Does Local Government Green Attention Promote Green Total Factor Productivity?
Abstract
1. Introduction
2. Theoretical Mechanism and Hypothesis Presentation
2.1. Local Government Green Attention and GTFP
2.2. The Impact Mechanism of Local Government Green Attention on GTFP: Green Technology Cooperation
2.3. The Impact Mechanism of Local Government Green Attention on GTFP: Green R&D Involvement of Public Research Institutions
2.4. The Impact Mechanism of Local Government Green Attention on GTFP: Quality Leap in Green Innovation
3. Research Design
3.1. Data
3.2. Variable Selection
3.2.1. Dependent Variable: Regional GTFP (GTFP)
3.2.2. Explanatory Variable: Local Government Green Attention (GA)
3.2.3. Mechanism Variables
3.2.4. Control Variables
3.3. Empirical Model
4. Empirical Results
4.1. Local Government Green Attention and GTFP
4.2. Robustness Tests
4.2.1. Lagged Effects and Placebo Tests
4.2.2. Re-Examination of Mean Reversion
GTFP | |||||
---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | |
L1. GA | 0.1142 ** (0.0465) | ||||
L2. GA | 0.1599 *** (0.0497) | ||||
L3. GA | 0.1034 * (0.0529) | ||||
F1. GA | 0.0601 (0.0556) | ||||
GA | 0.3834 *** (0.0862) | ||||
Controls | √ | √ | √ | √ | √ |
City FE | √ | √ | √ | √ | √ |
Year FE | √ | √ | √ | √ | √ |
Observations | 2322 | 2031 | 1731 | 2636 | 2031 |
Adjust_R2 | 0.9435 | 0.9426 | 0.9373 | 0.9432 | 0.9443 |
4.2.3. Excluding Interference from Other Environmental Policies
4.2.4. Accounting for Location Factors
4.2.5. Revised Re-Testing with Alternative Estimation Methods
GTFP | |||||||
---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | |
GA | 0.1714 *** (0.0436) | 0.1635 *** (0.0435) | 0.1729 *** (0.0433) | 0.1719 *** (0.0433) | 0.2940 *** (0.0922) | 0.5160 *** (0.1195) | 0.2291 ** (0.9613) |
GA2 | −0.0783 (0.0889) | ||||||
Controls | √ | √ | √ | √ | √ | √ | √ |
City FE | √ | √ | √ | √ | √ | √ | √ |
Year FE | √ | √ | √ | √ | √ | √ | √ |
Obs. | 2613 | 2613 | 2613 | 2613 | 2335 | 2628 | 2613 |
Adj.R2 | 0.9464 | 0.9465 | 0.9464 | 0.9464 | 0.9518 | 0.9826 | 0.9391 |
4.3. Endogeneity Issues
4.4. Mechanisms
4.4.1. Green Technology Collaboration
4.4.2. Green R&D Involvement of Public Research Institutions
4.4.3. Quality Leap in Green Innovation
(1) GC | (2) GTFP | (3) PI | (4) GTFP | (5) GQ | (6) GTFP | |
---|---|---|---|---|---|---|
GA | 2.3212 *** (0.5020) | 2.0713 *** (0.4292) | 1.5577 *** (0.4545) | |||
GC | 0.0096 *** (0.0034) | |||||
PI | 0.0078 ** (0.0035) | |||||
GQ | 0.0094 ** (0.0043) | |||||
Controls | √ | √ | √ | √ | √ | √ |
City fixed effect | √ | √ | √ | √ | √ | √ |
Year fixed effect | √ | √ | √ | √ | √ | √ |
Observations | 2613 | 2613 | 2613 | 2613 | 2613 | 2613 |
Adj.R2 | 0.8755 | 0.4110 | 0.8944 | 0.4012 | 0.9435 | 0.3991 |
4.5. Heterogeneity Analysis
4.5.1. Disparities in Natural Resource Endowments
4.5.2. Divergent Competition Among Local Governments
4.5.3. Variations in the Degree of Intellectual Property Protection
4.5.4. Disparities in Local Government Fiscal Capacity
4.5.5. Disparities in Technological Foundations
(1) Resource | (2) Com | (3) IPP | (4) FR | (5) TB | |
---|---|---|---|---|---|
GA | 0.1813 *** (0.0434) | 0.1344 *** (0.0470) | −0.2089 (0.1765) | −0.1723 (0.1972) | −0.0565 (0.1038) |
GA × Resource | −0.4035 *** (0.1515) | ||||
GA × Com | 0.1344 *** (0.0470) | ||||
GA × IPP | 0.2078 *** (0.0423) | ||||
GA × FR | 0.1805 *** (0.0420) | ||||
GA × TB | 0.2023 *** (0.0435) | ||||
Controls | √ | √ | √ | √ | √ |
City fixed effect | √ | √ | √ | √ | √ |
Year fixed effect | √ | √ | √ | √ | √ |
Observations | 2613 | 2613 | 2613 | 2613 | 2613 |
Adj.R2 | 0.9465 | 0.9465 | 0.9466 | 0.9464 | 0.9465 |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GA | local government green attention |
GTFP | green total factor productivity |
References
- Zhang, Z. Asian Energy and Environmental Policy: Promoting Growth While Preserving the Environment. Energy Policy 2008, 36, 3905–3924. [Google Scholar] [CrossRef]
- Liu, D.; Xu, B.; Song, Y.; Wang, Q. What Drives China’s Long-Term Economic Growth Trend? A Re-Measurement Based on a Time-Varying Mixed-Frequency Dynamic Factor Model. Technol. Econ. Dev. Econ. 2023, 29, 741–774. [Google Scholar] [CrossRef]
- Kong, L.; Yao, Y.; Xu, K. Can Environmental Regulation Improve the Industrial Ecology Efficiency? Evidence from China’s Environmental Protection Tax Reform. J. Environ. Manag. 2025, 373, 123792. [Google Scholar] [CrossRef]
- Krass, D.; Nedorezov, T.; Ovchinnikov, A. Environmental Taxes and the Choice of Green Technology. Prod. Oper. Manag. 2013, 22, 1035–1055. [Google Scholar] [CrossRef]
- Zhou, Y.; Tian, L.; Yang, X. Schumpeterian Endogenous Growth Model under Green Innovation and Its Enculturation Effect. Energy Econ. 2023, 127, 107109. [Google Scholar] [CrossRef]
- Luo, L.; He, A.; Wang, Z. Local Government Behavior and Green Technology Innovation under Ecological Goals Incentives. J. Environ. Manag. 2025, 380, 125082. [Google Scholar] [CrossRef]
- Feng, T.; Chen, X.; Ma, J.; Sun, Y.; Du, H.; Yao, Y.; Chen, Z.; Wang, S.; Mi, Z. Air Pollution Control or Economic Development? Empirical Evidence from Enterprises with Production Restrictions. J. Environ. Manag. 2023, 336, 117611. [Google Scholar] [CrossRef]
- Sharma, H.; Padhi, B.; Sharif, A.; Bashir, M.F. Striving towards Green Total Factor Productivity: A Bibliometric and Systematic Literature Review for Future Research Agenda. J. Environ. Manag. 2025, 377, 124639. [Google Scholar] [CrossRef] [PubMed]
- Orsato, R.J. Competitive Environmental Strategies: When Does It Pay to Be Green? Calif. Manag. Rev. 2006, 48, 127–143. [Google Scholar] [CrossRef]
- King, A.A.; Lenox, M.J. Does It Really Pay to Be Green? An Empirical Study of Firm Environmental and Financial Performance: An Empirical Study of Firm Environmental and Financial Performance. J. Ind. Ecol. 2001, 5, 105–116. [Google Scholar] [CrossRef]
- Chen, H.; Deng, J.; Lu, M.; Zhang, P.; Zhang, Q. Government Environmental Attention, Credit Supply and Firms’ Green Investment. Energy Econ. 2024, 134, 107547. [Google Scholar] [CrossRef]
- Shao, L.; Yu, X.; Feng, C. Evaluating the Eco-Efficiency of China’s Industrial Sectors: A Two-Stage Network Data Envelopment Analysis. J. Environ. Manag. 2019, 247, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Chai, J.; Hao, Y.; Wu, H.; Yang, Y. Do Constraints Created by Economic Growth Targets Benefit Sustainable Development? Evidence from China. Bus. Strategy Environ. 2021, 30, 4188–4205. [Google Scholar] [CrossRef]
- Chen, J.; Chen, X.; Hou, Q.; Hu, M. Haste Doesn’t Bring Success: Top-down Amplification of Economic Growth Targets and Enterprise Overcapacity. J. Corp. Financ. 2021, 70, 102059. [Google Scholar] [CrossRef]
- Hao, Y.; Huang, J.; Guo, Y.; Wu, H.; Ren, S. Does the Legacy of State Planning Put Pressure on Ecological Efficiency? Evidence from China. Bus. Strategy Environ. 2022, 31, 3100–3121. [Google Scholar] [CrossRef]
- Chen, Y.J.; Li, P.; Lu, Y. Career Concerns and Multitasking Local Bureaucrats: Evidence of a Target-Based Performance Evaluation System in China. J. Dev. Econ. 2018, 133, 84–101. [Google Scholar] [CrossRef]
- Fu, J.; Geng, Y. Public Participation, Regulatory Compliance and Green Development in China Based on Provincial Panel Data. J. Clean. Prod. 2019, 230, 1344–1353. [Google Scholar] [CrossRef]
- Zor, S. A Neural Network-Based Measurement of Corporate Environmental Attention and Its Impact on Green Open Innovation: Evidence from Heavily Polluting Listed Companies in China. J. Clean. Prod. 2023, 432, 139815. [Google Scholar] [CrossRef]
- Qian, L.; Zhou, Y.; Sun, Y. Regional Differences, Distribution Dynamics, and Convergence of the Green Total Factor Productivity of China’s Cities under the Dual Carbon Targets. Sustainability 2023, 15, 12999. [Google Scholar] [CrossRef]
- Zhou, L.; Fan, J.; Hu, M.; Yu, X. Clean Air Policy and Green Total Factor Productivity: Evidence from Chinese Prefecture-Level Cities. Energy Econ. 2024, 133, 107512. [Google Scholar] [CrossRef]
- Feng, Y.; Zhong, S.; Li, Q.; Zhao, X.; Dong, X. Ecological Well-Being Performance Growth in China (1994–2014): From Perspectives of Industrial Structure Green Adjustment and Green Total Factor Productivity. J. Clean. Prod. 2019, 236, 117556. [Google Scholar] [CrossRef]
- Xu, K.; Zhao, P. Does Green Finance Promote Green Total Factor Productivity? Empirical Evidence from China. Sustainability 2023, 15, 11204. [Google Scholar] [CrossRef]
- Zhang, D.; Vigne, S.A. How Does Innovation Efficiency Contribute to Green Productivity? A Financial Constraint Perspective. J. Clean. Prod. 2021, 280, 124000. [Google Scholar] [CrossRef]
- Tian, X.; Zhang, H. Analysis of the Impact Factors of Industrial Structure Upgrading on Green Total Factor Productivity from the Perspective of Spatial Spillover Effects. Heliyon 2024, 10, e28660. [Google Scholar] [CrossRef]
- Ju, K.; Zhou, D.; Wang, Q.; Zhou, D.; Wei, X. What Comes after Picking Pollution Intensive Low-Hanging Fruits? Transfer Direction of Environmental Regulation in China. J. Clean. Prod. 2020, 258, 120405. [Google Scholar] [CrossRef]
- Du, C.; Cao, Y.; Ling, Y.; Jin, Z.; Wang, S.; Wang, D. Does Manufacturing Agglomeration Promote Green Productivity Growth in China? Fresh Evidence from Partially Linear Functional-Coefficient Models. Energy Econ. 2024, 131, 107352. [Google Scholar] [CrossRef]
- Mao, J.; Wu, Q.; Zhu, M.; Lu, C. Effects of Environmental Regulation on Green Total Factor Productivity: An Evidence from the Yellow River Basin, China. Sustainability 2022, 14, 2015. [Google Scholar] [CrossRef]
- Tu, Z.; Hu, T.; Shen, R. Evaluating Public Participation Impact on Environmental Protection and Ecological Efficiency in China: Evidence from PITI Disclosure. China Econ. Rev. 2019, 55, 111–123. [Google Scholar] [CrossRef]
- Berrone, P.; Fosfuri, A.; Gelabert, L.; Gomez-Mejia, L.R. Necessity as the Mother of ‘Green’ Inventions: Institutional Pressures and Environmental Innovations. Strateg. Manag. J. 2013, 34, 891–909. [Google Scholar] [CrossRef]
- Xie, X.; Shen, W.; Zajac, E.J. When Is a Governmental Mandate Not a Mandate? Predicting Organizational Compliance Under Semicoercive Conditions. J. Manag. 2021, 47, 2169–2197. [Google Scholar] [CrossRef]
- Huang, J.-W.; Li, Y.-H. How Resource Alignment Moderates the Relationship between Environmental Innovation Strategy and Green Innovation Performance. J. Bus. Ind. Mark. 2018, 33, 316–324. [Google Scholar] [CrossRef]
- Ozaki, R.; Sevastyanova, K. Going Hybrid: An Analysis of Consumer Purchase Motivations. Energy Policy 2011, 39, 2217–2227. [Google Scholar] [CrossRef]
- Chen, C.; Lin, Y.; Lv, N.; Zhang, W.; Sun, Y. Can Government Low-Carbon Regulation Stimulate Urban Green Innovation? Quasi-Experimental Evidence from China’s Low-Carbon City Pilot Policy. Appl. Econ. 2022, 54, 6559–6579. [Google Scholar] [CrossRef]
- Hu, Y.; Jin, S.; Ni, J.; Peng, K.; Zhang, L. Strategic or Substantive Green Innovation: How Do Non-Green Firms Respond to Green Credit Policy? Econ. Model. 2023, 126, 106451. [Google Scholar] [CrossRef]
- Liu, S.; Xu, H.; Chen, X. Does Environmental Regulation Pressure Induce the Green Innovation of Enterprises? Quasi-Natural Experiment of China’s Air Pollution Prevention and Control Action Plan. Technol. Anal. Strateg. Manag. 2024, 36, 4471–4486. [Google Scholar] [CrossRef]
- Yang, Q.; Gao, D.; Song, D.; Li, Y. Environmental Regulation, Pollution Reduction and Green Innovation: The Case of the Chinese Water Ecological Civilization City Pilot Policy. Econ. Syst. 2021, 45, 100911. [Google Scholar] [CrossRef]
- Tang, M.; Walsh, G.; Lerner, D.; Fitza, M.A.; Li, Q. Green Innovation, Managerial Concern and Firm Performance: An Empirical Study. Bus. Strategy Environ. 2018, 27, 39–51. [Google Scholar] [CrossRef]
- Huang, L.; Lei, Z. How Environmental Regulation Affect Corporate Green Investment: Evidence from China. J. Clean. Prod. 2021, 279, 123560. [Google Scholar] [CrossRef]
- Stucki, T. Which Firms Benefit from Investments in Green Energy Technologies?—The Effect of Energy Costs. Res. Policy 2019, 48, 546–555. [Google Scholar] [CrossRef]
- Yang, X.; He, L.; Xia, Y.; Chen, Y. Effect of Government Subsidies on Renewable Energy Investments: The Threshold Effect. Energy Policy 2019, 132, 156–166. [Google Scholar] [CrossRef]
- Jones, B.D.; Baumgartner, F.R. From There to Here: Punctuated Equilibrium to the General Punctuation Thesis to a Theory of Government Information Processing. Policy Stud. J. 2012, 40, 1–20. [Google Scholar] [CrossRef]
- Li, S.; Miao, X.; Feng, E.; Liu, Y.; Tang, Y. Urban Governmental Environmental Attention Allocation: Evidence from China. J. Urban Plan. Dev. 2023, 149, 04022055. [Google Scholar] [CrossRef]
- Wang, X.; Liu, W.; Sun, X.; Ahmad, M.; Chen, J. Government Ecological Concern and Its Impact on Synergistic Pollution and Carbon Reduction: Evidence from China. Gondwana Res. 2025, 141, 180–194. [Google Scholar] [CrossRef]
- Yuan, G.; Liu, J.; Wang, Y. Low-Carbon City Pilot Policies, Government Attention, and Green Total Factor Productivity. Financ. Res. Lett. 2025, 77, 107043. [Google Scholar] [CrossRef]
- Porter, M.E.; van der Linde, C. Toward a New Conception of the Environment-Competitiveness Relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef]
- Fabrizi, A.; Guarini, G.; Meliciani, V. Green Patents, Regulatory Policies and Research Network Policies. Res. Policy 2018, 47, 1018–1031. [Google Scholar] [CrossRef]
- Marchi, V.D.; Grandinetti, R. Knowledge Strategies for Environmental Innovations: The Case of Italian Manufacturing Firms. J. Knowl. Manag. 2013, 17, 569–582. [Google Scholar] [CrossRef]
- Ma, Y.; Sha, Y.; Wang, Z.; Zhang, W. The Effect of the Policy Mix of Green Credit and Government Subsidy on Environmental Innovation. Energy Econ. 2023, 118, 106512. [Google Scholar] [CrossRef]
- Uyterlinde, M.A.; Junginger, M.; de Vries, H.J.; Faaij, A.P.C.; Turkenburg, W.C. Implications of Technological Learning on the Prospects for Renewable Energy Technologies in Europe. Energy Policy 2007, 35, 4072–4087. [Google Scholar] [CrossRef]
- Chien, T.; Hu, J.-L. Renewable Energy and Macroeconomic Efficiency of OECD and Non-OECD Economies. Energy Policy 2007, 35, 3606–3615. [Google Scholar] [CrossRef]
- Jakobsen, S.; Clausen, T.H. Innovating for a Greener Future: The Direct and Indirect Effects of Firms’ Environmental Objectives on the Innovation Process. J. Clean. Prod. 2016, 128, 131–141. [Google Scholar] [CrossRef]
- Villca-Pozo, M.; Gonzales-Bustos, J.P. Tax Incentives to Modernize the Energy Efficiency of the Housing in Spain. Energy Policy 2019, 128, 530–538. [Google Scholar] [CrossRef]
- Krieger, B.; Zipperer, V. Does Green Public Procurement Trigger Environmental Innovations? Res. Policy 2022, 51, 104516. [Google Scholar] [CrossRef]
- Zhang, F.; Zhu, L. Enhancing corporate sustainable development: Stakeholder pressures, organizational learning, and green innovation. Bus. Strategy Environ. 2019, 28, 1012–1026. [Google Scholar] [CrossRef]
- Hellström, T. Dimensions of Environmentally Sustainable Innovation: The Structure of Eco-Innovation Concepts. Sustain. Dev. 2007, 15, 148–159. [Google Scholar] [CrossRef]
- Cainelli, G.; Mazzanti, M.; Montresor, S. Environmental Innovations, Local Networks and Internationalization. Ind. Innov. 2012, 19, 697–734. [Google Scholar] [CrossRef]
- De Marchi, V. Environmental Innovation and R&D Cooperation: Empirical Evidence from Spanish Manufacturing Firms. Res. Policy 2012, 41, 614–623. [Google Scholar] [CrossRef]
- Horbach, J.; Oltra, V.; Belin, J. Determinants and Specificities of Eco-Innovations Compared to Other Innovations—An Econometric Analysis for the French and German Industry Based on the Community Innovation Survey. Ind. Innov. 2013, 20, 523–543. [Google Scholar] [CrossRef]
- Ghisetti, C.; Marzucchi, A.; Montresor, S. The Open Eco-Innovation Mode. An Empirical Investigation of Eleven European Countries. Res. Policy 2015, 44, 1080–1093. [Google Scholar] [CrossRef]
- Hartman, C.L.; Stafford, E.R. Green Alliances: Building New Business with Environmental Groups. Long Range Plann. 1997, 30, 184–196. [Google Scholar] [CrossRef]
- Seuring, S.; Müller, M. From a Literature Review to a Conceptual Framework for Sustainable Supply Chain Management. J. Clean. Prod. 2008, 16, 1699–1710. [Google Scholar] [CrossRef]
- Calza, F.; Parmentola, A.; Tutore, I. For Green or Not for Green? The Effect of Cooperation Goals and Type on Environmental Performance. Bus. Strategy Environ. 2021, 30, 267–281. [Google Scholar] [CrossRef]
- Cainelli, G.; De Marchi, V.; Grandinetti, R. Does the Development of Environmental Innovation Require Different Resources? Evidence from Spanish Manufacturing Firms. J. Clean. Prod. 2015, 94, 211–220. [Google Scholar] [CrossRef]
- Jensen, M.B.; Johnson, B.; Lorenz, E.; Lundvall, B.Å. Forms of Knowledge and Modes of Innovation. Res. Policy 2007, 36, 680–693. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, K.; Zhu, G.; Yam, R.C.M.; Guan, J. Inter-Organizational Scientific Collaborations and Policy Effects: An Ego-Network Evolutionary Perspective of the Chinese Academy of Sciences. Scientometrics 2016, 108, 1383–1415. [Google Scholar] [CrossRef]
- Yoon, J. The Evolution of South Korea’s Innovation System: Moving towards the Triple Helix Model? Scientometrics 2015, 104, 265–293. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, H.; Du, L.; Lin, C.; Lu, W. How Does Alliance-Based Government-University-Industry Foster Cleantech Innovation in a Green Innovation Ecosystem? J. Clean. Prod. 2021, 283, 124559. [Google Scholar] [CrossRef]
- Li, T.; Zhou, X. Research on the Mechanism of Government–Industry–University–Institute Collaborative Innovation in Green Technology Based on Game–Based Cellular Automata. Int. J. Environ. Res. Public Health 2022, 19, 3046. [Google Scholar] [CrossRef]
- Chan, H.K.; Yee, R.W.Y.; Dai, J.; Lim, M.K. The Moderating Effect of Environmental Dynamism on Green Product Innovation and Performance. Int. J. Prod. Econ. 2016, 181, 384–391. [Google Scholar] [CrossRef]
- Stucki, T.; Woerter, M. Intra-Firm Diffusion of Green Energy Technologies and the Choice of Policy Instruments. J. Clean. Prod. 2016, 131, 545–560. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, K.; Fu, X. Scientific Effects of Triple Helix Interactions among Research Institutes, Industries and Universities. Technovation 2019, 86–87, 33–47. [Google Scholar] [CrossRef]
- Etzkowitz, H.; Leydesdorff, L. The Dynamics of Innovation: From National Systems and “Mode 2” to a Triple Helix of University–Industry–Government Relations. Res. Policy 2000, 29, 109–123. [Google Scholar] [CrossRef]
- David, P.A.; Hall, B.H.; Toole, A.A. Is Public R&D a Complement or Substitute for Private R&D? A Review of the Econometric Evidence. Res. Policy 2000, 29, 497–529. [Google Scholar] [CrossRef]
- Lee, M.T.; Raschke, R.L. Stakeholder Legitimacy in Firm Greening and Financial Performance: What about Greenwashing Temptations?☆. J. Bus. Res. 2023, 155, 113393. [Google Scholar] [CrossRef]
- Tang, Z.; Tang, J. Stakeholder Corporate Social Responsibility Orientation Congruence, Entrepreneurial Orientation and Environmental Performance of Chinese Small and Medium-Sized Enterprises. Br. J. Manag. 2018, 29, 634–651. [Google Scholar] [CrossRef]
- Li, X.; Guo, F.; Xu, Q.; Wang, S.; Huang, H. Strategic or Substantive Innovation? The Effect of Government Environmental Punishment on Enterprise Green Technology Innovation. Sustain. Dev. 2023, 31, 3365–3386. [Google Scholar] [CrossRef]
- Long, Y.; Liu, L.; Yang, B. Different Types of Environmental Concerns and Heterogeneous Influence on Green Total Factor Productivity: Evidence from Chinese Provincial Data. J. Clean. Prod. 2023, 428, 139295. [Google Scholar] [CrossRef]
- Tone, K.; Tsutsui, M. An Epsilon-Based Measure of Efficiency in DEA—A Third Pole of Technical Efficiency. Eur. J. Oper. Res. 2010, 207, 1554–1563. [Google Scholar] [CrossRef]
- Oh, D. A Global Malmquist-Luenberger Productivity Index. J. Product. Anal. 2010, 34, 183–197. [Google Scholar] [CrossRef]
- Wang, C.; Wang, L. Green Credit and Industrial Green Total Factor Productivity: The Impact Mechanism and Threshold Effect Tests. J. Environ. Manag. 2023, 331, 117266. [Google Scholar] [CrossRef]
- Yu, B.; Shen, C. Environmental Regulation and Industrial Capacity Utilization: An Empirical Study of China. J. Clean. Prod. 2020, 246, 118986. [Google Scholar] [CrossRef]
- Guo, D.; Qiao, L. Government Environmental Concern and Urban Green Development Efficiency: Structural and Technological Perspectives. J. Clean. Prod. 2024, 450, 142016. [Google Scholar] [CrossRef]
- Irfan, M.; Razzaq, A.; Sharif, A.; Yang, X. Influence Mechanism between Green Finance and Green Innovation: Exploring Regional Policy Intervention Effects in China. Technol. Forecast. Soc. Change 2022, 182, 121882. [Google Scholar] [CrossRef]
- Lewbel, A. Constructing Instruments for Regressions with Measurement Error When No Additional Data Are Available, with an Application to Patents and R&D. Econometrica 1997, 65, 1201. [Google Scholar] [CrossRef]
- Roh, T.; Lee, K.; Yang, J.Y. How Do Intellectual Property Rights and Government Support Drive a Firm’s Green Innovation? The Mediating Role of Open Innovation. J. Clean. Prod. 2021, 317, 128422. [Google Scholar] [CrossRef]
- Cui, X.; Wang, C.; Sensoy, A.; Liao, J.; Xie, X. Economic Policy Uncertainty and Green Innovation: Evidence from China. Econ. Model. 2023, 118, 106104. [Google Scholar] [CrossRef]
Category | Component | Indicator |
---|---|---|
Inputs | Labor | Annual total employed population (people) |
Capital | Capital stock (ten thousand yuan) | |
Energy | Electricity consumption (ten thousand kilowatt-hours) | |
Desirable Output | Economic Benefit | Real GDP (ten thousand yuan) |
Undesirable Outputs | Environmental Impact | Industrial Particulate Emissions (metric ton) |
Wastewater discharge (ten thousand metric tons) | ||
Sulfur dioxide (SO2) emissions (metric ton) | ||
PM2.5 (micrograms per cubic meter) |
Symbol | Variable Name | Variable Description |
---|---|---|
GTFP | green total factor productivity | The estimation approach follows that described in the preceding section |
GA | Local government green attention | The estimation approach follows that described in the preceding section |
Pop | Urban scale | ln (the year-end permanent population in cities (ten thousand people)) |
Pergdp | Economic development level | ln (per capita gross regional product in cities (ten thousand yuan)) |
Findev | Financial development level | Financial institutions’ year-end total loan balance as a percentage of city-level GDP (%) |
Fdi | Foreign openness | Current-year actually utilized FDI in the city as a percentage of city-level GDP, converted at the annual average exchange rate (%) |
Industry | Industrial structure level | Share of Secondary Industry Value Added in city-level GDP (%) |
Hedu | Higher education level | Education expenditure as a percentage of general public budgetary expenditure at the city level (%) |
Tec | technological support intensity | Science and technology expenditure as a percentage of general public budgetary expenditure at the city level (%) |
Ass | fixed-asset investment level | ln (urban fixed asset investment (ten thousand yuan)) |
Gov | fiscal self-sufficiency ratio | Ratio of city-level general public budget revenue to general public budget expenditure (%) |
GC | Level of green technological collaboration | ln (the number of green patents jointly developed by firms (patent)) |
PI | Green R&D involvement level of public research institutions | ln (the number of green patents applied for by public research institutions (patent)) |
GQ | Quality of green innovation | ln (the green technology complexity) |
Symbol | Observations | Mean | Standard deviation | Min | Max |
---|---|---|---|---|---|
GTFP | 2935 | 0.9512187 | 0.2202188 | 0 | 1.5014 |
GA | 2935 | 0.053912 | 0.0707287 | 0 | 0.879376 |
Peo | 2935 | 5.251333 | 1.919523 | 0 | 8.136518 |
Pergdp | 2614 | 10.70171 | 0.574675 | 8.77292 | 12.57928 |
Findev | 2935 | 16.84085 | 1.115457 | 9.682467 | 21.31105 |
Fdi | 2935 | 2.514774 | 1.911325 | 0 | 9.604745 |
Industry | 2935 | 0.4112207 | 0.1769475 | 0 | 0.8934 |
Hedu | 2935 | 0.1761123 | 0.0411583 | 0 | 0.3496347 |
Tec | 2935 | 0.0163514 | 0.0168524 | 0 | 0.2118352 |
Ass | 2935 | 16.0951 | 2.080919 | 0 | 19.33697 |
Gov | 2935 | 0.448128 | 0.2253365 | 0 | 1.545454 |
GC | 2935 | 1.667126 | 1.614025 | 0 | 8.37586 |
PI | 2935 | 1.448779 | 1.535521 | 0 | 7.32251 |
GQ | 2935 | 1.554704 | 1.464911 | 0 | 6.866568 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
GA | 0.1183 ** (0.0592) | 0.1731 *** (0.0670) | 0.1505 ** (0.0647) | 0.1509 ** (0.0731) |
Pop | −0.0004 (0.0053) | −0.0002 (0.0054) | −0.0004 (0.0062) | |
Pergdp | −0.0083 (0.0135) | −0.0349 *** (0.0111) | −0.0346 * (0.0192) | |
Findev | −0.0213 ** (0.0100) | −0.0199 (0.0129) | −0.0227 ** (0.0104) | |
Fdi | −0.0009 (0.0015) | 0.0001 (0.0015) | 0.0001 (0.0017) | |
Industry | 0.1386 *** (0.0339) | 0.0806 ** (0.0337) | 0.0807 * (0.0420) | |
Hedu | −0.1171 * (0.0611) | −0.1917 *** (0.0632) | −0.1845 ** (0.0743) | |
Tec | 0.1093 (0.1204) | 0.0173 (0.1235) | 0.0218 (0.1343) | |
Ass | −0.0032 (0.0032) | −0.0042 (0.0036) | −0.0041 (0.0037) | |
Gov | 0.0122 (0.0178) | 0.0095 (0.0228) | 0.0113 (0.0206) | |
Constant | 0.9452 *** (0.0033) | 1.4133 *** (0.1826) | 1.7321 *** (0.2301) | 1.7746 *** (0.2394) |
City fixed effect | √ | √ | √ | √ |
Year fixed effect | √ | √ | √ | √ |
Province-time joint fixed effect | √ | √ | ||
Cluster | City | |||
Observations | 2934 | 2613 | 2570 | 2570 |
Adj.R2 | 0.9415 | 0.9464 | 0.9575 | 0.9575 |
Variable | (1) The First Stage | (2) The Second Stage |
---|---|---|
GA | GTFP | |
IV | 0.8802 *** (0.2226) | |
GA | 0.2348 *** (0.0840) | |
Controls | √ | √ |
City FE | √ | √ |
Year FE | √ | √ |
observed value | 2233 | 2233 |
First-stage F-statistic | 1563.74 *** (0.0000) | |
Adjusted R2 | 0.0181 | |
Kleibergen–Paap rk LM | 997.739 (0.000) | |
Kleibergen–Paap rk Wald F | 1563.735 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wang, X. Does Local Government Green Attention Promote Green Total Factor Productivity? Sustainability 2025, 17, 8884. https://doi.org/10.3390/su17198884
Wang X, Wang X. Does Local Government Green Attention Promote Green Total Factor Productivity? Sustainability. 2025; 17(19):8884. https://doi.org/10.3390/su17198884
Chicago/Turabian StyleWang, Xiaowen, and Xuyou Wang. 2025. "Does Local Government Green Attention Promote Green Total Factor Productivity?" Sustainability 17, no. 19: 8884. https://doi.org/10.3390/su17198884
APA StyleWang, X., & Wang, X. (2025). Does Local Government Green Attention Promote Green Total Factor Productivity? Sustainability, 17(19), 8884. https://doi.org/10.3390/su17198884