no. 21: 9483. https://doi.org/10.3390/su17219483
APA StyleYang, C., Zhang, L., Feng, S., Chen, Y., Zou, J., He, H., & Zhang, Q. (2025). Synthesis of Zirconium Catalysts Supported on Activated Carbon for Catalytic Oxidative Desulfurization of Dibenzothiophene from N-Octane. Sustainability, 17(21), 9483. https://doi.org/10.3390/su17219483

