Seed Dormancy and Germination Potential of Coastal Rice Landraces in Bangladesh: Implications for Climate-Resilient Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Germination Test
Data Collection in Germination Test
2.2. Electrical Conductivity Test
2.3. Priming Experiment
2.4. Breaking Seed Dormancy Using Nitric Acid
2.5. Statistical Analysis
3. Results
3.1. Germination Capacity of Different Cultivars
3.2. Biomass Production of Seedlings
3.3. Electrical Conductivity (EC)
3.4. Priming Effect
3.5. Seed Treatment with HNO3
4. Discussion
4.1. Variable Seed Dormancy in Local Rice Landraces
4.2. Pre-Treatments of Rice Seeds with Nitric Acid-Breaking Seed Dormancy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bandumula, N. Rice Production in Asia: Key to Global Food Security. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2018, 88, 1323–1328. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. FAOSTAT Statistical Database; FAO: Rome, Italy, 2021. [Google Scholar]
- Jackson, M.T. Protecting the heritage of rice biodiversity. GeoJournal 1995, 35, 267–274. [Google Scholar] [CrossRef]
- Haque, S.A. Salinity Problems and Crop Production in Coastal Regions of Bangladesh. Pak. J. Bot. 2006, 38, 1359–1365. [Google Scholar]
- Salama, M.A.; Sarker, M.N.I. Impact of hybrid variety adoption on the performance of rice farms in Bangladesh: A propensity score matching approach. World Dev. Sustain. 2023, 2, 100042. [Google Scholar] [CrossRef]
- Ministry of Water Resources (MoWR). Coastal Zone Policy, The People’s Republic of Bangladesh. 2005. Available online: https://nda.codezonelab.com/files/1/Publications/Sectoral%20Policies%20and%20Plans/Costal-Zone-Policy-2005.pdf (accessed on 1 March 2023).
- Hour, A.L.; Hsieh, W.H.; Chang, S.H.; Wu, Y.P.; Chin, H.S.; Lin, Y.R. Genetic Diversity of Landraces and Improved Varieties of Rice (Oryza sativa L.) in Taiwan. Rice 2020, 13, 82. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.S.; Akter, K.; Rashid, E.S.; Bashar, M.K. Diversity analysis in Boro rice (Oryza sativa L.) accessions. Bangladesh J. Agric. Res. 2010, 35, 29–36. [Google Scholar] [CrossRef]
- Shu, K.; Meng, Y.J.; Shuai, H.W.; Liu, W.G.; Du, J.B.; Liu, J.; Yang, W.Y. Dormancy and germination: How does the crop seed decide? Plant Biol. 2015, 17, 1104–1112. [Google Scholar] [CrossRef] [PubMed]
- Tai, L.; Wang, H.-J.; Xu, X.-J.; Sun, W.-H.; Ju, L.; Liu, W.-T.; Li, W.-Q.; Sun, J.; Chen, K.-M. Pre-harvest sprouting in cereals: Genetic and biochemical mechanisms. J. Exp. Bot. 2021, 72, 2857–2876. [Google Scholar] [CrossRef] [PubMed]
- Koornneef, M.; Bentsink, L.; Hilhorst, H. Seed dormancy and germination Maarten Koornneef*, Leónie Bentsink and Henk Hilhorst. Curr. Opin. Plant Biol. 2002, 5, 33–36. [Google Scholar] [CrossRef]
- Graeber, K.; Nakabayashi, K.; Miatton, E.; Leubner-Metzger, G.; Soppe, W.J.J. Molecular mechanisms of seed dormancy. Plant Cell Environ. 2012, 35, 1769–1786. [Google Scholar] [CrossRef] [PubMed]
- Bewley, J.D. Seed germination and dormancy. Plant Cell 1997, 9, 1055–1066. [Google Scholar] [CrossRef]
- Guo, N.; Tang, S.; Wang, Y.; Chen, W.; An, R.; Ren, Z.; Hu, S.; Tang, S.; Wei, X.; Shao, G.; et al. A mediator of OsbZIP46 deactivation and degradation negatively regulates seed dormancy in rice. Nat. Commun. 2024, 15, 1134. [Google Scholar] [CrossRef] [PubMed]
- Tseng, T.-M.; Shivrain, V.K.; Lawton-Rauh, A.; Burgos, N.R. Dormancy-linked Population Structure of Weedy Rice (Oryza sp.). Weed Sci. 2018, 66, 331–339. [Google Scholar] [CrossRef]
- Imaizumi, T.; Kawahara, Y.; Auge, G. Hybrid-derived weedy rice maintains adaptive combinations of alleles associated with seed dormancy. Mol. Ecol. 2022, 31, 6556–6569. [Google Scholar] [CrossRef]
- Zhang, L.; Lou, J.; Foley, M.E.; Gu, X.Y. Comparative Mapping of Seed Dormancy Loci Between Tropical and Temperate Ecotypes of Weedy Rice (Oryza sativa L.). G3 Genes Genomes Genet. 2017, 7, 2605–2614. [Google Scholar] [CrossRef]
- Zulrushdi, A.Q.; Rejab, N.A.; Shakirin, M. Seed dormancy status of tropical weedy rice population in Malaysia. Sains Malays. 2022, 51, 1697–1705. [Google Scholar] [CrossRef]
- Peters, N.C.B. The dormancy of wild oat seed (Avena fatua L.) from plants grown under various temperature and soil moisture conditions. Weed Res. 1982, 22, 205–212. [Google Scholar] [CrossRef]
- HSIAO, A.I. The Effect of Sodium Hypochlorite, Gibberellic Acid and Light on Seed Dormancy and Germination of Stinkweed and Wild Mustard. Can. J. Plant Sci. 1980, 60, 643–649. [Google Scholar] [CrossRef]
- International Seed Testing Association (ISTA). International Rules for Seed Testing; International Seed Testing Association (ISTA): Basserdorf, Switzerland, 2006; Available online: https://www.merconet.eu/files/Seed_Sampling_I_S_T_A.pdf (accessed on 1 March 2023).
- Mia, S.; Ahmed, N.U.; Islam, M.Z.; Rashad, M.M.I.; Islam, M.M.; Zaman, A.M. Genetic diversity and yield performance among T. Aman rice (Oryza sativa L.) landraces in Barishal region of Bangladesh. J. Crop Sci. Biotechnol. 2022, 25, 123–132. [Google Scholar] [CrossRef]
- da Silva, E.C.; Menechini, W.; dos Santos Galvão, C.; de Oliveira, L.A.B.; de Faria Ferreira, N.C.; da Silva, L.S. Electrical conductivity test for evaluation of the pea seed vigor. Sci. Agrar. Parana. 2020, 1, 89–93. [Google Scholar] [CrossRef]
- Simsek, S.; Ohm, J.B.; Lu, H.; Rugg, M.; Berzonsky, W.; Alamri, M.S.; Mergoum, M. Effect of pre-harvest sprouting on physicochemical changes of proteins in wheat. J. Sci. Food Agric. 2014, 94, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Pipatpongpinyo, W.; Korkmaz, U.; Wu, H.; Kena, A.; Ye, H.; Feng, J.; Gu, X.Y. Assembling seed dormancy genes into a system identified their effects on seedbank longevity in weedy rice. Heredity 2020, 124, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zou, W.; Zhang, M.; Liu, J.; Chen, L.; Peng, T.; Ye, G. Genome-Wide Association Study for Seed Dormancy Using Re-Sequenced Germplasm under Multiple Conditions in Rice. Int. J. Mol. Sci. 2023, 24, 6117. [Google Scholar] [CrossRef] [PubMed]
- Shorinola, O.; Bird, N.; Simmonds, J.; Berry, S.; Henriksson, T.; Jack, P.; Werner, P.; Gerjets, T.; Scholefield, D.; Balcárková, B.; et al. The wheat Phs-A1 pre-harvest sprouting resistance locus delays the rate of seed dormancy loss and maps 0.3 cM distal to the PM19 genes in UK germplasm. J. Exp. Bot. 2016, 67, 4169–4178. [Google Scholar] [CrossRef]
- Zhu, D.; Mao, F.; Tian, Y.; Lin, X.; Gu, L.; Gu, H.; Qu, L. The Features and Regulation of Co-transcriptional Splicing in Arabidopsis. Mol. Plant 2019, 13, 278–294. [Google Scholar] [CrossRef]
- Harris, D. The effects of manure, genotype, seed priming, depth and date of sowing on the emergence and early growth Sorghum bicolor (L.) Moench in semi-arid Botswana. Soil Tillage Res. 1996, 40, 73–88. [Google Scholar]
- Harris, D.; Joshi, A.; Khan, P.A.; Gothkar, P.; Sodhi, P.S. On-farm seed priming in semi-arid agriculture: Development and evaluation in maize, rice and chickpea in India using participatory methods. Exp. Agric. 1999, 35, 15–29. [Google Scholar] [CrossRef]
- Muhammad, I.; Kolla, M.; Volker, R.; Günter, N. Impact of Nutrient Seed Priming on Germination, Seedling Development, Nutritional Status and Grain Yield of Maize. J. Plant Nutr. 2015, 38, 1803–1821. [Google Scholar] [CrossRef]
- Gallardo, K.; Job, C.; Groot, S.P.C.; Puype, M.; Demol, H.; Vandekerckhove, J.; Job, D. Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol. 2001, 126, 835–848. [Google Scholar] [CrossRef]
- Job, C.; Kersulec, A.; Ravasio, L.; Chareyre, S.; Pepin, R.; Job, D. The solubilization of the basic subunit of sugarbeet seed 11-S globulin during priming and early germination. Seed Sci. Res. 1997, 7, 225–243. [Google Scholar] [CrossRef]
- Ajouri, A.; Asgedom, H.; Becker, M. Seed priming enhances germination and seedling growth of barley under conditions of P and Zn deficiency. J. Plant Nutr. Soil Sci. 2004, 167, 630–636. [Google Scholar] [CrossRef]
- Bewley, J.D.; Black, M. Physiology and Biochemistry of Seeds in Relation to Germination; Springer: New York, NY, USA, 1982; pp. 40–80. [Google Scholar] [CrossRef]
- Ali, H.H.; Tanveer, A.; Nadeem, M.A.; Asghar, H.N. Methods to break seed dormancy of Rhynchosia capitata, a summer annual weed. Chil. J. Agric. Res. 2011, 71, 483–487. [Google Scholar]
- Kimura, E.; Islam, M.A. Seed scarification methods and their use in forage legumes. Res. J. Seed Sci. 2012, 5, 38–50. [Google Scholar] [CrossRef]
- Mousavi, S.R.; Rezaei, M.; Mousavi, A. A general overview on seed dormancy and methods of breaking it. Adv. Environ. Biol. 2011, 5, 3333–3337. [Google Scholar]
- 3Rouhi, H.R.; Sepehri, A.; Sefidkhani, L.; Karimi, F. Evaluation of several methods for breaking dormancy of bitter vetch seeds (Vicia ervilia L.). Plant Breed. Seed Sci. 2016, 71, 57–65. [Google Scholar] [CrossRef]
- Waheed, A.; Ahmad, H.; Abbasi, F.M. Different treatment of rice seed dormancy breaking, germination of both wild species and cultivated varieties (Oryza sativa L.). J. Mater. Environ. Sci. 2012, 3, 551–560. [Google Scholar]
- Arc, E.; Galland, M.; Godin, B.; Cueff, G.; Rajjou, L. Nitric oxide implication in the control of seed dormancy and germination. Front. Plant Sci. 2013, 4, 346. [Google Scholar] [CrossRef] [PubMed]
- Nonogaki, H. Seed dormancy and germination-emerging mechanisms and new hypotheses. Front. Plant Sci. 2014, 5, 233. [Google Scholar] [CrossRef]
- Mutinda, Y.A.; Muthomi, J.W.; Kimani, J.M.; Cheminigw’wa, G.N.; Olubayo, F.M. Viability and Dormancy of Rice Seeds after Storage and Pre-Treatment with Dry Heat and Chemical Agents. J. Agric. Sci. 2017, 9, 175. [Google Scholar] [CrossRef]
- Naredo, M.E.B.; Juliano, A.B.; Lu, B.R.; De Guzman, F.; Jackson, M.T. Responses to seed dormancy-breaking treatments in rice species (Oryza L.). Seed Sci. Technol. 1998, 26, 675–689. [Google Scholar]
- Kumar, M.; Rajpurohit, D.; Basha, P.O.; Bhalla, A.; Randhawa, G.S.; Dhaliwal, H.S. Genetic Control of Seed Dormancy in Basmati Rice. Madras Agric. J. 2009, 96, 305–308. [Google Scholar]
- Seshu, D.V.; Dadlani, M. Mechanism of seed dormancy in rice. Seed Sci. Res. 1991, 1, 187–194. [Google Scholar] [CrossRef]
- Dong Tung, L.; Serrano, E.P. Effects of Warm Water in Breaking Dormancy of Rice Seed. Omonrice 2011, 18, 129–136. [Google Scholar]
- Samarah, N.H.; Allataifeh, N.; Turk, M.A.; Tawaha, A.M. Seed germination and dormancy of fresh and air-dried seeds of common vetch (Vicia sativa L.) harvested at different stages of maturity. Seed Sci. Technol. 2004, 32, 11–19. [Google Scholar] [CrossRef]
- Xu, F.; Tang, J.; Wang, S.; Cheng, X.; Wang, H.; Ou, S.; Gao, S.; Li, B.; Qian, Y.; Gao, C.; et al. Antagonistic control of seed dormancy in rice by two bHLH transcription factors. Nat. Genet. 2022, 54, 1972–1982. [Google Scholar] [CrossRef] [PubMed]
1. Lalmota | 6. Lal chikon | 11. Bari mota | 16. Chinigura |
2. Bashful chikon | 7. Bashful | 12. Birindi | 17. Dudhkolom |
3. Lokkhima | 8. Motha mota | 13. Sakorkhora | 18. Kajalhai |
4. Calendar mota | 9. Dishari | 14. Kalokhaiya | 19. Nakuchimota |
5. Sada mota | 10. Kejrenjal | 15. Tulsimala | 20. BRRI dhan 41 |
Genotype | Germination (%) | Shoot Weight per Seedling (mg) | Root Weight per Seedling (mg) | Total Biomass per Seedling (mg) | Dormancy (%) | EC Value (mS m−1) |
---|---|---|---|---|---|---|
Bina Dhan 10 | 72.0 ± 4.3 a | 7.50 ± 0.07 a–d | 5.12 ± 0.49 a–e | 12.69 ± 1.12 a–d | 11.00 ± 5.00 h | 10.50 ± 0.30 i–k |
BRRI Dhan 49 | 30.0 ± 2.6 cd | 5.90 ± 0.01 a–e | 5.13 ± 0.83 a–e | 11.05 ± 0.91 a–d | 60.00 ± 2.31 e–g | 19.00 ± 0.40 a–c |
Bionti Monkhushi | 22.0 ± 7.7 c–f | 5.40 ± 1.30 a–e | 4.83 ± 1.78 a–e | 10.27 ± 2.55 a–e | 74.00 ± 6.22 a–f | 10.30 ± 0.20 jk |
Lal Mota | 4.0 ± 1.6 ef | 3.60 ± 1.50 b–e | 2.78 ± 1.57 b–e | 6.47 ± 3.06 b–e | 96.00 ± 1.63 ab | 10.00 ± 0.40 jk |
Bashful Chikon | 1.0 ± 1.0 f | 1.30 ± 1.30 de | 0.17 ± 0.17 e | 1.55 ± 1.55 de | 97.00 ± 1.91 ab | 17.00 ± 2.00 a–d |
Lokkhima | 2.0 ± 1.2 ef | 3.30 ± 2.10 b–e | 1.07 ± 0.66 c–e | 4.45 ± 2.81 c–e | 96.00 ± 1.63 ab | 11.50 ± 0.30 g–k |
Calendar Mota | 5.0 ± 5.0 ef | 1.20 ± 1.20 de | 0.90 ± 0.90 c–e | 2.08 ± 2.08 de | 90.00 ± 8.72 a–d | 12.00 ± 0.04 f–k |
Sada Mota | 5.0 ± 3.0 ef | 1.80 ± 1.20 de | 0.99 ± 0.65 c–e | 2.83 ± 1.64 de | 92.00 ± 2.83 a–d | 19.00 ± 0.20 b–f |
Lal chikon | 1.0 ± 1.9 f | 0.60 ± 0.62 de | 0.33 ± 0.33 de | 0.95 ± 0.95 de | 96.00 ± 2.83 ab | 14.50 ± 0.60 d–h |
Bashful | 3.0 ± 4.6 ef | 1.80 ± 1.30 de | 1.10 ± 0.75 c–e | 2.93 ± 2.00 de | 95.00 ± 3.00 a–c | 16.30 ± 0.20 b–e |
Motha mota | 8.0 ± 1.0 d–f | 2.10 ± 1.20 c–e | 1.33 ± 0.77 c–e | 3.36 ± 1.94 c–e | 90.00 ± 6.00 a–d | 13.50 ± 0.20 d–j |
Dishari | 1.0 ± 4.7 f | 0.80 ± 0.82 de | 0.20 ± 0.20 e | 1.03 ± 1.03 de | 99.00 ± 1.00 ab | 15.00 ± 0.40 c–h |
Kejrenjal | 7.0 ± 0.0 d–f | 2.20 ± 1.41 b–e | 3.16 ± 2.37 b–e | 5.33 ± 3.77 c–e | 86.00 ± 4.76 a–e | 10.50 ± 0.60 i–k |
Bari mota | 0.0 ± 0.0 f | 0.00 ± 0.00 e | 0.00 ± 0.00 e | 0.00 ± 0.00 e | 100.00 ± 0.00 a | 10.50 ± 0.30 i–k |
Birindi | 1.0 ± 1.2 f | 3.40 ± 3.40 b–e | 0.90 ± 0.90 c–e | 4.30 ± 4.30 c–e | 99.00 ± 1.00 ab | 12.50 ± 0.30 e–j |
Sakorkhora | 2.0 ± 1.9 ef | 2.40 ± 1.47 b–e | 0.58 ± 0.33 c–e | 2.98 ± 1.78 de | 98.00 ± 1.15 ab | 16.00 ± 0.40 b–e |
kalokhaiya | 3.0 ± 0.0 ef | 1.78 ± 1.10 de | 3.22 ± 1.87 b–e | 5.01 ± 2.94 c–e | 91.00 ± 4.43 a–d | 14.30 ± 0.20 d–i |
Tulsimala | 0.0 ± 0.0 f | 0.00 ± 0.00 e | 0.00 ± 0.00 e | 0.00 ± 0.00 e | 100.00 ± 0.00 a | 20.50 ± 0.90 a |
Kacha Mota | 24.0 ± 1.9 c–f | 6.30 ± 1.10 a–e | 5.33 ± 1.45 a–e | 11.64 ± 2.34 a–e | 73.00 ± 5.74 b–f | 15.50 ± 0.20 c–f |
Jaini | 17.0 ± 6.8 c–f | 4.10 ± 1.19 b–e | 3.75 ± 1.56 b–e | 7.84 ± 2.72 a–e | 76.00 ± 5.66 a–f | 20.30 ± 0.50 a |
Chinigura | 0.0 ± 0.0 f | 0.00 ± 0.00 e | 0.00 ± 0.00 e | 0.00 ± 0.00 de | 99.00 ± 1.00 ab | 15.30 ± 0.20 c–g |
Dudhkolom | 9.0 ± 2.5 d–f | 11.50 ± 2.39 a | 7.19 ± 3.04 a–d | 18.74 ± 5.03 a | 89.00 ± 1.91 a–d | 19.50 ± 0.90 ab |
Halde Mota | 26.0 ± 5.3 c–e | 9.15 ± 2.20 a–c | 10.76 ± 2.55 a | 19.92 ± 3.87 a | 69.00 ± 4.73 c–f | 15.30 ± 1.00 c–g |
Kajol shai | 4.0 ± 1.6 ef | 2.67 ± 0.90 b–e | 1.78 ± 0.87 b–e | 4.46 ± 1.60 c–e | 96.00 ± 1.63 ab | 14.50 ± 1.60 d–h |
Nakuchi Mota | 3.0 ± 1.0 ef | 2.90 ± 1.20 b–e | 0.80 ± 0.28 c–e | 3.70 ± 1.46 c–e | 97.00 ± 1.00 ab | 8.50 ± 0.30 k |
Nona Bokra | 66.0 ± 5.7 a | 5.76 ± 0.50 a–e | 5.25 ± 0.78 a–e | 11.02 ± 1.04 a–e | 16.00 ± 4.32 h | 15.80 ± 0.60 b–f |
BRRI Dhan 41 | 9.0 ± 1.9 d–f | 3.76 ± 1.10 b–e | 2.67 ± 0.57 b–e | 6.43 ± 1.44 b–e | 88.00 ± 3.65 a–d | 16.80 ± 0.50 a–d |
Bouhari | 30.0 ± 8.9 cd | 4.04 ± 0.60 b–e | 3.82 ± 0.78 a–e | 7.86 ± 1.29 a–e | 67.00 ± 10.25 d–f | 10.00 ± 0.40 jk |
Khaiyoj | 13.0 ± 3.41 d–f | 5.95 ± 1.00 a–e | 4.45 ± 1.62 a–e | 10.40 ± 2.50 a–e | 85.00 ± 1.91 a–e | 12.50 ± 0.90 e–j |
Bina Dhan 8 | 68.0 ± 8.0 ab | 8.20 ± 0.00 a–e | 8.71 ± 1.03 a–c | 16.91 ± 1.05 a–c | 24.00 ± 7.30 gh | 15.20 ± 0.70 k |
Charbindi | 55.3 ± 7.7 ab | 8.80 ± 1.74 ab | 8.10 ± 1.48 ab | 16.97 ± 2.23 ab | 35.00 ± 8.39 gh | 11.70 ± 1.00 h–k |
Kalijira | 40.0 ± 9.7 bc | 4.45 ± 0.40 a–e | 6.77 ± 2.29 a–e | 11.23 ± 2.58 a–e | 52.00 ± 9.52 fg | 15.00 ± 0.80 d–h |
p value | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Level of significance | ** | ** | ** | ** | ** | ** |
Cultivar | Priming | Germination (%) |
---|---|---|
BARI mota | No | 0.0 ± 0.0 h |
Yes | 9.33 ± 0.9 | |
Bashful | No | 3.0 ± 1.9 gh |
Yes | 53.3 ± 2.4 cd | |
Bashful chikon | No | 1.0 ± 1.0 h |
Yes | 73.3 ± 2.4 ab | |
Birindi | No | 1.0 ± 1.0 h |
Yes | 37.3 ± 2.4 ef | |
BRRI dhan 41 | No | 9.0 ± 1.9 gh |
Yes | 85.3 ± 0.9 a | |
Calender mota | No | 5.0 ± 5.0 gh |
Yes | 45.3 ± 4.1 de | |
Chinigura | No | 0.0 ± 0.0 h |
Yes | 10.6 ± 0.9 | |
Dishari | No | 1.0 ± 1.0 h |
Yes | 69.3 ± 1.8 b | |
Dudh kolom | No | 9.0 ± 2.5 gh |
Yes | 69.3 ± 2.4 b | |
kajolshai | No | 4.0 ± 1.6 gh |
Yes | 65.3 ± 0.9 bc | |
Kalokhaiya | No | 3.0 ± 1.9 gh |
Yes | 14.6 ± 0.9 g | |
Kejrenjal | No | 7.0 ± 4.7 gh |
Yes | 73.3 ± 1.8 ab | |
Lal chikon | No | 1.0 ± 1.0 h |
Yes | 74.6 ± 2.4 ab | |
Lal mota | No | 4.0 ± 1.6 gh |
Yes | 33.3 ± 1.8 ef | |
Lokkhima | No | 2.0 ± 1.1 h |
Yes | 10.6 ± 0.9 | |
Motha mota | No | 8.0 ± 4.6 gh |
Yes | 84.0 ± 1.6 a | |
Nakuchimota | No | 3.0 ± 1.0 h |
Yes | 32.0 ± 3.2 f | |
Sadamota | No | 5.0 ± 3 gh |
Yes | 74.6 ± 1.8 ab | |
Sakorkhora | No | 2.0 ± 1.1 h |
Yes | 0.0 ± 0.0 h | |
Tulsimala | No | 0.0 ± 0.0 h |
Yes | 10.6 ± 1.8 gh |
Genotype | Treatment | Number of Normal Seedling per Seeds | Number of Dormant Seed per 25 Seeds | Germination Percentage |
---|---|---|---|---|
Lal Mota | H0 | 8 ± 0.57 ef | 16.7 ± 0.7 d | 32 ± 2.3 ef |
H1 | 0.33 ± 0.33 i | 24.7 ± 0.3 a | 1.3 ± 1.3 i | |
bashful Chikon | H0 | 17.33 ± 0.88 b | 6.7 ± 0.9 gh | 69.3 ± 3.5 b |
H1 | 0.0 ± 0.0 i | 24.7 ± 0.3 a | 0.0 ± 0.0 i | |
Lokkhima | H0 | 2 ± 0.57 hi | 22.3 ± 0.3 a–c | 8.0 ± 2.3 hi |
H1 | 0.0 ± 0.0 i | 25.0 ± 0.0 a | 0.0 ± 0.0 i | |
calender Mota | H0 | 10.33 ± 0.88 de | 13.7 ± 1.5 de | 41.3 ± 3.5 de |
H1 | 0.0 ± 0.0 i | 24.3 ± 0.3 ab | 0.0 ± 0.0 i | |
Sada Mota | H0 | 18 ± 0.57 ab | 6.3 ± 0.7 gh | 72.0 ± 2.3 ab |
H1 | 0.0 ± 0.0 i | 25.0 ± 0.0 a | 0.0 ± 0.0 i | |
Lal chikon | H0 | 18 ± 1.2 ab | 6.3 ± 0.9 gh | 72.0 ± 4.6 ab |
H1 | 0.0 ± 0.0 i | 25.0 ± 0.0 a | 0.0 ± 0.0 i | |
Bashful | H0 | 13.0 ± 0.6 cd | 11.7 ± 0.8 ef | 52.0 ± 2.3 cd |
H1 | 0.0 ± 0.0 i | 25.0 ± 0.0 a | 0.0 ± 0.0 i | |
Motha mota | H0 | 21.0 ± 0.6 a | 4.0 ± 0.6 h | 84.0 ± 2.3 a |
H1 | 0.3 ± 0.3 i | 24.7 ± 0.3 a | 1.3 ± 1.3 i | |
Dishari | H0 | 17.0 ± 0.6 b | 7.7 ± 0.7 g | 68.0 ± 2.3 b |
H1 | 0.7 ± 0.3 i | 24.3 ± 0.3 ab | 2.7 ± 1.3 i | |
Kejrenjal | H0 | 18.0 ± 0.6 ab | 6.7 ± 0.6 gh | 72.0 ± 2.3 ab |
H1 | 0.3 ± 0.3 i | 24.7 ± 0.3 a | 1.3 ± 1.3 i | |
Bari mota | H0 | 1.7 ± 0.3 hi | 22.7 ± 0.3 a–c | 6.6 ± 1.3 hi |
H1 | 0.0 ± 0.0 i | 25.0 ± 0.0 a | 0.0 ± 0.0 i | |
Birindi | H0 | 9.0 ± 0.6 ef | 15.7 ± 0.9 d | 36.0 ± 2.3 ef |
H1 | 0.0 ± 0.0 i | 25.0 ± 0.0 a | 0.0 ± 0.0 i | |
Sakorkhora | H0 | 0.0 ± 0.0 i | 25.0 ± 0.0 a | 0.0 ± 0.0 i |
H1 | 0.0 ± 0.0 i | 25.0 ± 0.0 a | 0.0 ± 0.0 i | |
Kalokhaiya | H0 | 3.0 ± 0.6 hi | 21.3 ± 0.3 bc | 12.0 ± 2.3 hi |
H1 | 1.7 ± 0.3 hi | 23.3 ± 0.3 a–c | 6.7 ± 1.3 hi | |
Tulsimala | H0 | 2.3 ± 0.9 hi | 22.3 ± 0.7 a–c | 9.3 ± 3.5 hi |
H1 | 0.7 ± 0.3 i | 24.3 ± 0.3 ab | 2.7 ± 1.3 i | |
Chinigura | H0 | 2.0 ± 0.6 hi | 22.3 ± 0.6 a–c | 8.0 ± 2.3 hi |
H1 | 4.0 ± 0.6 gh | 21.0 ± 0.9 c | 16.0 ± 2.3 gh | |
Dudhkolom | H0 | 17.0 ± 0.6 b | 7.7 ± 0.3 g | 68.0 ± 2.3 b |
H1 | 0.3 ± 0.3 i | 24.7 ± 0.3 a | 1.3 ± 1.3 i | |
Kajalhai | H0 | 16.0 ± 0.6 bc | 8.7 ± 0.0 fg | 64.0 ± 2.3 bc |
H1 | 0.0 ± 0.0 i | 25.0 ± 0.9 a | 0.0 ± 0.0 i | |
Nakuchimota | H0 | 7.0 ± 0.6 i | 16.7 ± 1.5 c | 28.0 ± 2.3 fg |
H1 | 4.0 ± 1.5 gh | 21.0 ± 0.3 d | 16.0 ± 6.1 gh | |
BRRI dhan 41 | H0 | 21.0 ± 0.6 a | 3.7 ± 0.0 h | 84.0 ± 2.3 a |
H1 | 0.0 ± 0.0 i | 25.0 ± 0.3 a | 0.0 ± 0.0 i | |
F value | <0.01 | <0.01 | <0.01 | |
Level of Significance | ** | ** | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bristy, S.Y.; Tahura, S.; Khan, M.R.; Ghosh, A.; Hossain, M.S.; Mia, S.; Jindo, K. Seed Dormancy and Germination Potential of Coastal Rice Landraces in Bangladesh: Implications for Climate-Resilient Cultivation. Sustainability 2025, 17, 625. https://doi.org/10.3390/su17020625
Bristy SY, Tahura S, Khan MR, Ghosh A, Hossain MS, Mia S, Jindo K. Seed Dormancy and Germination Potential of Coastal Rice Landraces in Bangladesh: Implications for Climate-Resilient Cultivation. Sustainability. 2025; 17(2):625. https://doi.org/10.3390/su17020625
Chicago/Turabian StyleBristy, Sara Yeasmin, Sharaban Tahura, Md. Rashed Khan, Anirban Ghosh, Md. Shakhawat Hossain, Shamim Mia, and Keiji Jindo. 2025. "Seed Dormancy and Germination Potential of Coastal Rice Landraces in Bangladesh: Implications for Climate-Resilient Cultivation" Sustainability 17, no. 2: 625. https://doi.org/10.3390/su17020625
APA StyleBristy, S. Y., Tahura, S., Khan, M. R., Ghosh, A., Hossain, M. S., Mia, S., & Jindo, K. (2025). Seed Dormancy and Germination Potential of Coastal Rice Landraces in Bangladesh: Implications for Climate-Resilient Cultivation. Sustainability, 17(2), 625. https://doi.org/10.3390/su17020625