Factors Affecting the Choice and Level of Adaptation Strategies Among Smallholder Farmers in KwaZulu Natal Province
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Study Area
2.2. Data Collection Method
2.3. Data Analysis
3. Results
3.1. Descriptive Results
3.1.1. Demographic Characteristics of Smallholder Farmers in KwaZulu Natal
3.1.2. Smart Agricultural Practices Used by the Smallholder Farmers in KwaZulu Natal
3.1.3. Reasons Why Smallholder Farmers Did Not Use Certain Adaptation Strategies in KwaZulu Natal
3.2. Empirical Results
3.2.1. Determinants of Adaptation Strategies Using Extended Ordered Probit Regression
- Demonstrating how adaptation strategies can enhance rather than threaten supply chain relationships;
- Working with supply chain partners to gradually incorporate climate-smart practices.
3.2.2. Factors Influencing the Level of Adaptation Strategies Among Smallholder Vegetable Farmers, KwaZulu Natal
4. Conclusions and Policy Recommendations
5. Limitations of This Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, X.; Liu, M. Trade-offs and synergies in ecosystem services for sustainability. Front. Environ. Sci. 2019, 7, 47. [Google Scholar]
- Baselice, A.; Prosperi, M.; Lopolito, A. A conceptual framework for the evaluation of social agriculture: An application to a project aimed at the employability of young people need. Sustainability 2020, 13, 8608. [Google Scholar] [CrossRef]
- Tian, T.; Li, L.; Wang, J. The effect and mechanism of agricultural informatization on economic development: Based on a spatial heterogeneity perspective. Sustainability 2022, 14, 3165. [Google Scholar] [CrossRef]
- Nodayizana, A.; Ritter, K. Assessing the effectiveness of government-funded smallholder development projects in the eastern cape, south africa: The case of the raymond mhlaba municipality. Stud. Mundi—Econ. 2022, 9, 74–87. [Google Scholar] [CrossRef]
- STATSA. 2022. Available online: https://www.statssa.gov.za/publications/P1101/P11012022.pdf (accessed on 22 July 2024).
- Chisasa, J. Determinants of access to bank credit by smallholder farmers: Evidence from South Africa. Int. J. Econ. Bus. Financ. 2020, 12, 25–41. [Google Scholar]
- Mufudza, M.; Gukurume, S. Perceptions of smallholder farmers on climate change impacts and adaptation strategies in rural Limpopo Province, South Africa. Clim. Dev. 2021, 13, 233–246. [Google Scholar]
- Naranjo, L.; Torres, J.; Pérez, H.; Mendoza, G. The role of policy frameworks in climate change adaptation among smallholder farmers in sub-Saharan Africa. J. Environ. Econ. Manag. 2020, 66, 102–115. [Google Scholar]
- Workalemahu, S.; Dawid, I. Smallholder farmers’ adaptation strategies, opportunities and challenges to climate change: A review. Int. J. Food Sci. Agric. 2021, 5, 592–600. [Google Scholar] [CrossRef]
- Zeleke, T.; Beyene, F.; Deressa, T.; Yousuf, J.; Kebede, T. Smallholder farmers’ perception of climate change and choice of adaptation strategies in east hararghe zone, eastern ethiopia. Int. J. Clim. Chang. Strateg. Manag. 2022, 15, 515–536. [Google Scholar] [CrossRef]
- Naazie, G.K.; Dakyaga, F.; Derbile, E.K. Agro-ecological intensification for climate change adaptation: Tales on soil and water management practices of smallholder farmers in rural Ghana. Discov. Sustain. 2023, 5, 13. [Google Scholar] [CrossRef]
- Sitaula, B.K.; Muringai, V.; Mulugetta, Y. Determinants of smallholder farmers’ adaptation strategies to the effects of climate change: Evidence from northern Uganda. Agric. Food Secur. 2021, 10, 12. [Google Scholar]
- Irawan, A.; Syakir, M. Determinants of oil palm smallholder farmers’ adaptation strategy to climate change in bengkulu, indonesia. Rev. Econ. Sociol. Rural 2019, 57, 428–440. [Google Scholar] [CrossRef]
- Myeni, L.; Moeletsi, M. Factors determining the adoption of strategies used by smallholder farmers to cope with climate variability in the eastern free state, south Africa. Agriculture 2020, 10, 410. [Google Scholar] [CrossRef]
- Olabanji, M.; Davis, N.; Ndarana, T.; Kuhudzai, A.; Mahlobo, D. Assessment of smallholder farmers’ perception and adaptation response to climate change in the olifants catchment, South Africa. J. Water Clim. Chang. 2021, 12, 3388–3403. [Google Scholar] [CrossRef]
- Donatti, C.I.; Harvey, C.A.; Martínez-Rodríguez, M.R.; Vignola, R.; Rodríguez, C.M. Vulnerability of smallholder farmers to climate change in Central America and Mexico: Current knowledge and research gaps. Clim. Dev. 2019, 11, 264–286. [Google Scholar] [CrossRef]
- Vignola, R.; Martínez-Rodríguez, M.; Saborío-Rodríguez, M.; Harvey, C.; Donatti, C. Climate change and adaptation strategies for smallholder farmers in Central America and Mexico: Knowledge gaps and needs for policy development. Agric. Syst. 2021, 187, 103–123. [Google Scholar]
- Adeagbo, O.; Ojo, T.; Adetoro, A. Understanding the determinants of climate change adaptation strategies among smallholder maize farmers in south-west, nigeria. Heliyon 2021, 7, 06231. [Google Scholar] [CrossRef]
- Hirpha, H.; Mpandeli, S.; Bantider, A. Determinants of adaptation strategies to climate change among the smallholder farmers in adama district, ethiopia. Int. J. Clim. Chang. Strateg. Manag. 2020, 12, 463–476. [Google Scholar] [CrossRef]
- Addis, Y.; Abirdew, S. Smallholder farmers’ perception of climate change and adaptation strategy choices in central ethiopia. Int. J. Clim. Chang. Strateg. Manag. 2021, 13, 463–482. [Google Scholar] [CrossRef]
- Ikua, M. Constraints and opportunities for greenhouse farming technology as an adaptation strategy to climate variability by smallholder farmers of nyandarua county of kenya. East Afr. J. Sci. Technol. Innov. 2021, 2, 1–13. [Google Scholar] [CrossRef]
- Mutekwa, V.; Moyo, C.; Mashingaidze, K. Assessing climate change impacts and adaptation strategies of smallholder farmers in Zimbabwe: A case study in the Zambezi Valley. J. Agric. Rural Dev. 2020, 34, 152–164. [Google Scholar]
- Mwangi, H.; Kamau, J.; Gikonyo, M. Assessing adaptation strategies of smallholder vegetable farmers to climate change in Kenya. J. Clim. Chang. Agric. 2019, 22, 101–115. [Google Scholar]
- Municipalities, K.N. Municipal Directories and Reports; Government of South Africa: Cape Town, South Africa, 2023.
- South African Department of Agriculture, Forestry and Fisheries. Impact of Climate Change on Agricultural Production in KwaZulu-Natal; DAFF: Pretoria, South Africa, 2021.
- Smith, J.; Brown, L. The impact of flash floods and extreme heat on smallholder farmers in KwaZulu-Natal. Agric. Syst. 2020, 120, 112–130. [Google Scholar]
- Arif Ahmad, D.; Mahrinasari, M.; Dwi, A.S.A. The influence of product packaging design and social media advertising on purchase intention. Brill. Int. J. Manag. Tour. 2023, 4, 12–27. [Google Scholar] [CrossRef]
- Morgan, G.; Parker, S. How Multisensory Environments Help Reduce Anxiety for Students; Stantec: Pune, India, 2024. [Google Scholar]
- Asrial, A.; Syahrial, S.; Kurniawan, D.A.; Chen, D.; Wulandari, M. E-module mangrove ecotourism: Difference and relationship perception, interest, and environment character care elementary students. J. Ilm. Peuradeun 2022, 10, 661. [Google Scholar] [CrossRef]
- Tanaka, T.; Miki, K. Random sampling methodologies for representative population surveys without complete sampling lists: A comparative analysis. J. Soc. Res. Methods 2022, 27, 187–203. [Google Scholar]
- Beharielal, T.; Thamaga-Chitja, J.; Schmidt, S. Socioeconomic Characteristics Associated with Farming Practices, Food Safety and Security in the Production of Fresh Produce—A Case Study including Small-Scale Farmers in KwaZulu-Natal (South Africa). Sustainability 2022, 14, 10590. [Google Scholar] [CrossRef]
- Tzortzios, S.; Gitsakis, N.; Adam, G.K. Management of huge amounts of data using qualitative and statistical modeling: An agricultural case study. Biom. Biostat. Int. J. 2019, 8, 30–31. [Google Scholar] [CrossRef]
- Abadi, T.; Kidane, H.; Melaku, T.; Gebretsadik, D.; Hagos, H.; Teklay, Z.; Kelelew, H. Determinants in utilizing improved agricultural technologies for enhancing sorghum production in tigray region, northern ethiopia. Int. J. Agric. Ext. Soc. Dev. 2020, 3, 95–104. [Google Scholar] [CrossRef]
- Hiko, M.; Mosisa, W.; Dinku, A. Determinants of adoption of agricultural extension package technologies by smallholder households on sorghum production: Case of gemechis and mieso districts of west hararghe zone, oromia regional state, ethiopia. J. Agric. Ext. Rural Dev. 2020, 12, 62–75. [Google Scholar]
- Zhang, Y.; Zhang, Y. Marginal effects in multivariate probit and multinomial models: An application in healthcare economics. J. Health Econ. 2021, 81, 1–12. [Google Scholar]
- Giroh, Y.D.; Nachandiya, N. A poisson regression analysis of COVID-19 pandemic: Implication on food security in Northeastern Nigeria. SSRN 2020, 9, 1–6. [Google Scholar] [CrossRef]
- Abate, D.; Addis, Y. Factors affecting the intensity of market participation of smallholder sheep producers in northern Ethiopia: Poisson regression approach. Cogent Food Agric. 2021, 7, 1874154. [Google Scholar] [CrossRef]
- Chekol, F.; Hiruy, M.; Tsegaye, A.; Mazengia, T.; Alimaw, Y. Consumers’ frequency of purchasing behavior of organic honey and butter foods from the farmers’ food product market in Northwest, Ethiopia: A poisson regression approach. Cogent Soc. Sci. 2022, 8, 2144871. [Google Scholar] [CrossRef]
- Hlatshwayo, S.; Ngidi, M.; Ojo, T.; Modi, A.; Mabhaudhi, T.; Slotow, R. A typology of the level of market participation among smallholder farmers in South Africa: Limpopo and Mpumalanga provinces. Sustainability 2021, 13, 14. [Google Scholar] [CrossRef] [PubMed]
- Phakathi, M.; Moyo, P.; Dube, S. The role of farmer groups in enhancing fertiliser use among smallholder farmers in rural South Africa: Evidence from KwaZulu-Natal. Afr. J. Agric. Res. 2021, 16, 25–40. [Google Scholar]
- Chavula, P. Factors influencing climate-smart agriculture practices adoption and crop productivity among smallholder farmers in Nyima district, Zambia. F1000Research 2024, 13, 815. [Google Scholar]
- Shani, F. Determinants of smallholder farmers’ adoption of climate-smart agricultural practices in zomba, eastern malawi. Sustainability 2024, 16, 3782. [Google Scholar] [CrossRef]
- Gichuki, C.; Osewe, M.; Ndiritu, S. Dissemination of climate smart agricultural knowledge through farmer field schools (ffs): Analyzing the application cas knowledge by smallholder farmers. Int. J. Dev. Issues 2023, 22, 399–417. [Google Scholar] [CrossRef]
- Awazi, A. Agroforestry for climate change adaptation, resilience enhancement and vulnerability attenuation in smallholder farming systems in cameroon. J. Atmos. Sci. Res. 2022, 5, 25–33. [Google Scholar] [CrossRef]
- Timmermann, C.; Félix, G. Ethical issues involving long-term land leases: A soil sciences perspective. In Sustainable Governance and Management of Food Systems; Wageningen Academic Publishers: Wageningen, The Netherlands, 2019. [Google Scholar]
- Vu, H.T.; Goto, D. Does awareness about land tenure security (LTS) increase investments in agriculture? Evidence from rural households in Vietnam. Land Use Policy 2020, 97, 10. [Google Scholar] [CrossRef]
- Hoffmann, V.; Mude, A.; Villano, R. Barriers and enablers to climate adaptation in sub-Saharan Africa: A systematic review. Environ. Sci. Policy 2019, 101, 33–42. [Google Scholar]
- Oduniyi, O.; Sylvia, T. Establishing the nexus between climate change adaptation strategy and smallholder farmers’ food security status in south africa: A bi-casual effect using instrumental variable approach. Cogent Soc. Sci. 2019, 5, 1. [Google Scholar]
- Zamasiya, B.; Nyikahadzoi, K.; Mukamuri, B. Drivers of level of adaptation to climate change in smallholder farming systems in southern africa: A multi-level modelling approach. In African Handbook of Climate Change Adaptation; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Kom, Z.; Nethengwe, N.; Mpandeli, N.; Chikoore, H. Determinants of small-scale farmers’ choice and adaptive strategies in response to climatic shocks in vhembe district, south africa. GeoJournal 2020, 87, 677–700. [Google Scholar] [CrossRef]
- Kurniawati, N.; Luvhengo, U. Defining Indonesian and African Small-Holder Farmers’ Climate Change Adaptive Capacity and Practices: A Brief Argument; Atlantis Press: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Arifalo, S.F. Determinants of land-use intensity among cassava farmers in Ondo state, Nigeria. Discov. Agric. 2024, 10, 1–7. [Google Scholar]
- Okon, U.; Essien, U.; Udousoro, I. Drivers of households’ decision making in agroforestry practices in Akwa Ibom state, Nigeria. Adv. Soc. Sci. Cult. 2019, 1, 90. [Google Scholar] [CrossRef]
- Gebre, G.; Amekawa, Y.; Ashebir, A. Can farmers’ climate change adaptation strategies ensure their food security? Evidence from Ethiopia. Agrekon 2023, 62, 178–193. [Google Scholar] [CrossRef]
- Bousmaha, F.; M’Zali, S. Microfinance, financial self-sufficiency, and agricultural technology adoption in rural economies. Int. J. Dev. Sustain. 2023, 12, 453–473. [Google Scholar]
- Kumwenda, P.A.; Chirwa, R.W. Gender roles in climate change adaptation strategies: A case study of rural Malawi. J. Rural Stud. 2023, 73, 32–42. [Google Scholar]
- Hellin, J.; Fisher, M.; Tambo, J.A. Climate-Smart Agriculture and the Resilience of Smallholder Farming Systems in Sub-Saharan Africa: A Review. Agric. Food Secur. 2023, 12, 45–60. [Google Scholar]
- Maitra, S.; Hossain, A.; Brestič, M.; Skalický, M.; Ondrišík, P.; Gitari, H.I.; Sairam, M. Intercropping—A low input agricultural strategy for food and environmental security. Agronomy 2021, 11, 343. [Google Scholar] [CrossRef]
- Yang, P.; Cai, X.; Khanna, M. Farmers’ heterogeneous perceptions of marginal land for biofuel crops in us midwestern states considering biophysical and socioeconomic factors. GCB Bioenergy 2021, 13, 849–861. [Google Scholar] [CrossRef]
- Phromthep, P.; Torut, B. Comparing collaboration of smallholder farmers through participatory guarantee system practices in northeastern Thailand. Sustainability 2024, 16, 4186. [Google Scholar] [CrossRef]
- Weil, R.R.; Brady, N.C. This updated edition reflects the most recent advancements in soil science, including new discussions on soil health, sustainable practices, and the role of soils in mitigating climate change. Nat. Prop. Soils 2021, 15, 4. [Google Scholar]
- Elias, M. The diasporic meatscapes of the Tamil community in Toronto: How immigrants reconfigure food environments and infrastructures to secure a taste of home. Food Cult. Soc. 2023, 17, 405–421. [Google Scholar]
- Xie, H.; Huang, Y.; Chen, Q.; Zhang, Y.; Wu, Q. Prospects for agricultural sustainable intensification: A review of research. Land 2019, 8, 157. [Google Scholar] [CrossRef]
- Akanmu, O. Agroecology and sustainable intensification of smallholder farming systems in Sub-Saharan Africa. Front. Sustain. Food Syst. 2023, 7, 1–11. [Google Scholar] [CrossRef]
- Karlan, D.; Thuysbaert, B.; Parienté, W.; Osei, R.; Shapiro, J.; Duflo, E.; Banerjee, A.; Goldberg, N.; Udry, C. Long-term effects of the Graduation program on extreme poverty: Evidence from six countries. Am. Econ. J. Appl. Econ. 2020, 12, 189–228. [Google Scholar]
- Alfirdaus, L.K.; Manalu, S.P.B.; Ardianto, H.T.; Kushandajani, K. Community cooperative as self-empowerment: Smallholders palm oil farmers in kotawaringin barat, central kalimantan, indonesia. In Proceedings of the 5th International Conference on Indonesian Social and Political Enquiries, ICISPE 2020, Semarang, Indonesia, 9–10 October 2020. [Google Scholar]
- Magakwe, T.; Olorunfemi, F. The role of collective marketing in smallholder agricultural entrepreneurship: A systematic review across Sub-Saharan Africa. J. Agric. Econ. Dev. 2024, 42, 27–41. [Google Scholar]
- Garcia, R.; Smith, R. Climate-smart agriculture and food systems in Africa: A review of the state of knowledge and future research directions. J. Agric. Syst. 2021, 189, 103023. [Google Scholar]
- Schreiber, K.; Soubry, B.; Dove-McFalls, C.; MacDonald, G. Diverse adaptation strategies helped local food producers cope with initial challenges of the covid-19 pandemic: Lessons from québec, canada. J. Rural Stud. 2022, 90, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.; Mutunga, C. Assessing Climate Change Impacts on Agriculture and Food Security in Sub-Saharan Africa: Adaptation Strategies for Maize Farmers. Agric. Syst. 2019, 171, 43–53. [Google Scholar]
- Gudina, M.H.; Alemu, E.A. Factors influencing smallholder farmers’ adoption of climate-smart agriculture practices in Welmera Woreda, Central Ethiopia. Front. Clim. 2024, 6, 1322550. [Google Scholar] [CrossRef]
- Asfaw, S.; Shiferaw, B.; Simtowe. Agricultural technology adoption, seed access constraints, and commercialization in Ethiopia. Agric. Econ. 2020, 69, 121–132. [Google Scholar]
- Lengoiboni, M.; Zevenbergen, J.; Simane, B. Rethinking the impact of land certification on tenure security, land disputes, land management, and agricultural production: Insights South Wello Ethiop. Land 2023, 12, 1713. [Google Scholar]
- Verchot, L.V.; Dannenmann, M.; Kengdo, S.K.; Njine-Bememba, C.B.; Rufino, M.C.; Sonwa, D.J.; Tejedor, J. Land-use change and Biogeochemical controls of soil CO2, N2O and CH4 fluxes in Cameroonian forest landscapes. J. Integr. Environ. Sci. 2020, 17, 45–67. [Google Scholar] [CrossRef]
- Keesstra, S.D.; Bouma, J.; Goode, J.R. The role of soils in achieving the sustainable development goals: A review. Soil 2021, 7, 567–582. [Google Scholar]
Variable | Description of Variable | Expected Outcome |
---|---|---|
Gender | Dummy (1 = Male, 2 = Female) | − |
Age | Measured in numbers | − |
Education level | Continuous (1 = No formal schooling, 2 = Primary, 3 = Secondary, 4 = Tertiary and above) | + |
Marital status | Continuous (1 = Single, 2 = Married, 3 = Divorced, 4 = Widowed) | + |
Household size | Measured in numbers | + |
Number of years farming—vegetables | Measured in numbers | + |
Is farming your main source of income? | Dummy (1 = Yes, 2 = No) | + |
Total size of land owned (hectare) | Measured in numbers | + |
Total size of land used for Farming. | Measured in numbers | + |
Type of soil—Sand | Dummy (1 = Yes, 2 = No) | − |
Type of soil—Silt | Dummy (1 = Yes, 2 = No) | + |
Type of soil—Clay | Dummy (1 = Yes, 2 = No) | − |
Type of soil—Loam | Dummy (1 = Yes, 2 = No) | + |
Are you a member of a farmers’ association/co-operation? | Dummy (1 = Yes, 2 = No) | + |
Involved in any formal or informal food supply chain networks or associations | Dummy (1 = Yes, 2 = No) | + |
Variable | Frequency (n = 200) | Percentage (%) | |
---|---|---|---|
Gender | Male | 130 | 65 |
Female | 70 | 35 | |
Education level of respondents | No Formal Education | 12 | 6 |
Primary | 50 | 25 | |
Secondary | 101 | 50.5 | |
Tertiary and above | 37 | 18.5 | |
Household Size | 1–2 | 53 | 26.5 |
3–4 | 75 | 37.5 | |
5–6 | 37 | 18.5 | |
7–8 | 14 | 7 | |
9–10 | 11 | 5.5 | |
11–12 | 8 | 4 | |
13–14 | 2 | 1 | |
Age | 26–39 | 45 | 22.5 |
40–53 | 60 | 30 | |
54–67 | 56 | 28 | |
68–81 | 34 | 17 | |
82–88 | 5 | 2.5 | |
Is farming the main source of income | Yes | 170 | 85 |
No | 30 | 15 | |
Part of a: | Farmers association | 66 | 33 |
Cooperation | 53 | 26.5 | |
Not applicable | 81 | 40.5 | |
Did the respondent experience climate variability | Yes | 172 | 86 |
No | 16 | 8 | |
I do not Know | 12 | 6 |
Variable | Carrying on as Usual | Changing Diet | Tree Planting Alongside Crops | Diversifying Farming to Non-Farming Activities | Land Use Intensification | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Coefficient | St. Errs. | p-Value | Coefficient | St. Errs. | p-Value | Coefficient | St. Errs. | p-Value | Coefficient | St. Errs. | p-Value | Coefficient | St. Errs. | p-Value | |
Gender | −0.208 | 0.239 | 0.385 | 0.120 | 0.228 | 0.600 | 0.146 | 0.217 | 0.502 | −0.081 | 0.209 | 0.698 | 0.137 | 0.228 | 0.549 |
Age | −0.010 | 0.012 | 0.405 | −0.003 | 0.012 | 0.813 | 0.011 | 0.011 | 0.350 | −0.010 | 0.011 | 0.377 | 0.019 | 0.012 | 0.108 |
Education Level | 0.191 | 0.165 | 0.246 | −0.263 | 0.160 | 0.100 | 0.302 | 0.149 | 0.042 ** | 0.168 | 0.150 | 0.261 | 0.286 | 0.162 | 0.077 * |
Marital status | −0.103 | 0.148 | 0.485 | −0.026 | 0.145 | 0.860 | 0.059 | 0.135 | 0.665 | 0.015 | 0.130 | 0.910 | −0.333 | 0.154 | 0.031 ** |
Household size | 0.034 | 0.043 | 0.426 | −0.083 | 0.042 | 0.050 ** | −0.070 | 0.040 | 0.081 * | −0.091 | 0.040 | 0.025 ** | −0.040 | 0.045 | 0.383 |
Number of years farming—vegetables | 0.019 | 0.013 | 0.127 | −0.012 | 0.012 | 0.345 | −0.008 | 0.012 | 0.514 | 0.007 | 0.011 | 0.530 | −0.009 | 0.012 | 0.450 |
Is farming your main source of income? | 0.368 | 0.330 | 0.264 | −0.909 | 0.313 | 0.004 *** | −0.317 | 0.280 | 0.258 | −0.091 | 0.285 | 0.748 | −0.599 | 0.321 | 0.062 * |
Total size of land owned (hectare) | 0.038 | 0.012 | 0.001 *** | 0.018 | 0.011 | 0.098 * | 0.019 | 0.010 | 0.064 * | 0.007 | 0.010 | 0.471 | 0.015 | 0.010 | 0.126 |
Total size of land used for Farming. | −0.173 | 0.041 | 0.000 *** | −0.183 | 0.035 | 0.000 *** | −0.031 | 0.023 | 0.165 | 0.003 | 0.023 | 0.901 | 0.025 | 0.023 | 0.276 |
Type of soil—Sand | −1.131 | 0.272 | 0.000 *** | −0.848 | 0.282 | 0.003 *** | 0.147 | 0.242 | 0.544 | −0.279 | 0.238 | 0.241 | −0.074 | 0.246 | 0.765 |
Type of soil—Silt | −0.841 | 0.286 | 0.003 *** | −0.992 | 0.292 | 0.001 *** | 0.173 | 0.261 | 0.507 | −0.333 | 0.260 | 0.200 | −0.632 | 0.279 | 0.023 ** |
Type of soil—Clay | −0.576 | 0.293 | 0.049 ** | −0.384 | 0.292 | 0.189 | −0.217 | 0.263 | 0.410 | 0.269 | 0.254 | 0.289 | −0.456 | 0.259 | 0.078 * |
Type of soil—Loam | −0.576 | 0.267 | 0.031 ** | −0.883 | 0.283 | 0.002 *** | −0.050 | 0.255 | 0.845 | 0.078 | 0.251 | 0.755 | −0.487 | 0.265 | 0.066 * |
Are you a member of a farmers’ association/co-operation? | −0.151 | 0.087 | 0.082 * | 0.271 | 0.086 | 0.002 *** | 0.112 | 0.075 | 0.138 | 0.190 | 0.076 | 0.012 ** | 0.148 | 0.079 | 0.060 * |
Involved in any formal or informal food supply chain networks or associations | 0.200 | 0.251 | 0.426 | −0.586 | 0.252 | 0.020 *** | 0.158 | 0.216 | 0.466 | −0.555 | 0.229 | 0.015 ** | −0.426 | 0.234 | 0.069 * |
Cons | 4.883 | 1.795 | 0.007 *** | 9.257 | 2.030 | 0.000 *** | −1.548 | 1.617 | 0.338 | 1.386 | 1.629 | 0.395 | 2.033 | 1.704 | 0.233 |
Variable | Poisson | Marginal Effect | ||||
---|---|---|---|---|---|---|
Coef. | St. Err. | p-Value | dy/dx | Std. | p-Value | |
Gender of respondent | 0.008 | 0.099 | 0.939 | 0.019 | 0.249 | 0.939 |
Age of respondent | −0.001 | 0.005 | 0.906 | −0.002 | 0.013 | 0.906 |
Education level | 0.083 | 0.071 | 0.247 | 0.208 | 0.179 | 0.246 |
Marital status | −0.014 | 0.061 | 0.822 | −0.034 | 0.152 | 0.822 |
Household size | −0.038 | 0.020 | 0.056 * | −0.096 | 0.050 | 0.055 * |
Number of years farming (vegetable) | 0.000 | 0.005 | 0.978 | −0.000 | 0.013 | 0.978 |
Is farming your main source of income | −0.125 | 0.130 | 0.336 | −0.314 | 0.326 | 0.336 |
Total size of land owned (hectare) | 0.009 | 0.004 | 0.030 ** | 0.022 | 0.010 | 0.029 ** |
Total size of land used for vegetable production | −0.029 | 0.012 | 0.015 ** | −0.073 | 0.030 | 0.014 ** |
Type of soil—Sand | −0.260 | 0.113 | 0.021 ** | −0.653 | 0.282 | 0.021 ** |
Type of soil—Silt | −0.251 | 0.117 | 0.032 ** | −0.631 | 0.293 | 0.031 ** |
Type of soil—Clay | −0.132 | 0.116 | 0.256 | −0.332 | 0.291 | 0.255 |
Type of soil—Loam | −0.227 | 0.112 | 0.042 ** | −0.571 | 0.281 | 0.042 ** |
Are you a member of a farmers’ association/co-operation | 0.051 | 0.034 | 0.138 | 0.127 | 0.086 | 0.137 |
Involved in any formal or informal food supply chain networks or associations | −0.096 | 0.105 | 0.362 | −0.241 | 0.265 | 0.362 |
Constant | 2.540 | 0.739 | 0.001 *** | *** | ||
Mean dependent var | 2.625 | |||||
Pseudo r-squared | 0.064 | |||||
Chi-square | 46.117 | |||||
Akaike crit. (AIC) | 704.895 | |||||
Bayesian crit. (BIC) | 760.967 | |||||
SD dependent var | 1.433 | |||||
Number of obs | 200.000 | |||||
Prob > chi2 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naicker, M.; Naidoo, D.; Hlatshwayo, S.I.; Ngidi, M.S. Factors Affecting the Choice and Level of Adaptation Strategies Among Smallholder Farmers in KwaZulu Natal Province. Sustainability 2025, 17, 488. https://doi.org/10.3390/su17020488
Naicker M, Naidoo D, Hlatshwayo SI, Ngidi MS. Factors Affecting the Choice and Level of Adaptation Strategies Among Smallholder Farmers in KwaZulu Natal Province. Sustainability. 2025; 17(2):488. https://doi.org/10.3390/su17020488
Chicago/Turabian StyleNaicker, Merishca, Denver Naidoo, Simphiwe Innocentia Hlatshwayo, and Mjabuliseni Simon Ngidi. 2025. "Factors Affecting the Choice and Level of Adaptation Strategies Among Smallholder Farmers in KwaZulu Natal Province" Sustainability 17, no. 2: 488. https://doi.org/10.3390/su17020488
APA StyleNaicker, M., Naidoo, D., Hlatshwayo, S. I., & Ngidi, M. S. (2025). Factors Affecting the Choice and Level of Adaptation Strategies Among Smallholder Farmers in KwaZulu Natal Province. Sustainability, 17(2), 488. https://doi.org/10.3390/su17020488