The Agricultural Regeneration of Salento (Apulia, Italy) After the Xylella fastidiosa Crisis: Managing the Shocks Through Multi-Criteria Decision-Making Methods
Abstract
1. Introduction
1.1. Background and Scope
1.2. Literature Review
2. Methodological Strategy
2.1. Selection of Criteria
2.2. Selection of Alternatives
2.3. Assigning Weights to Criteria and Sub-Criteria Through the ANP
2.4. Normalization, Aggregation, and Ranking Through the ADAM Method
2.5. Sensitivity Analysis
3. Results
3.1. Evaluation Criteria and Crop Alternatives
3.2. Weighting of Criteria (ANP Results)
3.3. Final Ranking of Crop Alternatives and Robustness Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wahab, F.; Khan, M.J.; Khan, M.Y.; Mushtaq, R. The impact of climate change on agricultural productivity and agricultural loan recovery: Evidence from a developing economy. Environ. Dev. Sustain. 2024, 26, 24777–24790. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022: Impacts, Adaptation and Vulnerability; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Mbow, C.; Rosenzweig, C.; Barioni, L.G.; Benton, T.G.; Herrero, M.; Krishnapillai, M.; Liwenga, E.; Pradhan, P.; Rivera-Ferre, M.G.; Sapkota, T.; et al. Food security. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019; pp. 437–550. [Google Scholar]
- Mamuye, M.; Gallemore, C.; Jespersen, K.; Berecha, G. Changing rainfall and temperature trends and variability at different spatiotemporal scales threaten coffee production in certain elevations. Environ. Chall. 2024, 15, 100950. [Google Scholar] [CrossRef]
- Darnhofer, I. Strategies of family farms to strengthen their resilience. Environ. Policy Gov. 2010, 20, 212–222. [Google Scholar] [CrossRef]
- Chowdhury, P.R.; Medhi, H.; Bhattacharyya, K.G.; Hussain, C.M. Severe deterioration in food–energy–ecosystem nexus due to ongoing Russia–Ukraine war: A critical review. Sci. Total Environ. 2023, 902, 166131. [Google Scholar] [CrossRef] [PubMed]
- Coluccia, B.; Agnusdei, G.P.; Miglietta, P.P.; De Leo, F. Effects of COVID-19 on the Italian agri-food supply and value chains. Food Control 2021, 123, 107839. [Google Scholar] [CrossRef]
- Chirisa, I.; Nel, V. Resilience and climate change in rural areas: A review of infrastructure policies across global regions. Sustain. Resil. Infrastruct. 2022, 7, 380–390. [Google Scholar] [CrossRef]
- Urruty, N.; Tailliez-Lefebvre, D.; Huyghe, C. Stability, robustness, vulnerability and resilience of agricultural systems: A review. Agron. Sustain. Dev. 2016, 36, 15. [Google Scholar] [CrossRef]
- Zeunert, J. Challenges in agricultural sustainability and resilience: Towards regenerative practice. In Routledge Handbook of Landscape and Food; Zeunert, J., Waterman, T., Eds.; Routledge: London, UK, 2018; pp. 231–252. [Google Scholar]
- Murtagh, A.; Farrell, M.; Kuhmonen, T.; Weir, L.; Mahon, M. The future dreams of Ireland’s youth: Possibilities for rural regeneration and generational renewal. Sustainability 2023, 15, 9528. [Google Scholar] [CrossRef]
- Wu, X.; Yuan, Z. Understanding the socio-cultural resilience of rural areas through the intergenerational relationship in transitional China: Case studies from Guangdong. J. Rural Stud. 2023, 97, 303–313. [Google Scholar] [CrossRef]
- European Commission. The Common Agricultural Policy at a Glance. Available online: https://agriculture.ec.europa.eu/common-agricultural-policy/cap-overview_en (accessed on 5 May 2025).
- European Commission. The Common Agricultural Policy: 2023–27. Available online: https://agriculture.ec.europa.eu/common-agricultural-policy/cap-overview/cap-2023-27_en (accessed on 5 May 2025).
- European Commission. The European Green Deal (COM(2019) 640 Final); Publications Office of the European Union: Brussels, Belgium, 2019; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52019DC0640 (accessed on 25 May 2025).
- European Commission. A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System (COM(2020) 381 Final); Publications Office of the European Union: Brussels, Belgium, 2020; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0381 (accessed on 25 May 2025).
- Barbanente, A.; Grassini, L. Landscape regeneration and place-based development in marginal areas: Learning from an integrated project in Southern Salento. City Territ. Archit. 2024, 11, 26. [Google Scholar] [CrossRef]
- Sivini, S.; Vitale, A. Multifunctional and agroecological agriculture as pathways of generational renewal in Italian rural areas. Sustainability 2023, 15, 5990. [Google Scholar] [CrossRef]
- Gkoltsiou, A.; Mougiakou, E. The use of islandscape character assessment and participatory spatial SWOT analysis to the strategic planning and sustainable development of small islands: The case of Gavdos. Land Use Policy 2021, 103, 105277. [Google Scholar] [CrossRef]
- Buchecker, M.; Hunziker, M.; Kienast, F. Participatory landscape development: Overcoming social barriers to public involvement. Landsc. Urban Plan. 2003, 64, 29–46. [Google Scholar] [CrossRef]
- Mihrete, T.B.; Mihretu, F.B. Crop diversification for ensuring sustainable agriculture, risk management and food security. Glob. Chall. 2025, 9, 2400267. [Google Scholar] [CrossRef] [PubMed]
- Agnusdei, L.; Krstić, M.; Palmi, P.; Miglietta, P.P. Digitalization as driver to achieve circularity in the agroindustry: A SWOT-ANP-ADAM approach. Sci. Total Environ. 2023, 882, 163441. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations (FAO). The Future of Food and Agriculture—Alternative Pathways to 2050; FAO: Rome, Italy, 2018. [Google Scholar]
- Scaffidi, F. Average social and territorial innovation impacts of industrial heritage regeneration. Cities 2024, 148, 104907. [Google Scholar] [CrossRef]
- Ferretti, M.; Favargiotti, S.; Lino, B.; Rolando, D. Branding4Resilience: Explorative and collaborative approaches for inner territories. Sustainability 2022, 14, 11235. [Google Scholar] [CrossRef]
- ISTAT. Produzioni. In Italian Institute of Statistics; ISTAT: Rome, Italy, 2015; Available online: https://www.istat.it/it/ (accessed on 10 May 2025).
- Bragard, C.; Dehnen-Schmutz, K.; Di Serio, F.; Gonthier, P.; Jacques, M.A.; Miret, J.A.J.; Justesen, A.F.; MacLeod, A.; Magnusson, C.S.; Milonas, P.; et al. Update of the scientific opinion on the risks to plant health posed by Xylella fastidiosa in the EU territory. EFSA J. 2019, 17, e05665. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Camino, C.; Beck, P.S.A.; Calderon, R.; Hornero, A.; Hernández-Clemente, R.; Kattenborn, T.; Montes-Borrego, M.; Susca, L.; Morelli, M.; et al. Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant-trait alterations. Nat. Plants 2018, 4, 432–439. [Google Scholar] [CrossRef]
- Serio, F.; Imbriani, G.; Girelli, C.R.; Miglietta, P.P.; Scortichini, M.; Fanizzi, F.P. A decade after the outbreak of Xylella fastidiosa subsp. pauca in Apulia (Southern Italy): Methodical literature analysis of research strategies. Plants 2024, 13, 1433. [Google Scholar] [CrossRef]
- Martella, S. An unprecedented experience of collective bereavement: The story of Xylella fastidiosa in Apulia. Development 2023, 66, 233–237. [Google Scholar] [CrossRef]
- Schneider, K.; Mourits, M.; van der Werf, W.; Oude Lansink, A. On consumer impact from Xylella fastidiosa subsp. pauca. Ecol. Econ. 2021, 185, 107024. [Google Scholar] [CrossRef]
- Vergine, M.; Meyer, J.B.; Cardinale, M.; Sabella, E.; Hartmann, M.; Cherubini, P.; De Bellis, L.; Luvisi, A. The Xylella fastidiosa-resistant olive cultivar ‘Leccino’ has stable endophytic microbiota during the olive quick decline syndrome (OQDS). Pathogens 2019, 9, 35. [Google Scholar] [CrossRef]
- Walker, B.; Holling, C.S.; Carpenter, S.R.; Kinzig, A. Resilience, adaptability and transformability in social–ecological systems. Ecol. Soc. 2004, 9, 2. [Google Scholar] [CrossRef]
- Elzen, B.; Barbier, M.; Cerf, M.; Grin, J. Stimulating transitions towards sustainable farming systems. In Farming Systems Research into the 21st Century: The New Dynamic; Darnhofer, I., Gibbon, D., Dedieu, B., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 431–455. [Google Scholar]
- Gottwald, T.R.; da Graça, J.V.; Bassanezi, R.B. Citrus huanglongbing: The pathogen and its impact. Plant Health Prog. 2007, 8, 31. [Google Scholar] [CrossRef]
- Barreales, D.; Capitão, S.; Bento, A.A.; Casquero, P.A.; Ribeiro, A.C. Adapting almond production to climate change through deficit irrigation and foliar kaolin application in a Mediterranean climate. Atmosphere 2023, 14, 1593. [Google Scholar] [CrossRef]
- Dita, M.; Barquero, M.; Heck, D.; Mizubuti, E.S.G.; Staver, C.P. Fusarium wilt of banana: Current knowledge on epidemiology and research needs toward sustainable disease management. Front. Plant Sci. 2018, 9, 1468. [Google Scholar] [CrossRef]
- Distretto Agroalimentare di Qualità Jonico Salentino (DAJS). Rigenerazione sostenibile dei territori colpiti da Xylella fastidiosa. Available online: https://www.dajs.it (accessed on 5 June 2025).
- Montefusco, A.; Durante, M.; Migoni, D.; De Caroli, M.; Ilahy, R.; Pék, Z.; Helyes, L.; Fanizzi, F.P.; Mita, G.; Piro, G.; et al. Analysis of the phytochemical composition of pomegranate fruit juices, peels and kernels: A comparative study on four cultivars grown in southern Italy. Plants 2021, 10, 2521. [Google Scholar] [CrossRef]
- Martelli, G.P.; Boscia, D.; Porcelli, F.; Saponari, M. The olive quick decline syndrome in south-east Italy: A threatening phytosanitary emergency. Eur. J. Plant Pathol. 2016, 144, 235–243. [Google Scholar] [CrossRef]
- Saponari, M.; Giampetruzzi, A.; Loconsole, G.; Boscia, D.; Saldarelli, P. Xylella fastidiosa in olive in Apulia: Where we stand. Phytopathology 2019, 109, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Maldera, F.; Carone, V.; Castellarnau, I.I.; Vivaldi, G.A.; Camposeo, S. Available PAR, growth and yield of a super high-density almond orchard are influenced by different row orientations. Agronomy 2023, 13, 874. [Google Scholar] [CrossRef]
- Alhajj Ali, S.; Vivaldi, G.A.; Garofalo, S.P.; Costanza, L.; Camposeo, S. Land suitability analysis of six fruit tree species immune/resistant to Xylella fastidiosa as alternative crops in infected olive-growing areas. Agronomy 2023, 13, 547. [Google Scholar] [CrossRef]
- Costanza, L.; Maldera, F.; Garofalo, S.P.; Vivaldi, G.A.; Camposeo, S. Ecological optima show the potential diffusion of minor tree crops in Xylella fastidiosa subsp. pauca-infected areas through a GIS-based approach. Front. Agron. 2024, 6, 1421627. [Google Scholar] [CrossRef]
- De Boni, A.; D’Amico, A.; Acciani, C.; Roma, R. Crop diversification and resilience of drought-resistant species in semi-arid areas: An economic and environmental analysis. Sustainability 2022, 14, 9552. [Google Scholar] [CrossRef]
- Coluccia, B.; Palmi, P.; Krstić, M. A multi-level tool to support the circular economy decision-making process in agri-food entrepreneurship. Br. Food J. 2024, 126, 1099–1120. [Google Scholar] [CrossRef]
- Benaissa, M.; Benadada, Y.; Bouksour, O. The application of AHP-TOPSIS methodology for selection of agriculture farms in tomato processing industry: Algerian case study. In Proceedings of the 2020 IEEE 13th International Colloquium of Logistics and Supply Chain Management (LOGISTIQUA), Fez, Morocco, 10–12 June 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Kumar, A.; Pant, S. Analytical hierarchy process for sustainable agriculture: An overview. MethodsX 2023, 10, 101954. [Google Scholar] [CrossRef] [PubMed]
- Krstić, M.; Agnusdei, G.P.; Tadić, S.; Kovač, M.; Miglietta, P.P. A novel axial-distance-based aggregated measurement (ADAM) method for the evaluation of agri-food circular-economy-based business models. Mathematics 2023, 11, 1334. [Google Scholar] [CrossRef]
- Linstone, H.A.; Turoff, M. The Delphi Method: Techniques and Applications; Addison-Wesley: Reading, MA, USA, 1975. [Google Scholar]
- Rowe, G.; Wright, G.; Bolger, F. Delphi: A reevaluation of research and theory. Technol. Forecast. Soc. Change 1991, 39, 235–251. [Google Scholar] [CrossRef]
- Okoli, C.; Pawlowski, S.D. The Delphi method as a research tool: An example, design considerations, and applications. Inf. Manag. 2004, 42, 15–29. [Google Scholar] [CrossRef]
- Hsu, C.C.; Sandford, B.A. The Delphi technique: Making sense of consensus. Pract. Assess. Res. Eval. 2007, 12, 10. [Google Scholar]
- Keeney, S.; Hasson, F.; McKenna, H.P. The Delphi Technique in Nursing and Health Research; Wiley-Blackwell: Chichester, UK, 2006. [Google Scholar]
- von der Gracht, H.A. Consensus measurement in Delphi studies: Review and implications for future quality assurance. Technol. Forecast. Soc. Change 2012, 79, 1525–1536. [Google Scholar] [CrossRef]
- Helmer, O. Social Technology; Basic Books: New York, NY, USA, 1966; p. 214. [Google Scholar]
- Kendall, M.; Gibbons, J.D. Rank Correlation Methods, 5th ed.; Oxford University Press: New York, NY, USA, 1990. [Google Scholar]
- Saaty, T.L. Decision Making with Dependence and Feedback: The Analytic Network Process; RWS Publications: Pittsburgh, PA, USA, 2001. [Google Scholar]
- Chung, S.-H.; Lee, A.H.I.; Pearn, W.L. Analytic network process (ANP) approach for product mix planning in semiconductor fabricator. Int. J. Prod. Econ. 2005, 96, 15–36. [Google Scholar] [CrossRef]
- Apostolou, B.; Hassell, J.M. An empirical examination of the sensitivity of the analytic hierarchy process to departures from recommended consistency ratios. Math. Comput. Model. 1993, 17, 163–170. [Google Scholar] [CrossRef]
- Chu, P.; Liu, J.K.H. Note on consistency ratio. Math. Comput. Model. 2002, 35, 1077–1080. [Google Scholar] [CrossRef]
- Stojić, G.; Stević, Ž.; Antuchevičienė, J.; Pamučar, D.; Vasiljević, M. A novel rough WASPAS approach for supplier selection in a company manufacturing PVC carpentry products. Information 2018, 9, 121. [Google Scholar] [CrossRef]
- Batlle, I.; Tous, J. Carob Tree (Ceratonia siliqua L.). Promoting the Conservation and Use of Underutilized and Neglected Crops 17; International Plant Genetic Resources Institute: Rome, Italy, 1997. [Google Scholar]
- Avallone, R.; Plessi, M.; Baraldi, M.; Monzani, A. Determination of chemical composition of carob (Ceratonia siliqua): Protein, fat, carbohydrates, and tannins. J. Food Compos. Anal. 1997, 10, 166–172. [Google Scholar] [CrossRef]
- Yousif, A.K.; Alghzawi, H.M. Processing and characterization of carob powder. Food Chem. 2000, 69, 283–287. [Google Scholar] [CrossRef]
- Boufadia, Y.M.; Elaoufi, M.; Tabet, F.; Benali, M.; Riazi, A. Chemical composition and antioxidant activity of carob pulp (Ceratonia siliqua L.) extracts. South Asian J. Exp. Biol. 2015, 5, 76–83. [Google Scholar] [CrossRef]
- Papaefstathiou, E.; Agapiou, A.; Giannopoulos, S.; Kokkinofta, R. Nutritional characterization of carobs and traditional carob products. Food Sci. Nutr. 2018, 6, 2151–2161. [Google Scholar] [CrossRef]
- Ozcan, M.M.; Arslan, D.; Gokcalik, H. Some compositional properties and mineral contents of carob (Ceratonia siliqua) fruit, flour and syrup. Int. J. Food Sci. Nutr. 2007, 58, 652–658. [Google Scholar] [CrossRef]
- McGranahan, G.; Leslie, C.A. Breeding walnuts (Juglans regia). In Breeding Plantation Tree Crops: Temperate Species; Priyadarshan, P.M., Jain, S.M., Eds.; Springer: New York, NY, USA, 2009; pp. 249–273. [Google Scholar]
- Pollegioni, P.; Woeste, K.; Chiocchini, F.; Del Lungo, S.; Ciolfi, M.; Olimpieri, I.; Tortolano, V.; Clark, J.; Hemery, G.E.; Mapelli, S.; et al. Rethinking the history of common walnut (Juglans regia L.) in Europe: Its origins and human interactions. PLoS ONE 2017, 12, e0172541. [Google Scholar] [CrossRef]
- FAO. World Food and Agriculture—Statistical Yearbook 2021; Food and Agriculture Organization of the United Nations: Rome, Italy, 2021; Available online: https://openknowledge.fao.org/ (accessed on 8 June 2025).
- European Commission. EU Agricultural Market Outlook; Directorate-General for Agriculture and Rural Development: Brussels, Belgium, 2020. [Google Scholar]
- Vahdati, K.; Sarikhani Khorami, S.; Arab, M.M. Walnut: A potential multipurpose nut crop for reclaiming deteriorated lands and environment. Acta Hortic. 2018, 1190, 95–100. [Google Scholar] [CrossRef]
- Barghchi, M.; Alderson, P.G. Pistachio (Pistacia vera L.). In Trees II; Bajaj, Y.P.S., Ed.; Springer: Berlin, Germany, 1989; pp. 68–98. [Google Scholar]
- Bonifacio, G. La coltura del pistacchio. Riv. Ortiflorofruttic. Ital. 1958, 42, 149–154. [Google Scholar]
- ISMEA. Rapporto sulla competitività dell’agroalimentare italiano 2022; Istituto di Servizi per il Mercato Agricolo Alimentare: Rome, Italy, 2022; Available online: https://www.ismeamercati.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/12802 (accessed on 13 June 2025).
- Khezri, M.; Heerema, R.; Brar, G.; Ferguson, L. Alternate bearing in pistachio (Pistacia vera L.): A review. Trees 2020, 34, 855–868. [Google Scholar] [CrossRef]
- FAO. FAOSTAT: Production, Crops. Available online: http://www.fao.org/faostat/en/ (accessed on 8 June 2025).





| Alternative | Volume | Rank |
|---|---|---|
| Carob | 0.014282 | 1 |
| Walnut | 0.013818 | 2 |
| Pistachio | 0.013189 | 3 |
| Apple | 0.009901 | 4 |
| Citrus | 0.009886 | 5 |
| Chestnut | 0.008713 | 6 |
| Avocado | 0.008365 | 7 |
| Kiwi | 0.007510 | 8 |
| Papaya | 0.006362 | 9 |
| Mango | 0.006208 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coluccia, B.; Tunno, V.; Agnusdei, G.P. The Agricultural Regeneration of Salento (Apulia, Italy) After the Xylella fastidiosa Crisis: Managing the Shocks Through Multi-Criteria Decision-Making Methods. Sustainability 2025, 17, 8812. https://doi.org/10.3390/su17198812
Coluccia B, Tunno V, Agnusdei GP. The Agricultural Regeneration of Salento (Apulia, Italy) After the Xylella fastidiosa Crisis: Managing the Shocks Through Multi-Criteria Decision-Making Methods. Sustainability. 2025; 17(19):8812. https://doi.org/10.3390/su17198812
Chicago/Turabian StyleColuccia, Benedetta, Vittoria Tunno, and Giulio Paolo Agnusdei. 2025. "The Agricultural Regeneration of Salento (Apulia, Italy) After the Xylella fastidiosa Crisis: Managing the Shocks Through Multi-Criteria Decision-Making Methods" Sustainability 17, no. 19: 8812. https://doi.org/10.3390/su17198812
APA StyleColuccia, B., Tunno, V., & Agnusdei, G. P. (2025). The Agricultural Regeneration of Salento (Apulia, Italy) After the Xylella fastidiosa Crisis: Managing the Shocks Through Multi-Criteria Decision-Making Methods. Sustainability, 17(19), 8812. https://doi.org/10.3390/su17198812

