The Impact of Green Investor Entry on the High-Quality Development of Manufacturing Enterprises
Abstract
1. Introduction
2. Literature Review
3. Research Hypothesis
3.1. Impact of Green Investors on the High-Quality Development of Manufacturing Enterprises
3.2. Green Investors Entering the Market to Empower High-Quality Development of Manufacturing Enterprises Through Digital–Physical Integration (DREI)
4. Research Design
4.1. Data Source and Sample Selection
4.2. Variable Measurement
4.2.1. Dependent Variable
4.2.2. Explanatory Variable
4.2.3. Control Variables
4.3. Model Design
5. Empirical Results Analysis
5.1. Descriptive Statistics
5.2. Baseline Regression
5.3. Endogeneity Test
5.4. Robustness Tests
5.4.1. Replacement Indicators for Measuring High-Quality Development in Manufacturing Enterprises
5.4.2. Excluding Special Year Data
5.5. Moderation Effect Model Design
5.5.1. Model Design
5.5.2. Moderating Role of Ownership Concentration
5.5.3. The Moderating Role of Financing Constraints
6. Further Analysis and Discussion
6.1. Discussion on Mechanistic Effects
6.2. Discussion on Heterogeneity Analysis
6.2.1. Analysis of Regional Heterogeneity
6.2.2. Analysis Based on Industry Heterogeneity
6.2.3. Analysis of Heterogeneity Based on Corporate Governance Structures Based on Corporate Governance Structure
6.3. Discussion
7. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, T.; Yang, L. The Effects of Tax Reduction and Fee Reduction Policies on the Digital Economy. Sustainability 2021, 13, 7611. [Google Scholar] [CrossRef]
- Lu, J.; Yan, Y.; Wang, T.X. The Microeconomic Effects of Green Credit Policy—From the Perspective of Technological Innovation and Resource Reallocation. China Ind. Econ. 2021, 394, 174–192. [Google Scholar] [CrossRef]
- Si, L.J.; Cao, H.Y. Does Green Credit Policies Improve Corporate Environmental Social Responsibility—The Perspective of External Constraints and Internal Concerns. China Ind. Econ. 2022, 409, 137–155. [Google Scholar] [CrossRef]
- Wan, P.B.; Yang, M.; Chen, L. How Do Environmental Technology Standards Affect the Green Transition of China’s Manufacturing Industry—A Perspective from Technological Transformation. China Ind. Econ. 2021, 402, 118–136. [Google Scholar] [CrossRef]
- Chen, G.J.; Ding, S.J.; Zhao, X.Q.; Jiang, X.Y. China’s Green Finance Policy, Financing Costs and Firms’ Green Transition: A Central Bank Collateral Framework Perspective. J. Financ. Res. 2021, 498, 75–95. [Google Scholar]
- Chen, D.K. Trade Barrier Reduction and Environmental Pollution Improvement: New Evidence from Firm-level Pollution Data in China. Econ. Res. J. 2020, 55, 98–114. [Google Scholar]
- Sheng, D.; Zhang, G.F. Environmental Regulations of Two Control Zones and Enterprise Total Factor Productivity Growth. Manag. World 2019, 35, 24–42+198. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y. Research on the Green Innovation Promoted by Green Credit Policies. Manag. World 2021, 37, 173–188+11. [Google Scholar] [CrossRef]
- Guo, K.S.; Peng, J.Z. The Manufacturing Sector’s Strategic Position and Role in China’s New Stage of Development. Soc. Sci. China 2021, 305, 128–149+207. [Google Scholar]
- Mao, Q.L.; Shi, B.C. The Path to Green Development: Smart Manufacturing and Corporate Green Transformation. World Econ. 2024, 47, 152–182. [Google Scholar] [CrossRef]
- Li, J.C.; Lian, G.H.; Xu, A.T. Study on the Path of Enterprise Green Transformation Under the Carbon Peaking and Carbon Neutrality Goals: An Empirical Study on Digitalization Driving Greenization. Quant. Tech. Econ. 2023, 40, 27–49. [Google Scholar] [CrossRef]
- Dai, X.; Yang, S.Z. Digital Empowerment, Source of Digital Input and Green Manufacturing. China Ind. Econ. 2022, 414, 83–101. [Google Scholar] [CrossRef]
- Li, X.; Xu, Q.; Wang, H.C. Enterprise Digital Transformation and Green Technology Innovation. Stat. Res. 2023, 40, 107–119. [Google Scholar] [CrossRef]
- Song, Y.J.; Chen, X.D.; Li, X.T.; Chen, J.Q. Digital Firms Enablement, Super-Scale Market Advantage and Energy Utilization Efficiency. China Ind. Econ. 2025, 447, 121–139. [Google Scholar] [CrossRef]
- Sun, H.; Gui, H.Q.; Yang, D. Measurement and Evaluation of the High-quality of China’s Provincial Economic Development. Zhejiang Soc. Sci. 2020, 4–14+155. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, Y.; Xu, W. Carbon emission trading scheme and green investor entry: Evidence from China. Pac.-Basin Financ. J. 2025, 91, 102727. [Google Scholar] [CrossRef]
- Barnea, A.; Heinkel, R.; Kraus, A. Green investors and corporate investment. Struct. Change Econ. Dyn. 2004, 16, 332–346. [Google Scholar] [CrossRef]
- Li, W.J.; Lu, X.Y. Do Institutional Investors Care Firm Environmental Performance? Evidence from the Most Polluting Chinese Listed Firms. J. Financ. Res. 2015, 426, 97–112. [Google Scholar]
- Flammer, C. Corporate green bonds. J. Financ. Econ. 2021, 142, 499–516. [Google Scholar] [CrossRef]
- Wang, H.; Lin, W.F.; Xie, R. Environmental Backgrounds of Executives and Green Investor Entry. Quant. Tech. Econ. 2022, 39, 173–194. [Google Scholar] [CrossRef]
- Peng, B.; Peng, F. Impact of Green Investors on Corporate Capital Cost. J. Beijing Inst. Technol. (Soc. Sci. Ed.) 2017, 19, 97–104. [Google Scholar] [CrossRef]
- Pimonenko, T.; Bilan, Y.; Horák, J.; Starchenko, L.; Gajda, W. Green Brand of Companies and Greenwashing under Sustainable Development Goals. Sustainability 2020, 12, 1679. [Google Scholar] [CrossRef]
- Wei, P.; Shu, H. Does China’s capital market recognize green investment? J. Financ. Econ. Res. 2018, 44, 23–35. [Google Scholar] [CrossRef]
- Sangiorgi, I.; Schopohl, L. Why do institutional investors buy green bonds: Evidence from a survey of European asset managers. Int. Rev. Financ. Anal. 2021, 75, 101738. [Google Scholar] [CrossRef]
- Zhao, Y.; Shen, H.T.; Zhou, Y.K. Environmental Information Asymmetry, Institutional Investors’ Corporate Site Visits and Corporate Environmental Governance. Stat. Res. 2019, 36, 104–118. [Google Scholar] [CrossRef]
- Ng, A.; Zheng, D. Let’s agree to disagree! On payoffs and green tastes in green energy investments. Energy Econ. 2017, 69, 155–169. [Google Scholar] [CrossRef]
- Jiang, G.S.; Lu, J.C.; Li, W.A. Do Green Investors Play a Role? Empirical Research on Firms’ Participation in Green Governance. J. Financ. Res. 2021, 491, 117–134. [Google Scholar]
- Walker, K.; Wan, F. The Harm of Symbolic Actions and Green-Washing: Corporate Actions and Communications on Environmental Performance and Their Financial Implications. J. Bus. Ethics 2012, 109, 227–242. [Google Scholar] [CrossRef]
- Liu, M.; Fang, X. How does green investor entry affect corporate carbon performance? Evidence from China. Renew. Energy 2025, 244, 122748. [Google Scholar] [CrossRef]
- Feng, J.; Yuan, Y. Green investors and corporate ESG performance: Evidence from China. Financ. Res. Lett. 2024, 60, 104892. [Google Scholar] [CrossRef]
- Yang, Z.H.; Liu, J.Q. Can Supply Chain Finance Attract Green Investors? Based on the Perspective of Resource Orchestration. East China Econ. Manag. 2025, 39, 106–117. [Google Scholar] [CrossRef]
- Gao, Y.; Hao, R.Y.; Xiong, X. Can Corporate Environmental Performance Information Attract the Attention of Institutional Investors?—Evidence Based on China’s A-Share Market. J. Syst. Manag. 2025, 34, 1172–1192. [Google Scholar]
- Liu, M.T.; Fang, X.B.; Ying, W.J. Tax Greening and the Entry of Green Investors: Evidence from the Implementation of the Environmental Protection Tax Law. Foreign Econ. Manag. 2025, 47, 38–53. [Google Scholar] [CrossRef]
- Li, Y.L.; Wang, W. Public Environmental Concerns and Green Investor Entry. Account. Res. 2025, 451, 105–118. [Google Scholar]
- Huang, S.J.; Xiao, H.J.; Wang, X. Study on High-Quality Development of the State-Owned Enterprises. China Ind. Econ. 2018, 367, 19–41. [Google Scholar] [CrossRef]
- Pan, L.Y.; Li, Q.Z.; Huang, X.R.; Zhang, Y.S. Digital M&A and Corporate High-Quality Development: Evidence from Chinese Listed Companies. Stat. Decis. 2025, 41, 174–178. [Google Scholar] [CrossRef]
- Yu, X.; Niu, B.; Yuan, Z.M. A study on the impact of “people and data” coordination on the high-quality development of enterprises from the perspective of value chain. Sci. Res. Manag. 2025, 46, 60–68. [Google Scholar] [CrossRef]
- Song, Q.H.; Lv, T.H.; Zheng, L.L. Voluntary Environmental Regulation and High Quality Development of Enterprises. Econ. Rev. 2024, 248, 38–52. [Google Scholar] [CrossRef]
- Xu, Z.Y.; Zhang, N. Research on the impact of asset structure allocation on the high-quality development of enterprises: An analysis based on the moderating effect of digital economy. Sci. Res. Manag. 2024, 45, 116–125. [Google Scholar] [CrossRef]
- Bai, S.J.; Liu, H.; Zhang, M.; Yan, L. The Influencing Mechanism of Entrepreneurship and Craftsmanship on the High-Quality Development of Advanced Manufacturing Enterprises. Technol. Prog. Policy 2024, 41, 151–160. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, C. Research on the Innovation of Technical Standards Intelligence Service for High-Quality Development of Enterpris. J. Intell. 2022, 41, 62–70, 40. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, X.J.; Cao, W.Q. Engagement of Green Investors and Corporate Green Transitions: The Chain Mediation Effect Based on Financing Constraints and Green Innovation. East China Econ. Manag. 2024, 38, 53–63. [Google Scholar] [CrossRef]
- Lin, F.T.; Jin, G. Strengthening of Environmental Supervision and Firm R&D Investment: Anti-driving Effect or Crowding-out Effect. Collect. Essays Financ. Econ. 2024, 308, 59–69. [Google Scholar] [CrossRef]
- Shui, H.L.; Han, Q.L.; Yang, J.H. On the influence of environmental regulation and financing constraints on R&D investment of a firm. J. Cent. South Univ. (Soc. Sci.) 2015, 21, 78–85. [Google Scholar]
- Ni, W.; Wu, G.Q. Effect of digital transformation on green productivity of China’s manufacturing enterprise. Resour. Sci. 2025, 47, 864–875. [Google Scholar]
- Chen, Y.; Hou, Y.Q.; Ma, X.; Xu, B. Research on the path and mechanism for the high-quality development of enterprises empowered by intelligent transformation: A study based on the perspective of developing new quality productive forces. Sci. Res. Manag. 2025, 46, 32–42. [Google Scholar] [CrossRef]
- Li, L.M.; Wang, C. Tax Burden, Innovation Ability and Enterprise Upgrading: Empirical Evidence from NEEQ Listed Companies. Econ. Res. J. 2017, 52, 119–134. [Google Scholar]
- Wen, K.; Li, C.H. Research on the Impact of the Integration of Digital and Real Technologies on the New Quality Productivity of Enterprises. Sci. Res. Manag. 2025, 1–12. Available online: https://link.cnki.net/urlid/11.1567.G3.20250122.1420.009 (accessed on 15 August 2025).
- Huang, Q.H.; Yu, Y.Z.; Zhang, S.L. Internet Development and Productivity Growth in Manufacturing Industry: Internal Mechanism and China Experiences. China Ind. Econ. 2019, 8, 5–23. [Google Scholar] [CrossRef]
- Huang, B.; Li, H.T.; Liu, J.Q.; Lei, J.H. Digital Technology Innovation and The High-quality Development of Chinese Enterprises: Evidence from Enterprise’s Digital Patents. Econ. Res. J. 2023, 58, 97–115. [Google Scholar]
- Shen, K.R.; Qiao, G.; Lin, J.W. Intelligent Manufacturing Policy and High-Quality Development of Chinese Enterprises. J. Quant. Tech. Econ. 2024, 41, 5–25. [Google Scholar] [CrossRef]
- Zeng, F.Q.; Li, H.A. Digital Transformation, Financial Constraints and High-Quality Development of Enterprises. Friends Acc. 2024, 50–58. Available online: https://link.cnki.net/urlid/14.1063.F.20240627.1158.012 (accessed on 15 August 2025).
- Wen, Z.L.; Ye, B.J. Analyses of Mediating Effects: The Development of Methods and Models. Adv. Psychol. Sci. 2014, 22, 731–745. [Google Scholar] [CrossRef]
- Preacher, K.J.; Hayes, A.F. Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behav. Res. Methods 2008, 40, 879–891. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.B.; Chen, Y.; Lin, B.Q. The Impacts of Technological Progress and Industrial Structure Distortion on China’s Energy Intensity. Econ. Res. J. 2021, 56, 157–173. [Google Scholar]
- Wang, Y.P.; He, Y. Environmental Regulations, Relocation of Heavy Polluting Enterprises and Collaborative Governance Effect: Evidence Based on the Establishment of Subsidiaries in Different Places. Econ. Sci. 2021, 5, 130–145. [Google Scholar]
- Jebbor, I.; Benmamoun, Z.; Hachmi, H. Revolutionizing cleaner production: The role of artificial intelligence in enhancing sustainability across industries. J. Infras. Policy Dev. 2024, 8, 7455. [Google Scholar] [CrossRef]
Primary Indicator | Secondary Indicators | Basic Indicators | Attribute |
---|---|---|---|
Innovative Development | Innovation Investment | Percentage of R&D personnel | + |
R&D expenditure as a percentage of operating revenue | + | ||
Innovative Achievements | Number of patents obtained that year | + | |
Coordinated Development | Corporate Governance Standards | Accounts Receivable Turnover Ratio | + |
Accounts Payable Turnover Ratio | - | ||
Management Expense Ratio | - | ||
Financial Expense Ratio | - | ||
Green Development | Sustainable Development Capacity | Growth rate of net cash flow from operating activities per share | + |
Operating Revenue Growth Rate | + | ||
Huazheng ESG Rating System Environmental Score | + | ||
Shared Development | corporate employees | Volunteer Activities | + |
Social Contribution | Total amount of social donations | + | |
Open Development | Open Outcomes | Overseas Revenue Share | + |
Variable Code | Variable Name | Variable Definition |
---|---|---|
FAR | Fixed Assets Ratio | Net Fixed Assets/Total Assets |
Tobin Q | Tobin’s Q | [Total Liabilities + (Number of Tradable Shares × Year-end Closing Price) + (Number of Non-tradable Shares × (Owners’ Equity/Total Shares))]/Total Liabilities |
ROE | Return on Equity (ROE) | Net Profit/Average Shareholders’ Equity |
DAR | Debt-to-Asset Ratio | Total Liabilities/Total Assets |
Ind DirRatio | Proportion of Independent Directors | Number of Independent Directors/Total Board Members (in the current year) |
Board size | Board Size | Number of Board Members (in the current year) |
ATO | Asset Turnover Ratio | Operating Revenue/Average Total Assets |
CFR | Cash Flow Ratio | Net Cash Flow from Operating Activities/Total Assets |
INV | Inventory Ratio | Net Inventory/Total Assets |
VarName | Obs | Mean | Median | SD | Min | Max |
---|---|---|---|---|---|---|
HQD | 6247 | 0.046 | 0.016 | 0.066 | 0.003 | 0.470 |
NGI | 6247 | 0.542 | 0.000 | 0.765 | 0.000 | 2.944 |
NGI_SOC | 6247 | 2.773 | 0.000 | 8.384 | −51.969 | 98.269 |
SOC | 6247 | 4.374 | 0.000 | 7.329 | −23.652 | 41.371 |
NGI_FC | 6247 | 0.170 | 0.000 | 0.292 | 0.000 | 1.913 |
FC | 6247 | 0.470 | 0.487 | 0.277 | 0.000 | 0.988 |
NGI | 6247 | 0.542 | 0.000 | 0.765 | 0.000 | 2.944 |
FAR | 6247 | 0.224 | 0.204 | 0.123 | 0.002 | 0.733 |
TobinQ | 6247 | 2.086 | 1.693 | 1.348 | 0.692 | 21.296 |
ROE | 6247 | 0.077 | 0.080 | 0.132 | −1.724 | 1.319 |
DAR | 6247 | 0.407 | 0.409 | 0.173 | 0.014 | 0.976 |
IndDirRatio | 6247 | 37.930 | 36.360 | 5.732 | 20.000 | 80.000 |
Boardsize | 6247 | 2.109 | 2.197 | 0.191 | 1.386 | 2.833 |
ATO | 6247 | 0.669 | 0.604 | 0.359 | 0.050 | 7.788 |
CFR | 6247 | 0.059 | 0.055 | 0.064 | −0.319 | 0.488 |
INV | 6247 | 0.138 | 0.123 | 0.076 | 0.008 | 0.650 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
HQD | HQD | HQD | HQD | HQD | |
NGI | 0.019 *** | 0.017 *** | 0.016 *** | 0.014 *** | 0.014 *** |
(17.62) | (14.26) | (13.50) | (11.81) | (11.92) | |
FAR | −0.011 | −0.008 | 0.001 | −0.015 * | |
(−1.52) | (−1.22) | (0.07) | (−1.95) | ||
TobinQ | −0.004 *** | −0.004 *** | −0.004 *** | −0.005 *** | |
(−5.41) | (−5.27) | (−6.25) | (−6.54) | ||
ROE | 0.022 *** | 0.025 *** | 0.028 *** | 0.028 *** | |
(3.07) | (3.49) | (3.99) | (4.07) | ||
DAR | 0.030 *** | 0.024 *** | 0.031 *** | 0.034 *** | |
(5.61) | (4.53) | (5.59) | (6.06) | ||
IndDirRatio | 0.001 *** | 0.001 *** | 0.001 *** | 0.001 *** | |
(6.75) | (6.83) | (7.26) | (6.21) | ||
Boardsize | 0.051 *** | 0.055 *** | 0.057 *** | 0.053 *** | |
(10.07) | (10.95) | (10.51) | (9.78) | ||
ATO | 0.005 ** | 0.006 ** | 0.006 ** | 0.003 | |
(2.21) | (2.34) | (2.26) | (1.14) | ||
CFR | 0.064 *** | 0.056 *** | 0.052 *** | 0.053 *** | |
(4.43) | (3.80) | (3.63) | (3.66) | ||
INV | 0.020 * | 0.012 | 0.008 | 0.013 | |
(1.74) | (1.09) | (0.73) | (1.05) | ||
_cons | 0.036 *** | −0.128 *** | −0.132 *** | −0.143 *** | −0.125 *** |
(36.15) | (−8.39) | (−8.76) | (−8.77) | (−7.60) | |
Year | No | No | Yes | Yes | Yes |
City | No | No | No | Yes | Yes |
Industry | No | No | No | No | Yes |
Adjusted R2 | 0.0472 | 0.0867 | 0.1155 | 0.2215 | 0.2367 |
Observations | 6247 | 6247 | 6247 | 6247 | 6247 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
Lagged_1 | Lagged_2 | Lagged_3 | 2SLS_L1 | 2SLS_L2 | 2SLS_L3 | |
L1_NGI | 0.014 *** | |||||
(8.79) | ||||||
L2_NGI | 0.016 *** | |||||
(8.57) | ||||||
L3_NGI | 0.018 *** | |||||
(8.56) | ||||||
NGI | 0.024 *** | 0.034 *** | 0.044 *** | |||
(8.72) | (8.43) | (8.32) | ||||
FAR | −0.019 * | −0.021 * | −0.031 ** | −0.020 * | −0.024 * | −0.030 ** |
(−1.74) | (−1.74) | (−2.10) | (−1.90) | (−1.93) | (−2.01) | |
TobinQ | −0.005 *** | −0.004 *** | −0.003 ** | −0.007 *** | −0.009 *** | −0.011 *** |
(−5.11) | (−3.88) | (−2.29) | (−6.88) | (−6.74) | (−6.08) | |
ROE | 0.046 *** | 0.051 *** | 0.062 *** | 0.026 *** | 0.016 * | 0.013 |
(4.50) | (5.68) | (5.80) | (2.64) | (1.69) | (1.20) | |
DAR | 0.041 *** | 0.035 *** | 0.038 *** | 0.028 *** | 0.011 | 0.004 |
(5.60) | (4.07) | (3.64) | (3.60) | (1.14) | (0.35) | |
IndDirRatio | 0.001 *** | 0.001 *** | 0.001 *** | 0.001 *** | 0.001 *** | 0.001 *** |
(5.10) | (4.23) | (3.97) | (4.65) | (3.33) | (2.72) | |
Boardsize | 0.055 *** | 0.058 *** | 0.063 *** | 0.052 *** | 0.049 *** | 0.050 *** |
(7.61) | (7.14) | (6.71) | (7.10) | (5.89) | (5.03) | |
ATO | 0.004 | 0.007 | 0.003 | 0.004 | 0.007 | 0.002 |
(1.00) | (1.52) | (0.50) | (0.96) | (1.48) | (0.29) | |
CFR | 0.041 ** | 0.036 * | 0.036 | 0.034 * | 0.017 | 0.017 |
(2.17) | (1.70) | (1.39) | (1.78) | (0.81) | (0.63) | |
INV | 0.012 | 0.013 | 0.012 | 0.018 | 0.020 | 0.020 |
(0.78) | (0.69) | (0.59) | (1.14) | (1.08) | (0.94) | |
Year | Yes | Yes | Yes | Yes | Yes | Yes |
City | Yes | Yes | Yes | Yes | Yes | Yes |
Industry | Yes | Yes | Yes | Yes | Yes | Yes |
ACCLM | 0.000 | 0.000 | 0.000 | |||
CDW | 1795.69 | 721.49 | 448.12 | |||
DWHTS | 20.84 | 29.11 | 35.09 | |||
DWHT | 0.000 | 0.000 | 0.000 | |||
Adjusted R2 | 0.248 | 0.256 | 0.255 | 0.016 | −0.016 | −0.058 |
Observations | 4410 | 3535 | 2732 | 4410 | 3535 | 2732 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
TFP_GMM | TFP_GMM | TFP_GMM | TFP_GMM | TFP_GMM | |
NGI | 0.287 *** | 0.204 *** | 0.199 *** | 0.184 *** | 0.183 *** |
(26.94) | (25.85) | (25.68) | (24.90) | (26.19) | |
FAR | −1.575 *** | −1.534 *** | −1.587 *** | −1.983 *** | |
(−33.75) | (−33.66) | (−33.59) | (−41.70) | ||
TobinQ | −0.069 *** | −0.067 *** | −0.062 *** | −0.060 *** | |
(−15.27) | (−14.53) | (−13.96) | (−13.93) | ||
ROE | 0.447 *** | 0.462 *** | 0.438 *** | 0.413 *** | |
(9.19) | (9.74) | (9.93) | (9.95) | ||
DAR | 1.128 *** | 1.070 *** | 1.091 *** | 1.130 *** | |
(30.77) | (29.79) | (30.74) | (33.36) | ||
IndDirRatio | 0.012 *** | 0.012 *** | 0.009 *** | 0.008 *** | |
(10.28) | (10.67) | (8.35) | (7.07) | ||
Boardsize | 0.518 *** | 0.558 *** | 0.460 *** | 0.378 *** | |
(15.03) | (16.63) | (13.29) | (11.48) | ||
ATO | 0.982 *** | 0.984 *** | 0.960 *** | 0.864 *** | |
(60.16) | (61.90) | (59.48) | (51.72) | ||
CFR | 0.595 *** | 0.472 *** | 0.616 *** | 0.712 *** | |
(6.08) | (4.86) | (6.71) | (8.20) | ||
INV | −0.639 *** | −0.707 *** | −0.731 *** | −0.543 *** | |
(−8.41) | (−9.55) | (−9.84) | (−7.46) | ||
_cons | 5.470 *** | 3.380 *** | 3.320 *** | 3.631 *** | 3.974 *** |
(548.27) | (32.74) | (33.02) | (34.82) | (40.01) | |
Year | No | No | Yes | Yes | Yes |
City | No | No | No | Yes | Yes |
Industry | No | No | No | No | Yes |
Adjusted R2 | 0.1040 | 0.6059 | 0.6284 | 0.6980 | 0.7357 |
Observations | 6247 | 6247 | 6247 | 6247 | 6247 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
HQD | HQD | HQD | HQD | HQD | |
NGI | 0.018 *** | 0.015 *** | 0.016 *** | 0.013 *** | 0.013 *** |
(14.58) | (11.72) | (11.98) | (10.18) | (10.20) | |
FAR | −0.002 | 0.001 | 0.010 | 0.001 | |
(−0.26) | (0.07) | (1.23) | (0.11) | ||
TobinQ | −0.002 *** | −0.002 ** | −0.002 *** | −0.003 *** | |
(−2.65) | (−2.56) | (−2.99) | (−3.45) | ||
ROE | 0.017 ** | 0.017 ** | 0.015 * | 0.015 * | |
(2.13) | (2.17) | (1.96) | (1.91) | ||
DAR | 0.029 *** | 0.027 *** | 0.030 *** | 0.031 *** | |
(4.97) | (4.55) | (5.02) | (5.04) | ||
IndDirRatio | 0.001 *** | 0.001 *** | 0.001 *** | 0.001 *** | |
(4.28) | (4.34) | (5.20) | (4.29) | ||
Boardsize | 0.044 *** | 0.044 *** | 0.049 *** | 0.047 *** | |
(7.85) | (8.00) | (8.16) | (7.79) | ||
ATO | 0.004 * | 0.005 * | 0.006 ** | 0.006 ** | |
(1.70) | (1.89) | (2.29) | (2.11) | ||
CFR | 0.049 *** | 0.036 ** | 0.035 ** | 0.035 ** | |
(3.18) | (2.26) | (2.20) | (2.18) | ||
INV | 0.019 | 0.019 | 0.023 * | 0.025 * | |
(1.58) | (1.55) | (1.73) | (1.87) | ||
_cons | 0.029 *** | −0.108 *** | −0.110 *** | −0.131 *** | −0.118 *** |
(27.37) | (−6.52) | (−6.60) | (−7.21) | (−6.46) | |
Year | No | No | Yes | Yes | Yes |
City | No | No | No | Yes | Yes |
Industry | No | No | No | No | Yes |
Adjusted R2 | 0.0478 | 0.0807 | 0.0835 | 0.1934 | 0.2082 |
Observations | 4212 | 4212 | 4212 | 4212 | 4212 |
(1) | (2) | (3) | |
---|---|---|---|
Baseline Model | Ownership Concentration | Financing Constraints | |
NGI | 0.014 *** | 0.013 *** | 0.016 *** |
(11.92) | (9.96) | (9.18) | |
NGI_SOC | 0.000 | ||
(0.61) | |||
SOC | 0.000 ** | ||
(2.16) | |||
NGI_FC | −0.032 *** | ||
(−7.96) | |||
FC | −0.050 *** | ||
(−10.84) | |||
FAR | −0.015 * | −0.016 ** | −0.014 * |
(−1.95) | (−2.03) | (−1.81) | |
TobinQ | −0.005 *** | −0.005 *** | −0.004 *** |
(−6.54) | (−6.52) | (−5.26) | |
ROE | 0.028 *** | 0.028 *** | 0.031 *** |
(4.07) | (4.02) | (4.55) | |
DAR | 0.034 *** | 0.033 *** | −0.021 *** |
(6.06) | (5.86) | (−3.18) | |
IndDirRatio | 0.001 *** | 0.001 *** | 0.001 *** |
(6.21) | (6.45) | (5.15) | |
Boardsize | 0.053 *** | 0.053 *** | 0.040 *** |
(9.78) | (9.81) | (7.51) | |
ATO | 0.003 | 0.003 | 0.003 |
(1.14) | (1.05) | (1.28) | |
CFR | 0.053 *** | 0.052 *** | 0.036 ** |
(3.66) | (3.59) | (2.57) | |
INV | 0.013 | 0.015 | 0.044 *** |
(1.05) | (1.23) | (3.67) | |
_cons | −0.125 *** | −0.128 *** | −0.046 *** |
(−7.60) | (−7.76) | (−2.71) | |
Year | Yes | Yes | Yes |
City | Yes | Yes | Yes |
Industry | Yes | Yes | Yes |
Adjusted R2 | 0.2367 | 0.2378 | 0.2741 |
Observations | 6247 | 6247 | 6247 |
Observed Coefficient | Bootstrap Std. Err | Z | P | [95% Conf. Interval] (Normal-Based) | [95% Conf. Interval] (Percentile) | |
---|---|---|---|---|---|---|
indirect | 0.000703 | 0.000193 | 3.64 | 0.000 | [0.000325, 0.001081] | [0.000363, 0.001114] |
direct | 0.016003 | 0.001375 | 11.64 | 0.000 | [0.013307, 0.018698] | [0.013333, 0.018698] |
overall | 0.016706 | - | - | - | - | - |
Proportion | 4.21% | - | - | - | - | - |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
NumDREI | NumDREI | NumDREI | NumDREI | NumDREI | |
NGI | 0.093 *** | 0.086 *** | 0.083 *** | 0.069 *** | 0.065 *** |
(9.55) | (8.00) | (7.96) | (6.45) | (6.12) | |
FAR | 0.030 | −0.092 | 0.050 | 0.042 | |
(0.47) | (−1.50) | (0.74) | (0.58) | ||
TobinQ | −0.016 *** | −0.027 *** | −0.026 *** | −0.020 *** | |
(−2.62) | (−4.34) | (−3.95) | (−3.02) | ||
ROE | 0.142 ** | 0.123 * | 0.132 ** | 0.145 ** | |
(2.15) | (1.93) | (2.07) | (2.31) | ||
DAR | 0.279 *** | 0.371 *** | 0.375 *** | 0.299 *** | |
(5.59) | (7.72) | (7.30) | (5.82) | ||
IndDirRatio | 0.007 *** | 0.006 *** | 0.008 *** | 0.007 *** | |
(4.29) | (4.14) | (4.73) | (4.24) | ||
Boardsize | 0.351 *** | 0.281 *** | 0.376 *** | 0.330 *** | |
(7.48) | (6.24) | (7.50) | (6.61) | ||
ATO | 0.058 *** | 0.052 ** | 0.048 ** | 0.025 | |
(2.62) | (2.46) | (2.07) | (1.00) | ||
CFR | −0.591 *** | −0.150 | −0.053 | 0.031 | |
(−4.43) | (−1.15) | (−0.40) | (0.23) | ||
INV | −0.620 *** | −0.521 *** | −0.395 *** | −0.360 *** | |
(−5.99) | (−5.25) | (−3.67) | (−3.27) | ||
_cons | 0.184 *** | −0.820 *** | −0.672 *** | −0.982 *** | −0.827 *** |
(20.09) | (−5.84) | (−4.99) | (−6.51) | (−5.49) | |
Year | No | No | Yes | Yes | Yes |
City | No | No | No | Yes | Yes |
Industry | No | No | No | No | Yes |
Adjusted R2 | 0.0143 | 0.0436 | 0.1276 | 0.1720 | 0.2047 |
Observations | 6247 | 6247 | 6247 | 6247 | 6247 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
HQD | HQD | HQD | HQD | HQD | |
NumDREI | 0.011 *** | 0.008 *** | 0.014 *** | 0.011 *** | 0.010 *** |
(7.72) | (5.94) | (9.57) | (8.04) | (7.38) | |
NGI | 0.018 *** | 0.016 *** | 0.015 *** | 0.013 *** | 0.013 *** |
(16.65) | (13.62) | (12.57) | (11.16) | (11.35) | |
FAR | −0.011 | −0.007 | −0.000 | −0.016 ** | |
(−1.56) | (−1.04) | (−0.01) | (−2.02) | ||
TobinQ | −0.004 *** | −0.003 *** | −0.004 *** | −0.004 *** | |
(−5.23) | (−4.77) | (−5.87) | (−6.27) | ||
ROE | 0.021 *** | 0.023 *** | 0.026 *** | 0.026 *** | |
(2.92) | (3.27) | (3.80) | (3.87) | ||
DAR | 0.028 *** | 0.019 *** | 0.027 *** | 0.031 *** | |
(5.19) | (3.60) | (4.84) | (5.52) | ||
IndDirRatio | 0.001 *** | 0.001 *** | 0.001 *** | 0.001 *** | |
(6.44) | (6.37) | (6.79) | (5.82) | ||
Boardsize | 0.049 *** | 0.051 *** | 0.053 *** | 0.050 *** | |
(9.49) | (10.24) | (9.74) | (9.16) | ||
ATO | 0.005 ** | 0.005 ** | 0.005 ** | 0.003 | |
(2.02) | (2.06) | (2.06) | (1.04) | ||
CFR | 0.069 *** | 0.058 *** | 0.053 *** | 0.052 *** | |
(4.77) | (3.97) | (3.69) | (3.66) | ||
INV | 0.025 ** | 0.019 * | 0.013 | 0.016 | |
(2.19) | (1.73) | (1.11) | (1.36) | ||
_cons | 0.034 *** | −0.122 *** | −0.123 *** | −0.132 *** | −0.116 *** |
(33.30) | (−7.95) | (−8.20) | (−8.11) | (−7.09) | |
Year | No | No | Yes | Yes | Yes |
City | No | No | No | Yes | Yes |
Industry | No | No | No | No | Yes |
Adjusted R2 | 0.0561 | 0.0917 | 0.1282 | 0.2297 | 0.2435 |
Observations | 6247 | 6247 | 6247 | 6247 | 6247 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
HPI | NHPI | EC | CWC | High Div | Low Div | |
NGI | 0.013 *** | 0.016 *** | 0.017 *** | 0.011 *** | 0.014 *** | 0.020 *** |
(5.45) | (13.37) | (14.53) | (4.01) | (12.47) | (6.36) | |
_cons | 0.045 *** | 0.035 *** | 0.036 *** | 0.046 *** | 0.036 *** | 0.050 *** |
(24.48) | (32.34) | (34.20) | (20.86) | (35.99) | (18.54) | |
Industry | Yes | Yes | Yes | Yes | Yes | Yes |
Adjusted R2 | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | Yes | Yes | Yes | Yes | Yes | Yes |
Industry | 0.3106 | 0.1846 | 0.1866 | 0.2650 | 0.1995 | 0.2532 |
Adjusted R2 | 1696 | 4551 | 4863 | 1384 | 5212 | 1035 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, X.; Zhang, R. The Impact of Green Investor Entry on the High-Quality Development of Manufacturing Enterprises. Sustainability 2025, 17, 9422. https://doi.org/10.3390/su17219422
Jia X, Zhang R. The Impact of Green Investor Entry on the High-Quality Development of Manufacturing Enterprises. Sustainability. 2025; 17(21):9422. https://doi.org/10.3390/su17219422
Chicago/Turabian StyleJia, Xiaoxia, and Runrun Zhang. 2025. "The Impact of Green Investor Entry on the High-Quality Development of Manufacturing Enterprises" Sustainability 17, no. 21: 9422. https://doi.org/10.3390/su17219422
APA StyleJia, X., & Zhang, R. (2025). The Impact of Green Investor Entry on the High-Quality Development of Manufacturing Enterprises. Sustainability, 17(21), 9422. https://doi.org/10.3390/su17219422