A Comprehensive Assessment of PM2.5 and PM10 Pollution in Cusco, Peru: Spatiotemporal Analysis and Development of the First Predictive Model (2017–2020)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Overview Study
2.3. PM and Meteorological Data
Collection and Quantification of Particulate Matter
2.4. Data Preprocessing
2.5. Air Quality Standard (AQG) and Air Quality Index (AQI)
- is the truncated concentration of contaminant p;
- is the cut-off site of the concentration that is greater than or equal to ;
- is the cut-off site of the concentration that is less than or equal to ;
- is the AQI value corresponding to ;
- is the AQI value corresponding to .
2.6. Selection of Significant Variables
2.7. Multiple Linear Regression Model Development
- is a constant value corresponding to the interaction;
- , , …, are partial regression coefficients;
- to are the predictor variables;
- is the residual or error, the difference between the observed value and the one estimated by the model;
- and are the logarithmic transformations of the variables to be predicted.
- There is no collinearity or multicollinearity between predictors.
- A linear relationship between the predictors and the variable to be predicted.
- A normal distribution of residuals.
- Homoscedasticity of the residuals means that the variance of the variable to be predicted must be constant throughout the range of predictors.
2.8. Model Evaluation Metrics
3. Results and Discussion
3.1. Evaluation of Particulate Matter and Meteorological Data
3.2. Environmental Quality Standard and Air Quality Index
3.3. Compliance with Assumptions and Selection of Significant Variables
3.4. MLR Models and Model Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zalakeviciute, R.; Bastidas, M.; Buenaño, A.; Rybarczyk, Y. A traffic-based method to predict and map urban air quality. Appl. Sci. 2020, 10, 2035. [Google Scholar] [CrossRef]
- Luo, G.; Zhang, L.; Hu, X.; Qiu, R. Quantifying public health benefits of PM2.5 reduction and spatial distribution analysis in China. Sci. Total Environ. 2020, 719, 137445. [Google Scholar] [CrossRef] [PubMed]
- Carreño, G.; López-Cortés, X.A.; Marchant, C. Machine learning models to predict critical episodes of environmental pollution for PM2.5 and PM10 in Talca, Chile. Mathematics 2022, 10, 373. [Google Scholar] [CrossRef]
- Power, A.L.; Tennant, R.K.; Stewart, A.G.; Gosden, C.; Worsley, A.T.; Jones, R.; Love, J. The evolution of atmospheric particulate matter in an urban landscape since the Industrial Revolution. Sci. Rep. 2023, 13, 8964. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Deng, G.; Liu, Y. Monitoring the influence of industrialization and urbanization on spatiotemporal variations of AQI and PM2.5 in three provinces, China. Atmosphere 2022, 13, 1377. [Google Scholar] [CrossRef]
- Bilal, M.; Nichol, J.E.; Nazeer, M.; Shi, Y.; Wang, L.; Kumar, K.R.; Ho, H.C.; Mazhar, U.; Bleiweiss, M.P.; Qiu, Z.; et al. Characteristics of fine particulate matter (PM2.5) over urban, suburban, and rural areas of Hong Kong. Atmosphere 2019, 10, 496. [Google Scholar] [CrossRef]
- Wang, Q.; Kwan, M.-P.; Zhou, K.; Fan, J.; Wang, Y.; Zhan, D. The impacts of urbanization on fine particulate matter (PM2.5) concentrations: Empirical evidence from 135 countries worldwide. Environ. Pollut. 2019, 247, 989–998. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Zhou, W.; Pickett, S.T.A.; Li, W.; Li, L. An optimum city size? The scaling relationship for urban population and fine particulate (PM2.5) concentration. Environ. Pollut. 2016, 208, 96–101. [Google Scholar] [CrossRef]
- Yang, F.; Xu, Q.; Li, K.; Yuen, K.F.; Shi, W. The inhibition effect of bank credits on PM2.5 concentrations: Spatial evidence from high-polluting firms in China. Environ. Pollut. 2022, 308, 119639. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Guo, S.; Zhao, H. Quantifying the impacts of economic progress, economic structure, urbanization process, and number of vehicles on PM2.5 concentration: A provincial panel data model analysis of China. Int. J. Environ. Res. Public Health 2019, 16, 2926. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, H.; Mao, L.; Li, S.; Wu, H. Assessing spatiotemporal characteristics of urban PM2.5 using fractal dimensions and wavelet analysis. Math. Probl. Eng. 2020, 2020, 8091515. [Google Scholar] [CrossRef]
- Pope, C.A., III; Coleman, N.; Pond, Z.A.; Burnett, R.T. Fine particulate air pollution and human mortality: 25+ years of cohort studies. Environ. Res. 2020, 183, 108924. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Huang, Y.; Jin, Z.; Ma, Z.; Liu, X.; Zhang, B.; Liu, Y.; Yu, Y.; Wang, J.; Bi, J.; et al. The nexus between urbanization and PM2.5 related mortality in China. Environ. Pollut. 2017, 227, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Routledge, M.N. The contribution of PM2.5 to cardiovascular disease in China. Environ. Sci. Pollut. Res. 2020, 27, 37502–37513. [Google Scholar] [CrossRef] [PubMed]
- Requia, W.J.; Adams, M.D.; Arain, A.; Papatheodorou, S.; Koutrakis, P.; Mahmoud, M. Global association of air pollution and cardiorespiratory diseases: A systematic review, meta-analysis, and investigation of modifier variables. Am. J. Public Health 2018, 108, S123–S130. [Google Scholar] [CrossRef]
- Yuan, S.; Wang, J.; Jiang, Q.; He, Z.; Huang, Y.; Li, Z.; Cai, L.; Cao, S. Long-term exposure to PM2.5 and stroke: A systematic review and meta-analysis of cohort studies. Environ. Res. 2019, 177, 108587. [Google Scholar] [CrossRef] [PubMed]
- Maji, K.J.; Dikshit, A.K.; Arora, M.; Deshpande, A. Estimating premature mortality attributable to PM2.5 exposure and benefit of air pollution control policies in China for 2020. Sci. Total Environ. 2018, 612, 683–693. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Wu, G.; Wei, J.; Lawrence, W.R.; Deng, X.; Zhang, Y.; Chen, S.; Wang, Y.; Lin, X.; Chen, D.; et al. Potential causal links and mediation pathway between urban greenness and lung cancer mortality: Result from a large cohort (2009 to 2020). Sustain. Cities Soc. 2024, 101, 105079. [Google Scholar] [CrossRef]
- Miller, L.; Xu, X. Ambient PM2.5 human health effects—findings in China and research directions. Atmosphere 2018, 9, 424. [Google Scholar] [CrossRef]
- Shi, Y.; Zhu, Y.; Gong, S.; Pan, J.; Zang, S.; Wang, W.; Li, Z.; Matsunaga, T.; Yamaguchi, Y.; Bai, Y. PM2.5-related premature deaths and potential health benefits of controlled air quality in 34 provincial cities of China during 2001–2017. Environ. Impact Assess. Rev. 2022, 97, 106883. [Google Scholar] [CrossRef]
- Wang, F.; Qiu, X.; Cao, J.; Peng, L.; Zhang, N.; Yan, Y.; Li, R. Policy-driven changes in the health risk of PM2.5 and O3 exposure in China during 2013–2018. Sci. Total Environ. 2021, 757, 143775. [Google Scholar] [CrossRef]
- Anenberg, S.C.; Horowitz, L.W.; Tong, D.Q.; West, J.J. An estimate of the global burden of anthropogenic ozone and fine particulate matter on premature human mortality using atmospheric modeling. Environ. Health Perspect. 2010, 118, 1189–1195. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Liu, J.; Fan, S.; Kang, C.; Yi, K.; Cheng, Y.; Shen, X.; Tao, S. Potential health benefits of controlling dust emissions in Beijing. Environ. Pollut. 2016, 213, 850–859. [Google Scholar] [CrossRef]
- Pope, C.A., III; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air Pollution. JAMA 2002, 287, 1132–1141. [Google Scholar] [CrossRef]
- Fuller, R.; Landrigan, P.J.; Balakrishnan, K.; Bathan, G.; Bose-O’Reilly, S.; Brauer, M.; Caravanos, J.; Chiles, T.; Cohen, A.; Corra, L.; et al. Pollution and health: A progress update. Lancet Planet Health 2022, 6, e535–e547. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Yu, Y.; Sun, Z.; Duan, J. A comprehensive understanding of ambient particulate matter and its components on the adverse health effects based from epidemiological and laboratory evidence. Part. Fibre Toxicol. 2022, 19, 67. [Google Scholar] [CrossRef]
- Pozzer, A.; Tsimpidi, A.P.; Karydis, V.A.; deMeij, A.; Lelieveld, J. Impact of agricultural emission reductions on fine-particulate matter and public health. Atmos. Chem. Phys. 2017, 17, 12813–12826. [Google Scholar] [CrossRef]
- Liu, J.; Kiesewetter, G.; Klimont, Z.; Cofala, J.; Heyes, C.; Schöpp, W.; Zhu, T.; Cao, G.; Sanabria, A.G.; Sander, R.; et al. Mitigation pathways of air pollution from residential emissions in the Beijing-Tianjin-Hebei region in China. Environ. Int. 2019, 125, 236–244. [Google Scholar] [CrossRef]
- Malakootian, M.; Mohammadi, A. Estimating health impact of exposure to PM2.5, NO2 and O-3 using AIRQ plus model in Kerman, Iran. Environ. Eng. Manag. J. 2020, 19, 1317–1323. Available online: https://eemj.eu/index.php/EEMJ/article/view/4150 (accessed on 24 February 2024).
- Zhang, Y.; Liu, D.; Liu, Z. Fine particulate matter (PM2.5) and chronic kidney disease. Rev. Environ. Contam. Toxicol. 2021, 254, 183–215. [Google Scholar] [CrossRef] [PubMed]
- Diao, B.; Ding, L.; Zhang, Q.; Na, J.; Cheng, J. Impact of urbanization on PM2.5-related health and economic loss in China 338 cities. Int. J. Environ. Res. Public Health 2020, 17, 990. [Google Scholar] [CrossRef] [PubMed]
- Marlier, M.E.; Brenner, K.I.; Liu, J.C.; Mickley, L.J.; Raby, S.; James, E.; Ahmadov, R.; Riden, H. Exposure of agricultural workers in California to wildfire smoke under past and future climate conditions. Environ. Res. Lett. 2022, 17, 094045. [Google Scholar] [CrossRef]
- Hoffman, S.; Jasiński, R. The use of multilayer perceptrons to model PM2.5 concentrations at air monitoring stations in Poland. Atmosphere 2023, 14, 96. [Google Scholar] [CrossRef]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef]
- Renard, J.-B.; Surcin, J.; Annesi-Maesano, I.; Poincelet, E. Temporal evolution of PM2.5 levels and COVID-19 mortality in Europe for the 2020–2022 period. Atmosphere 2023, 14, 1222. [Google Scholar] [CrossRef]
- EPA. Particulate Matter (PM) Basics. Available online: https://www.epa.gov/pm-pollution/particulate-matter-pm-basics (accessed on 4 December 2024).
- Kim, D.-Y.; Jin, D.-Y.; Suk, H.-I. Spatiotemporal graph neural networks for predicting mid-to-long-term PM2.5 concentrations. J. Clean. Prod. 2023, 425, 138880. [Google Scholar] [CrossRef]
- Isaifan, R.J. Air pollution burden of disease over highly populated states in the Middle East. Front. Public Health 2023, 10, 1002707. [Google Scholar] [CrossRef]
- Aguilera, R.; Gershunov, A.; Ilango, S.D.; Guzman-Morales, J.; Benmarhnia, T. Santa Ana winds of southern California impact PM2.5 with and without smoke from wildfires. GeoHealth 2020, 4, e2019GH000225. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, M.; Wang, Z.; Chen, J.; Zhao, J.; Xu, Y.; Wei, X.; Wang, J.; Xie, J. Role of PM2.5 in the development and progression of COPD and its mechanisms. Respir. Res. 2019, 20, 1081. [Google Scholar] [CrossRef]
- Gan, W.Q.; FitzGerald, J.M.; Carlsten, C.; Sadatsafavi, M.; Brauer, M. Associations of ambient air pollution with chronic obstructive pulmonary disease hospitalization and mortality. Am. J. Respir. Crit. Care Med. 2013, 187, 721–727. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Guo, Y.; Zheng, Y.; Di, Q.; Liu, T.; Xiao, J.; Li, X.; Zeng, W.; Cummings-Vaughn, L.A.; Howard, S.W.; et al. Long-term effects of ambient PM2.5 on hypertension and blood pressure and attributable risk among older Chinese adults. Hypertension 2017, 69, 806–812. [Google Scholar] [CrossRef]
- Juarez, P.D.; Tabatabai, M.; Burciaga Valdez, R.; Hood, D.B.; Im, W.; Mouton, C.; Colen, C.; Al-Hamdan, M.Z.; Matthews-Juarez, P.; Lichtveld, M.Y.; et al. The effects of social, personal, and behavioral risk factors and PM2.5 on cardio-metabolic disparities in a cohort of community health center patients. Int. J. Environ. Res. Public Health 2020, 17, 3561. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.W.; Lee, T.L.; Chen, Y.C.; Liang, C.J.; Wang, S.H.; Lue, J.H.; Tsai, J.S.; Lee, S.W.; Chen, S.H.; Yang, Y.F.; et al. PM2.5-induced oxidative stress increases intercellular adhesion molecule-1 expression in lung epithelial cells through the IL-6/AKT/STAT3/NF-κB-dependent pathway. Part. Fibre Toxicol. 2018, 15, 240. [Google Scholar] [CrossRef]
- Sørensen, M.; Daneshvar, B.; Hansen, M.; Dragsted, L.O.; Hertel, O.; Knudsen, L.; Loft, S. Personal PM2.5 exposure and markers of oxidative stress in blood. Environ. Health Perspect. 2003, 111, 161–166. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. WHO. 2021. Available online: https://www.who.int/publications/i/item/9789240034228 (accessed on 4 December 2024).
- World Health Organization. Air Quality Guidelines Global Update 2005. WHO. 2006. Available online: https://www.who.int/publications/i/item/WHO-SDE-PHE-OEH-06.02 (accessed on 4 December 2024).
- do Nascimento, C.M.; deOliveira, S.A.; Santana, O.A.; Carvalho, H. Changes in air pollution due to COVID-19 lockdowns in 2020: Limited effect on NO2, PM2.5, and PM10 annual means compared to the new WHO Air Quality Guidelines. J. Glob. Health 2022, 12, 05043. [Google Scholar] [CrossRef]
- Mezoue, C.A.; Ngangmo, Y.C.; Choudhary, A.; Monkam, D. Measurement of fine particle concentrations and estimation of air quality index (AQI) over northeast Douala, Cameroon. Environ. Monit. Assess. 2023, 195, 8. [Google Scholar] [CrossRef] [PubMed]
- Svertoka, E.; Bălănescu, M.; Suciu, G.; Pasat, A.; Drosu, A. Decision Support Algorithm Based on the Concentrations of Air Pollutants Visualization. Sensors 2020, 20, 5931. [Google Scholar] [CrossRef] [PubMed]
- Ouma, Y.O.; Keitsile, A.; Lottering, L.; Nkwae, B.; Odirile, P. Spatiotemporal empirical analysis of particulate matter PM2.5 pollution and air quality index (AQI) trends in Africa using MERRA-2 reanalysis datasets (1980–2021). Sci. Total Environ. 2024, 912, 169027. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, F.; Cobo, M.; Figueredo, M. Discovering relationships and forecasting PM10 and PM2.5 concentrations in Bogotá, Colombia, using Artificial Neural Networks, Principal Component Analysis, and k-means clustering. Atmos. Pollut. Res. 2018, 9, 912–922. [Google Scholar] [CrossRef]
- Gupta, P.; Christopher, S.A. Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: Multiple regression approach. J. Geophys. Res. Atmos. 2009, 114, D14205. [Google Scholar] [CrossRef]
- Romero, Y.; Chicchon, N.; Duarte, F.; Noel, J.; Ratti, C.; Nyhan, M. Quantifying and Spatial Disaggregation of Air Pollution Emissions from Ground Transportation in a Developing Country Context: Case Study for the Lima Metropolitan Area in Peru. Sci. Total Environ. 2020, 698, 134313. [Google Scholar] [CrossRef]
- Bedregal, P.; Ubillus, M.; Cáceres-Rivero, C.; Olivera, P.; Garay, R.; Rojas, J.; Zafra, R.; Urdanivia, R. Determination of atmospheric aerosol components in an urban area to evaluate the air quality and identify the sources of contamination. J. Radioanal. Nucl. Chem. 2023, 332, 3507–3514. [Google Scholar] [CrossRef]
- UNESCO. City of Cuzco, Peru, Inscribed in 1983 on the World Heritage List. UNESCO World Heritage Centre. 1983. Available online: https://whc.unesco.org/es/list/273 (accessed on 4 December 2024).
- Morillas, H.; Gredilla, A.; Carrero, J.A.; Huallparimachi, G.; Gallego-Cartagena, E.; Maguregui, M.; Marcaida, I.; Astete, F.; Madariaga, J.M. Impact assessment of metals on soils from Machu Picchu archaeological site. Chemosphere 2020, 242, 125249. [Google Scholar] [CrossRef]
- Morillas, H.; Maguregui, M.; Gallego-Cartagena, E.; Marcaida, I.; Carral, N.; Madariaga, J.M. The influence of marine environment on the conservation state of Built Heritage: An overview study. Sci. Total Environ. 2020, 745, 140899. [Google Scholar] [CrossRef] [PubMed]
- Costantini, I.; Castro, K.; Madariaga, J.M.; Arana, G. Analytical Techniques Applied to the Study of Industrial Archaeology Heritage: The Case of Plaiko Zubixe Footbridge. Molecules 2022, 27, 3609. [Google Scholar] [CrossRef] [PubMed]
- PRAL. Programa Regional de Aire Limpio. 2006. Available online: https://core.ac.uk/download/pdf/48031408.pdf (accessed on 4 December 2024).
- Warthon, J.; Alvarez, M.; Olarte, A.; Quispe, Y.; Jalixto, V.; Valencia, N.; Mio-Diaz, M.; Zamalloa, A.; Warthon, B. Reduction of the concentration of particulate material at a sampling point in Cusco city at the beginning of the pandemic. Sci. Rep. 2024, 14, 849. [Google Scholar] [CrossRef]
- Ceylan, Z.; Bulkan, S. Forecasting PM10 levels using ANN and MLR: A case study for Sakarya city. Glob. Nest J. 2018, 20, 281–290. [Google Scholar] [CrossRef]
- Özdemir, U.; Taner, S. Impacts of Meteorological Factors on PM10: Artificial Neural Networks (ANN) and Multiple Linear Regression (MLR) Approaches. Environ. Forensics 2014, 15, 329–336. [Google Scholar] [CrossRef]
- Ramli, N.; Hamid, H.A.; Yahaya, A.S.; Ul-Saufie, A.Z.; Noor, N.M.; Seman, N.A.; Kamarudzaman, A.N.; Deák, G. Performance of Bayesian Model Averaging (BMA) for Short-Term Prediction of PM10 Concentration in the Peninsular Malaysia. Atmosphere 2023, 14, 311. [Google Scholar] [CrossRef]
- Kamarul Zaman, N.A.; Kanniah, K.D.; Kaskaoutis, D.G. Estimating Particulate Matter using satellite based aerosol optical depth and meteorological variables in Malaysia. Atmos. Res. 2017, 193, 142–162. [Google Scholar] [CrossRef]
- Zateroglu, M.T. Forecasting particulate matter concentrations by combining statistical models. J. King Saud Univ. Sci. 2024, 36, 103090. [Google Scholar] [CrossRef]
- Zaini, N.; Ahmed, A.N.; Ean, L.W.; Chow, M.F.; Malek, M.A. Forecasting of fine particulate matter based on LSTM and optimization algorithm. J. Clean. Prod. 2023, 427, 139233. [Google Scholar] [CrossRef]
- Zhao, R.; Gu, X.; Xue, B.; Zhang, J.; Ren, W. Short period PM2.5 prediction based on multivariate linear regression model. PLoS ONE 2018, 13, e0201011. [Google Scholar] [CrossRef]
- Srivastava, C.; Singh, S.; Singh, A.P. Estimation of air pollution in Delhi using machine learning techniques. Int. Conf. Comput. Power Commun. Technol. 2019, 304–309. [Google Scholar] [CrossRef]
- Domínguez-García, R.; Arellano-Vázquez, M. Evaluation of Machine Learning Models for Ozone Concentration Forecasting in the Metropolitan Valley of Mexico. Appl. Sci. 2024, 14, 1408. [Google Scholar] [CrossRef]
- Ke, H.; Gong, S.; He, J.; Zhang, L.; Cui, B.; Wang, Y.; Mo, J.; Zhou, Y.; Zhang, H. Development and application of an automated air quality forecasting system based on machine learning. Sci. Total Environ. 2022, 806, 151204. [Google Scholar] [CrossRef]
- Wang, J.; Wu, T.; Mao, J.; Chen, H. A forecasting framework on fusion of spatiotemporal features for multi-station PM2.5. Expert Syst. Appl. 2024, 238, 121951. [Google Scholar] [CrossRef]
- Hoek, G.; Beelen, R.; de Hoogh, K.; Vienneau, D.; Gulliver, J.; Fischer, P.; Briggs, D. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos. Environ. 2008, 42, 7561–7578. [Google Scholar] [CrossRef]
- Tella, A.; Balogun, A.L.; Faye, I. Spatio-temporal modelling of the influence of climatic variables and seasonal variation on PM10 in Malaysia using multivariate regression (MVR) and GIS. Geomat. Nat. Hazards Risk 2021, 12, 443–468. [Google Scholar] [CrossRef]
- Valle Díaz, F.R.; HuamánRomaní, Y.L. Análisis predictivo de los indicadores macroeconómicos del sector turístico post-Covid-19, Perú 2019–2023. Rev. Venez. Gerenc. 2022, 27, 580–596. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadística e Informática. Estadística Temática Turismo. INEI. 2024. Available online: https://www.inei.gob.pe/estadisticas/indice-tematico/turismo-11176/ (accessed on 4 December 2024).
- Instituto Nacional de Estadística e Informática. Resultados Definitivos. INEI. 2018; pp. 24–25. Available online: https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1559/08TOMO_01.pdf (accessed on 4 December 2024).
- U.S. Environmental Protection Agency. Guideline on Speciated Particulate Monitoring. US EPA. 1998. Available online: https://www3.epa.gov/ttnamti1/files/ambient/pm25/spec/drispec.pdf (accessed on 4 December 2024).
- U.S. Environmental Protection Agency. Monitoring Regulations. US EPA. 2024. Available online: https://www.epa.gov/amtic/monitoring-regulations (accessed on 4 December 2024).
- Blazkova, B.; Pastorkova, A.; Solansky, I.; Veleminsky, M., Jr.; Veleminsky, M.; Urbancova, K.; Vondraskova, V.; Hajslova, J.; Pulkrabova, J.; Sram, R.J. Effect of polycyclic aromatic hydrocarbons exposure on cognitive development in 5 years old children. Brain Sci. 2020, 10, 619. [Google Scholar] [CrossRef] [PubMed]
- Trzyna, A.; Rybak, J.; Górka, M.; Olszowski, T.; Kamińska, J.A.; Węsierski, T.; Majder-Łopatka, M. Comparison of active and passive methods for atmospheric particulate matter collection: From case study to a useful biomonitoring tool. Chemosphere 2023, 334, 139004. [Google Scholar] [CrossRef]
- Yang, L.; Shang, Y.; Hannigan, M.P.; Zhu, R.; Wang, Q.; Qin, C.; Xie, M. Collocated speciation of PM2.5 using tandem quartz filters in northern nanjing, China: Sampling artifacts and measurement uncertainty. Atmos. Environ. 2021, 246, 118066. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Compendium of Methods for the Determination of Inorganic Compounds in Ambient Air, Compendium Method IO-3.1: Selection, Preparation and Extraction of Filter Material. EPA/625/R-96/010a. 1999. Available online: https://www.epa.gov/sites/default/files/2015-07/documents/epa-io-3.1.pdf (accessed on 4 December 2024).
- Lv, J.; Liu, S.; Li, Y. Spatial and seasonal variations of elemental and ion components in air particulate matters in three mega-cities in China. Environ. Forensics 2019, 20, 1–12. [Google Scholar] [CrossRef]
- Jithin, J.; Srimuruganandam, B.; Nagendra, S.M.S. Characterization of PM10 and PM2.5 Emission Sources at Chennai, India. Nat. Environ. Pollut. Technol. 2019, 2, 555–562. [Google Scholar]
- Afotey, B.; Sattler, M.; Parsaeifard, N.; Pearson, Y.E.; Chakraborty, M.; Hada, S. Impact of Corona Virus Stay-at-Home Policies on Traffic Emissions and Ambient Pollutant Concentrations in Ghana, West Africa. Eng. Sci. 2022, 17, 285–291. [Google Scholar] [CrossRef]
- Chang, M.C.O.; Chow, J.C.; Watson, J.G.; Glowacki, C.; Sheya, S.A.; Prabhu, A. Characterization of Fine Particulate Emissions from Casting Processes. Aerosol Sci. Technol. 2005, 39, 947–959. [Google Scholar] [CrossRef]
- Gu, Y.; Wylie, B.K.; Boyte, S.P.; Picotte, J.; Howard, D.M.; Smith, K.; Nelson, K.J. An Optimal Sample Data Usage Strategy to Minimize Overfitting and Underfitting Effects in Regression Tree Models Based on Remotely-Sensed Data. Remote Sens. 2016, 8, 943. [Google Scholar] [CrossRef]
- Borrohou, S.; Fissoune, R.; Badir, H. Data cleaning survey and challenges—Improving outlier detection algorithm in machine learning. J. Smart Cities Soc. 2023, 2, 125–140. [Google Scholar] [CrossRef]
- Alotaibi, O.; Pardede, E.; Tomy, S. Cleaning Big Data Streams: A Systematic Literature Review. Technologies 2023, 11, 101. [Google Scholar] [CrossRef]
- Gudivada, V.N.; Apon, A.; Ding, J. Data Quality Considerations for Big Data and Machine Learning: Going Beyond Data Cleaning and Transformations. Int. J. Adv. Softw. 2017, 10, 1–20. [Google Scholar]
- Ordoñez-Aquino, C.; Gonzales, G.F. Calidad del aire en Perú no se ajusta a los valores recomendados por la Organización Mundial de la Salud (OMS). Rev. Med. Hered. 2023, 34, 236–238. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Technical Assistance Document for the Reporting of Daily Air Quality—The Air Quality Index (AQI). EPA-454/B-24-002. 2024. Available online: https://document.airnow.gov/technical-assistance-document-for-the-reporting-of-daily-air-quailty.pdf (accessed on 4 December 2024).
- Kebe, M.; Traore, A.; Manousakas, M.I.; Vasilatou, V.; Ndao, A.S.; Wague, A.; Eleftheriadis, K. Source Apportionment and Assessment of Air Quality Index of PM2.5–10 and PM2.5 in at Two Different Sites in Urban Background Area in Senegal. Atmosphere 2021, 12, 182. [Google Scholar] [CrossRef]
- Karimian, H.; Li, Y.; Chen, Y.; Wang, Z. Evaluation of different machine learning approaches and aerosol optical depth in PM2.5 prediction. Environ. Res. 2023, 216, 114465. [Google Scholar] [CrossRef]
- Wong, P.Y.; Lee, H.Y.; Zeng, Y.T.; Chern, Y.R.; Chen, N.T.; Lung, S.C.C.; Su, H.J.; Wu, C.D. Using a land use regression model with machine learning to estimate ground level PM2.5. Environ. Pollut. 2021, 277, 116846. [Google Scholar] [CrossRef] [PubMed]
- Flatt, C.; Jacobs, R.L. Principle Assumptions of Regression Analysis: Testing, Techniques, and Statistical Reporting of Imperfect Data Sets. Adv. Dev. Hum. Resour. 2019, 21, 484–502. [Google Scholar] [CrossRef]
- Miranda Hankgo, I.C.; Warthon Olarte, B.S.; Zamalloa Ponce de Leon, A.I.; Warthon Ascarza, J.L.; Olarte Perez, A.; Warthon Olarte, G.L.; Ramos Salcedo, V.F. Environmental impact by particulate material and meteorological parameters on the incidence of positive cases of COVID-19 during the first year of the pandemic in a high Andean city. Earth Syst. Environ. 2024, 8, 1267–1289. [Google Scholar] [CrossRef]
- Kumar, P.; Hama, S.; Omidvarborna, H.; Sharma, A.; Sahani, J.; Abhijith, K.V.; Debele, S.E.; Zavala-Reyes, J.C.; Barwise, Y.; Tiwari, A. Temporary reduction in fine particulate matter due to ’anthropogenic emissions switch-off’ during COVID-19 lockdown in Indian cities. Sustain. Cities Soc. 2020, 62, 102382. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.K.; Balyan, P. Air pollution and COVID-19: Is the connect worth its weight? Indian J. Public Health 2020, 64, S132–S134. [Google Scholar] [CrossRef]
- Wang, P.; Chen, K.; Zhu, S.; Wang, P.; Zhang, H. Severe air pollution events not avoided by reduced anthropogenic activities during COVID-19 outbreak. Resour. Conserv. Recycl. 2020, 158, 104814. [Google Scholar] [CrossRef] [PubMed]
- Benchrif, A.; Wheida, A.; Tahri, M.; Shubbar, R.M.; Biswas, B. Air quality during three covid-19 lockdown phases: AQI, PM2.5 and NO2 assessment in cities with more than 1 million inhabitants. Sustain. Cities Soc. 2021, 74, 103170. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Li, J.; Liu, L.; Guo, X.; Huang, L.; Hu, M. Application of CNN-LSTM Algorithm for PM2.5 Concentration Forecasting in the Beijing-Tianjin-Hebei Metropolitan Area. Atmosphere 2023, 14, 1392. [Google Scholar] [CrossRef]
- Li, X.; Ma, Y.; Wang, Y.; Liu, N.; Hong, Y. Temporal and spatial analyses of particulate matter (PM10 and PM2.5) and its relationship with meteorological parameters over an urban city in northeast China. Atmos. Res. 2017, 198, 185–193. [Google Scholar] [CrossRef]
- Duarte, A.L.; Schneider, I.L.; Artaxo, P.; Oliveira, M.L.S. Spatiotemporal assessment of particulate matter (PM10 and PM2.5) and ozone in a Caribbean urban coastal city. Geosci. Front. 2022, 13, 101168. [Google Scholar] [CrossRef]
- Carvalho, J.S.; Nascimento, R.K.S.; Cintra, J.V.F.R.F.; Rosa, N.L.C.; Grosseli, G.M.; Fadini, P.S.; Urban, R.C. Source apportionment and health impact assessment of atmospheric particulate matter in the city of São Carlos, Brazil. Chemosphere 2023, 326, 138450. [Google Scholar] [CrossRef]
- Zeeshan, N.; Murtaza, G.; Ahmad, H.R.; Awan, A.N.; Shahbaz, M.; Freer-Smith, P. Particulate and gaseous air pollutants exceed WHO guideline values and have the potential to damage human health in Faisalabad, Metropolitan, Pakistan. Environ. Monit. Assess. 2024, 196, 659. [Google Scholar] [CrossRef] [PubMed]
- Bao, R.; Zhang, A. Does lockdown reduce air pollution? Evidence from 44 cities in northern China. Sci. Total Environ. 2020, 731, 139052. [Google Scholar] [CrossRef]
- Abulude, F.O.; Akinnusotu, A.; Bello, L.; Feyisetan, A.O. Assessment of AQI, PM10, PM2.5, NO2, O3: The Case of OWO, Nigeria. ASEAN J. Sci. Eng. 2024, 4, 15–24. [Google Scholar] [CrossRef]
- Zaib, S.; Lu, J.; Bilal, M. Spatio-Temporal Characteristics of Air Quality Index (AQI) over Northwest China. Atmosphere 2022, 13, 375. [Google Scholar] [CrossRef]
- Aishan, T.; Sun, Y.; Halik, Ü.; Betz, F.; Yusup, A.; Rezhake, R. Spatiotemporal changes in fine particulate matter and ozone in the oasis city of Korla, northeastern Tarim Basin of China. Sci. Rep. 2024, 14, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Behnood, A.; Daneshvar, D. A machine learning study of the dynamic modulus of asphalt concretes: An application of M5P model tree algorithm. Constr. Build. Mater. 2020, 262, 120544. [Google Scholar] [CrossRef]
- Behnood, A.; Behnood, V.; Gharehveran, M.M.; Alyamac, K.E. Prediction of the compressive strength of normal and high-performance concretes using M5P model tree algorithm. Constr. Build. Mater. 2017, 142, 199–207. [Google Scholar] [CrossRef]
- Behnood, A.; Olek, J.; Glinicki, M.A. Predicting modulus elasticity of recycled aggregate concrete using M5’ model tree algorithm. Constr. Build. Mater. 2015, 94, 137–147. [Google Scholar] [CrossRef]
- Kumar, K.; Pande, B.P. Air pollution prediction with machine learning: A case study of Indian cities. Int. J. Environ. Sci. Technol. 2023, 20, 5333–5348. [Google Scholar] [CrossRef]
- Polcyn, J.; Voumik, L.C.; Ridwan, M.; Ray, S.; Vovk, V. Evaluating the Influences of Health Expenditure, Energy Consumption, and Environmental Pollution on Life Expectancy in Asia. Int. J. Environ. Res. Public Health 2023, 20, 4000. [Google Scholar] [CrossRef] [PubMed]
- Alsaber, A.R.; Pan, J.; Al-Hurban, A. Handling Complex Missing Data Using Random Forest Approach for an Air Quality Monitoring Dataset: A Case Study of Kuwait Environmental Data (2012 to 2018). Int. J. Environ. Res. Public Health 2021, 18, 1333. [Google Scholar] [CrossRef]
- Pyae, T.S.; Kallawicha, K. First temporal distribution model of ambient air pollutants (PM2.5, PM10, and O3) in Yangon City, Myanmar during 2019–2021. Environ. Pollut. 2024, 347, 123718. [Google Scholar] [CrossRef] [PubMed]
- Galán-Madruga, D.; Broom, I.P.; Satyanaga, A.; Jahanbakhshi, A.; Bagheri, M.; Fathian, A.; Sarvestan, R.; Cárdenas-Escudero, J.; Cáceres, J.O.; Kumar, P.; et al. A methodological framework for estimating ambient PM2.5 particulate matter concentrations in the UK. J. Environ. Sci. 2025, 150, 676–691. [Google Scholar] [CrossRef]
- Raju, L.; Gandhimathi, R.; Mathew, A.; Ramesh, S.T. Spatio-temporal modelling of particulate matter concentrations using satellite derived aerosol optical depth over coastal region of Chennai in India. Ecol. Inform. 2022, 69, 101681. [Google Scholar] [CrossRef]
Statistical Indicator | Formula | Ideal Value |
---|---|---|
Root Mean Square Error | 0 | |
Normalized Mean Square Error | 0 | |
Mean Absolute Error | 0 | |
Mean Absolute Percentage Error | 0 | |
Index Of Agreement | 1 | |
Coefficient of Variation | 0 |
Year | Target Variable | Season | Model | Model Equation |
---|---|---|---|---|
2017 | PM2.5 | Dry | 1 | 456.98 − 17.42*T − 3.08*HR |
2 | 5.63 − 0.09*Tmin − 0.02*HR | |||
Rainy | 1 | 8124.56 − 11.74*PRES | ||
2 | 174.01 − 0.25*PRES | |||
Annual | 1 | 365.48 − 2.43*HR − 15.21*T + 27.63*Season | ||
2 | 6.67 − 0.02*HR − 0.11*T | |||
PM10 | Dry | 1 | 203.36 + 62.26*DL − 2.39*HR | |
2 | 2.17 − 0.07*TMIN + 0.11*TMAX | |||
Rainy | 1 | 8124.56 − 11.74*PRES | ||
2 | 3.85 + 0.49*DL | |||
Annual | 1 | 99.2 − 6.23*TMIN + 57.27*DL | ||
2 | 4.79 − 0.54*Season − 0.73*DL | |||
2018 | PM2.5 | Dry | 1 | 68.6 + 9.08*TMIN |
2 | 4.2 + 0.1*TMIN | |||
Rainy | 1 | 207.45 − 2.16*HR | ||
2 | 10.38 − 0.06*HR − 0.26*T − 0.48*WS | |||
Annual | 1 | −7547.84 − 1.83*HR + 11.26*PRES | ||
2 | 5.23 − 0.55*Season | |||
PM10 | Dry | 1 | 68.6 + 9.08*TMIN | |
2 | 2 + 0.12*TMAX | |||
Rainy | 1 | 207.45 − 2.16*HR | ||
2 | 1.62 + 0.11*TMAX | |||
Annual | 1 | −1241 − 22.38*Season + 5.34*TMAX | ||
2 | 2.22 − 0.4*Season + 0.12*TMAX | |||
2020 | PM2.5 | Dry | 1 | 39524.74 − 5.6*PRES |
2 | 90.73 − 0.13*PRES − 0.26*DL | |||
Rainy | 1 | 62.35 + 25.31*DL − 2.47*TMIN | ||
2 | −68.12 + 0.05*TMAX + 0.1*PRES + 0.43*DL | |||
Annual | 1 | 35,710.12 − 5.12*PRES | ||
2 | 94.98 − 0.13*PRES | |||
PM10 | Dry | 1 | 39524.74 − 5.6*PRES | |
2 | 2.27 − 0.09*TMIN − 0.05*DS − 0.17*PREC + 0.15*T | |||
Rainy | 1 | 37.65 + 2.98*PREC | ||
2 | 6.03 − 0.14*T − 0.0016*WD | |||
Annual | 1 | 69.93 − 3.35*DS − 0.05*WD | ||
2 | 4.27 − 0.07*DS − 0.0011*WD | |||
FULL | PM2.5 | Dry | 1 | 166.23 + 15.97*PREC + 5.41*DS − 6.13*T |
2 | 129.29 − 0.07*DS − 0.18*PRES − 0.12*T | |||
Rainy | 1 | 90.43 − 12.78*WS | ||
2 | 147.41 − 0.11*WS − 0.21*PRES − 0.08*TMAX | |||
Annual | 1 | 145.08 − 3.95*DS − 4.93*T | ||
2 | 48.42 − 0.06*PRES − 0.06*DS − 0.08*T | |||
PM10 | Dry | 1 | −77.02 + 9.51*TMAX − 4.5*T | |
2 | 1.40 + 0.14*MAX − 0.3*DL − 0.06*TMIN | |||
Rainy | 1 | 118.32 − 5.05*T | ||
2 | 5.44 − 0.12*T | |||
Annual | 1 | 0.31 + 6.7*TMAX − 6.2*T | ||
2 | 3.09 + 0.11*TMAX − 0.12*T |
Year | Target Variable | Season | Model | R2 | RMSE | NMSE | MAE | MAPE (%) | IOA | CV (%) |
---|---|---|---|---|---|---|---|---|---|---|
2017 | PM2.5 | Dry | 1 | 0.8 | 12.69 | 2 | 12.53 | 19 | 0.74 | 20.69 |
2 | 0.8 | 13.37 | 2.43 | 11.27 | 18.95 | 0.71 | 21.83 | |||
Rainy | 1 | 0.24 | 17.38 | 5.76 | 13.33 | 16.22 | 0.23 | 7.68 | ||
2 | 0.3 | 19.74 | 7.43 | 15.04 | 18.26 | 0.2 | 10.1 | |||
Annual | 1 | 0.59 | 26.02 | 0.25 | 22.4 | 40.59 | 0.89 | 33.25 | ||
2 | 0.39 | 30.2 | 0.34 | 24.49 | 37.31 | 0.84 | 31.48 | |||
PM10 | Dry | 1 | 0.58 | 13.95 | 2.35 | 12.81 | 16.22 | 0.65 | 20.08 | |
2 | 0.49 | 5.97 | 0.33 | 5.33 | 8.46 | 0.92 | 17.33 | |||
Rainy | 1 | 0.24 | 17.38 | 5.76 | 12.3 | 16.22 | 0.23 | 7.68 | ||
2 | 0.46 | 12.46 | 87.75 | 12.58 | 54.82 | 0.18 | 0.5 | |||
Annual | 1 | 0.49 | 32.75 | 0.56 | 24.49 | 28.18 | 0.39 | 18.73 | ||
2 | 0.46 | 34.22 | 1.02 | 22.53 | 25.19 | 0.22 | 7.65 | |||
2018 | PM2.5 | Dry | 1 | 0.53 | 39.5 | 1.44 | 34.41 | 29.54 | 0.39 | 17.34 |
2 | 0.55 | 43.47 | 1.74 | 38.41 | 33.39 | 0.49 | 20.88 | |||
Rainy | 1 | 0.17 | 37.89 | 0.97 | 34.9 | 68.01 | 0.34 | 16.42 | ||
2 | 0.35 | 42.45 | 1.22 | 40.08 | 90.87 | 0.49 | 23.8 | |||
Annual | 1 | 0.34 | 41.46 | 1.31 | 31.89 | 60.68 | 0.42 | 28.67 | ||
2 | 0.315 | 33.92 | 1.43 | 27.3 | 46.87 | 0.49 | 27.73 | |||
PM10 | Dry | 1 | 0.53 | 39.5 | 1.44 | 34.41 | 29.54 | 0.39 | 17.34 | |
2 | 0.13 | 26.3 | 1.91 | 23.96 | 37.1 | 0.41 | 13.5 | |||
Rainy | 1 | 0.17 | 37.89 | 0.97 | 34.9 | 68.01 | 0.34 | 16.42 | ||
2 | 0.15 | 27.54 | 1.12 | 19.81 | 28.59 | 0.55 | 15.83 | |||
Annual | 1 | 0.38 | 29.72 | 0.89 | 23.56 | 31.69 | 0.51 | 18.05 | ||
2 | 0.44 | 31.23 | 0.98 | 24 | 39.79 | 0.52 | 20.24 | |||
2020 | PM2.5 | Dry | 1 | 0.35 | 9 | 1.04 | 7.65 | 29.21 | 0.75 | 19.77 |
2 | 0.46 | 10.2 | 1.34 | 9.09 | 34.13 | 0.61 | 22.3 | |||
Rainy | 1 | 0.88 | 18.35 | 0.81 | 18.19 | −74.13 | 0.36 | 5.57 | ||
2 | 0.98 | 17.02 | 0.69 | 17.01 | 65.83 | 0.49 | 9.18 | |||
Annual | 1 | 0.32 | 16.27 | 0.95 | 12.96 | 51.34 | 0.47 | 15.77 | ||
2 | 0.98 | 16.14 | 0.95 | 12.34 | 47.12 | 0.44 | 16.59 | |||
PM10 | Dry | 1 | 0.35 | 9 | 1.04 | 7.65 | 29.21 | 0.75 | 19.77 | |
2 | 0.69 | 11.47 | 0.75 | 11.2 | 60.1 | 0.75 | 31.08 | |||
Rainy | 1 | 0.21 | 21.01 | 7.03 | 14.22 | 21.62 | 0.14 | 19.29 | ||
2 | 0.69 | 19.65 | 6.15 | 19.08 | 47.44 | 0.35 | 26.68 | |||
Annual | 1 | 0.41 | 27.74 | 1.92 | 25.63 | 125.22 | 0.37 | 20.4 | ||
2 | 0.4 | 27.36 | 1.82 | 25.11 | 124.64 | 0.34 | 19.63 | |||
FULL | PM2.5 | Dry | 1 | 0.38 | 41.1 | 0.72 | 35.73 | 66.75 | 0.55 | 22.07 |
2 | 0.53 | 44.44 | 0.84 | 35.55 | 52.98 | 0.63 | 39.29 | |||
Rainy | 1 | 0.08 | 49.9 | 1.06 | 42.73 | 85.52 | 0.15 | 9.21 | ||
2 | 0.3 | 52.19 | 1.16 | 41.24 | 63.04 | 0.45 | 40.19 | |||
Annual | 1 | 0.15 | 32.52 | 0.7 | 26.8 | 53.45 | 0.29 | 23.88 | ||
2 | 0.21 | 34.54 | 0.79 | 25.39 | 41.45 | 0.56 | 25.03 | |||
PM10 | Dry | 1 | 0.45 | 35.97 | 1.46 | 28.43 | 41.62 | 0.26 | 16.89 | |
2 | 0.5 | 43.36 | 2.23 | 34.64 | 47.18 | 0.27 | 19.47 | |||
Rainy | 1 | 0.13 | 18.6 | 0.91 | 17.13 | 42.31 | 0.49 | 10.98 | ||
2 | 0.16 | 18.9 | 0.87 | 16.55 | 39.11 | 0.51 | 14.27 | |||
Annual | 1 | 0.31 | 20.15 | 0.87 | 17.42 | 31.46 | 0.63 | 23.91 | ||
2 | 0.34 | 21.91 | 0.95 | 16.93 | 29.58 | 0.6 | 24.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Warthon, J.; Zamalloa, A.; Olarte, A.; Warthon, B.; Miranda, I.; Zamalloa-Puma, M.M.; Ccollatupa, V.; Ormachea, J.; Quispe, Y.; Jalixto, V.; et al. A Comprehensive Assessment of PM2.5 and PM10 Pollution in Cusco, Peru: Spatiotemporal Analysis and Development of the First Predictive Model (2017–2020). Sustainability 2025, 17, 394. https://doi.org/10.3390/su17020394
Warthon J, Zamalloa A, Olarte A, Warthon B, Miranda I, Zamalloa-Puma MM, Ccollatupa V, Ormachea J, Quispe Y, Jalixto V, et al. A Comprehensive Assessment of PM2.5 and PM10 Pollution in Cusco, Peru: Spatiotemporal Analysis and Development of the First Predictive Model (2017–2020). Sustainability. 2025; 17(2):394. https://doi.org/10.3390/su17020394
Chicago/Turabian StyleWarthon, Julio, Ariatna Zamalloa, Amanda Olarte, Bruce Warthon, Ivan Miranda, Miluska M. Zamalloa-Puma, Venancia Ccollatupa, Julia Ormachea, Yanett Quispe, Victor Jalixto, and et al. 2025. "A Comprehensive Assessment of PM2.5 and PM10 Pollution in Cusco, Peru: Spatiotemporal Analysis and Development of the First Predictive Model (2017–2020)" Sustainability 17, no. 2: 394. https://doi.org/10.3390/su17020394
APA StyleWarthon, J., Zamalloa, A., Olarte, A., Warthon, B., Miranda, I., Zamalloa-Puma, M. M., Ccollatupa, V., Ormachea, J., Quispe, Y., Jalixto, V., Cruz, D., Salcedo, R., Valencia, J., Mio-Diaz, M., Ingles, R., Warthon, G., Tello, R., Uscca, E., Candia, W., ... Alvarez, M. (2025). A Comprehensive Assessment of PM2.5 and PM10 Pollution in Cusco, Peru: Spatiotemporal Analysis and Development of the First Predictive Model (2017–2020). Sustainability, 17(2), 394. https://doi.org/10.3390/su17020394