Groundwater Level Prediction Using a Hybrid TCN–Transformer–LSTM Model and Multi-Source Data Fusion: A Case Study of the Kuitun River Basin, Xinjiang
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Data Sources and Preprocessing
2.3. Groundwater Flow Model Construction
2.4. TTL Model Architecture
2.5. Hyperparameter Optimization
3. Results
3.1. Numerical Simulation Results
3.2. Artificial Intelligence-Based GWL Prediction
4. Discussion
4.1. Model Performance Analysis
4.2. Comparative Analysis of TTL Versus Conventional Benchmark Models
4.3. Composition of Principal Component and Hydrometeorological Control Mechanisms
4.4. Analysis of Model Interpretability and Abrupt Event Response Mechanisms
5. Conclusions
- The proposed TTL framework integrates multiscale convolutions, self-attention mechanisms, and LSTM units, thereby addressing the parameter uncertainty of physical models and the feature-extraction limitations of single-type neural networks. Validation results demonstrate that TTL effectively captures hydro-meteorologically driven temporal patterns and abrupt groundwater fluctuations, achieving consistently higher accuracy and stability than benchmark models.
- The PCA results reveal pronounced spatial variability in the dominant groundwater-level (GWL) drivers: rainfall–temperature interactions primarily control KY4 and WS5, whereas antecedent water storage and evapotranspiration exert stronger influence at WS10. Moreover, integrating PCA findings with Transformer attention visualization and temporal Grad-CAM mapping provides robust interpretability.
- To enhance practical applicability, TTL forecasts should be translated into operational indicators, such as time-specific irrigation thresholds and graded groundwater-extraction warnings aligned with watershed management units (WMUs). This requires spatial aggregation or interpolation of point or gridded forecasts to the WMU scale, as well as temporal aggregation to the planning horizon (e.g., daily to weekly or monthly), combined with probability-based outputs derived from ensembles or uncertainty propagation. When processed in this manner, these indicators can be integrated into basin-scale scheduling and real-time allocation platforms via standardized data formats (e.g., NetCDF, GeoTIFF, JSON), enabling rule-based triggers and risk-informed resource allocation.
- Due to data limitations, this study did not consider key drivers such as soil moisture, runoff generation, and pumping records. Future research should incorporate these variables using data assimilation, remote sensing, or hybrid physics–data models. Additionally, emerging machine learning architectures capable of handling heterogeneous covariates and probabilistic forecasting (e.g., the Temporal Fusion Transformer, TFT) should be evaluated to enhance model robustness and predictive reliability. These findings lay the groundwork for the development of practical decision-support tools aimed at promoting sustainable groundwater management in arid inland basins.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wada, Y.; van Beek, L.P.H.; Sperna Weiland, F.C.; Chao, B.F.; Wu, Y.H.; Bierkens, M.F.P. Past and Future Contribution of Global Groundwater Depletion to Sea-level Rise. Geophys. Res. Lett. 2012, 39, 1–6. [Google Scholar] [CrossRef]
- Beyene, T.D.; Zimale, F.A.; Gebrekristos, S.T. A Review on Sources of Uncertainties for Groundwater Recharge Estimates: Insight into Data Scarce Tropical, Arid, and Semiarid Regions. Hydrol. Res. 2023, 55, 51–66. [Google Scholar] [CrossRef]
- Williams, M.L.; MacCoy, D.E.; Maret, T.R. Evaluation of Mercury in Rainbow Trout Collected from Duck Valley Indian Reservation Reservoirs, Southwestern Idaho and Northern Nevada, 2007, 2009, and 2013; U.S. Geological Survey Scientific Investigations Report; U.S. Geological Survey: Reston, VA, USA, 2015; Volume 5079, 18p. [Google Scholar] [CrossRef]
- Seifi, A.; Ehteram, M.; Singh, V.P.; Mosavi, A. Modeling and Uncertainty Analysis of GWL Using Six Evolutionary Optimization Algorithms Hybridized with ANFIS, SVM, and ANN. Sustainability 2020, 12, 4023. [Google Scholar] [CrossRef]
- Gholami, V. Spatial Modeling of Groundwater Depth Fluctuations Using Co-Active Neuro-Fuzzy Inference System (CANFIS) and Geographic Information System (GIS). Appl. Water Sci. 2022, 12, 24. [Google Scholar] [CrossRef]
- Kumar, H.; Syed, T.H.; Amelung, F.; Agrawal, R.; Venkatesh, A.S. Space-Time Evolution of Land Subsidence in the National Capital Region of India Using ALOS-1 and Sentinel-1 SAR Data: Evidence for Groundwater Overexploitation. J. Hydrol. 2022, 605, 127329. [Google Scholar] [CrossRef]
- Fan, B.; Shi, X.; Luo, G.; Hellwich, O.; Ma, X.; Shang, M.; Wang, Y.; Ochege, F.U. Ground Subsidence and Disaster Risk Induced by Groundwater Overexploitation: A Comprehensive Assessment from Arid Oasis Regions. Int. J. Disaster Risk Reduct. 2025, 119, 105328. [Google Scholar] [CrossRef]
- Lezzaik, K.; Milewski, A.; Mullen, J. The Groundwater Risk Index: Development and Application in the Middle East and North Africa Region. Sci. Total Environ. 2018, 628–629, 1149–1164. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Liu, C.; Zhen, P.; Guo, X.; Wang, S. Groundwater Quality Variability with Inter-Basin Water Transfer and Overexploitation Control in an Agriculture-Dominant Subregion of North China Plain. Agric. Water Manag. 2025, 317, 109660. [Google Scholar] [CrossRef]
- Lu, T.; Luo, P.; Wang, J.; Lu, Y.; Huo, A.; Liu, L. Soil Salinity Accumulation and Groundwater Degradation Due to Overexploitation over Recent 40-Year Period in Yaoba Oasis, China. Soil Tillage Res. 2024, 248, 106398. [Google Scholar] [CrossRef]
- Schuch, C.S.; Galvão, P.; de Melo, M.C.; Pereira, S. Overexploitation Assessment in an Urban Karst Aquifer: The Case of Sete Lagoas (MG), Brazil. Environ. Res. 2023, 236, 116820. [Google Scholar] [CrossRef]
- Mo, Y.; Xu, J.; Zhu, S.; Xu, B.; Wu, J.; Jin, G.; Wang, Y.-G.; Li, L. Spatial Heterogeneity of Groundwater Depths in Coastal Cities and Their Responses to Multiple Factors Interactions by Interpretable Machine Learning Models. Geosci. Front. 2025, 16, 102033. [Google Scholar] [CrossRef]
- Goodarzi, M.R.; Bana Bafrouei, H.; Vazirian, M. Insight into GWL Prediction with Feature Effectiveness: Comparison of Machine Learning and Numerical Methods. Hydrol. Res. 2024, 56, 74–92. [Google Scholar] [CrossRef]
- Di Salvo, C. Improving Results of Existing Groundwater Numerical Models Using Machine Learning Techniques: A Review. Water 2022, 14, 2307. [Google Scholar] [CrossRef]
- Khan, J.; Lee, E.; Balobaid, A.S.; Kim, K. A Comprehensive Review of Conventional, Machine Learning, and Deep Learning Models for GWL (GWL) Forecasting. Appl. Sci. 2023, 13, 2743. [Google Scholar] [CrossRef]
- Pourmorad, S.; Kabolizade, M.; Dimuccio, L.A. Artificial Intelligence Advancements for Accurate GWL Modelling: An Updated Synthesis and Review. Appl. Sci. 2024, 14, 7358. [Google Scholar] [CrossRef]
- Thakur, A.; Chandel, A.; Shankar, V. Prediction of GWLs Using a Long Short-Term Memory (LSTM) Technique. J. Hydroinform. 2024, 27, 51–68. [Google Scholar] [CrossRef]
- Sun, J.; Hu, L.; Li, D.; Sun, K.; Yang, Z. Data-Driven Models for Accurate GWL Prediction and Their Practical Significance in Groundwater Management. J. Hydrol. 2022, 608, 127630. [Google Scholar] [CrossRef]
- Patra, S.R.; Chu, H.-J. Convolutional long short-term memory neural network for groundwater change prediction. Front. Water 2024, 6, 1471258. [Google Scholar] [CrossRef]
- Igwebuike, N.; Ajayi, M.; Okolie, C.; Kanyerere, T.; Halihan, T. Application of Machine Learning and Deep Learning for Predicting GWLs in the West Coast Aquifer System, South Africa. Earth Sci. Inform. 2025, 18, 6. [Google Scholar] [CrossRef]
- Larsen, E.W.; Gossel, W.S.; Kuni, T. MODFLOW-2000, The U.S. Geological Survey Modular Ground-Water Model—User Guide to Modularization Concepts and the Ground-Water Flow Process; U.S. Geological Survey: Reston, VA, USA, 2000; Volume 38, pp. 1–130. [Google Scholar]
- Pandey, K.; Kumar, S.; Malik, A.; Kuriqi, A. Artificial Neural Network Optimized with a Genetic Algorithm for Seasonal Groundwater Table Depth Prediction in Uttar Pradesh, India. Sustainability 2020, 12, 8932. [Google Scholar] [CrossRef]
- Roy, D.K.; Biswas, S.K.; Mattar, M.A.; El-Shafei, A.A.; Murad, K.F.I.; Saha, K.K.; Datta, B.; Dewidar, A.Z. GWL Prediction Using a Multiple Objective Genetic Algorithm-Grey Relational Analysis Based Weighted Ensemble of ANFIS Models. Water 2021, 13, 3130. [Google Scholar] [CrossRef]
- Barzegar, R.; Fijani, E.; Asghari Moghaddam, A.; Tziritis, E. Forecasting of GWL Fluctuations Using Ensemble Hybrid Multi-Wavelet Neural Network-Based Models. Sci. Total Environ. 2017, 599–600, 20–31. [Google Scholar] [CrossRef]
- Yadav, B.; Ch, S.; Mathur, S.; Adamowski, J. Assessing the suitability of extreme learning machines (ELM) for GWL prediction. J. Water Land Dev. 2017, 32, 103–112. [Google Scholar] [CrossRef]
- Liu, W.; Yu, H.; Yang, L.; Yin, Z.; Zhu, M.; Wen, X. Deep Learning-Based Predictive Framework for GWL Forecast in Arid Irrigated Areas. Water 2021, 13, 2558. [Google Scholar] [CrossRef]
- Kombo, O.; Kumaran, S.; Sheikh, Y.; Bovim, A.; Jayavel, K. Long-Term GWL Prediction Model Based on Hybrid KNN-RF Technique. Hydrology 2020, 7, 59. [Google Scholar] [CrossRef]
- Monir, M.d.M.; Sarker, S.C.; Islam, A.R.M.T. A Critical Review on GWL Depletion Monitoring Based on GIS and Data-Driven Models: Global Perspectives and Future Challenges. HydroResearch 2024, 7, 285–300. [Google Scholar] [CrossRef]
- Gong, Y.; Wang, Z.; Xu, G.; Zhang, Z. A Comparative Study of GWL Forecasting Using Data-Driven Models Based on Ensemble Empirical Mode Decomposition. Water 2018, 10, 730. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, C.; Wu, Q.; Li, Z.; Jian, S.; Chen, Y. Application of Temporal Convolutional Network for Flood Forecasting. Hydrol. Res. 2021, 52, 1455–1468. [Google Scholar] [CrossRef]
- Haider, A.; Lee, G.; Jafri, T.H.; Yoon, P.; Piao, J.; Jhang, K. Enhancing Accuracy of GWL Forecasting with Minimal Computational Complexity Using Temporal Convolutional Network. Water 2023, 15, 4041. [Google Scholar] [CrossRef]
- Abegeja, D.; Nedaw, D. Identification of groundwater potential zones using geospatial technologies in Meki Catchment, Ethiopia. Geol. Ecol. Landsc. 2024, 10, 1–16. [Google Scholar] [CrossRef]
- Li, R.; Zhu, G.; Chen, L.; Qi, X.; Lu, S.; Meng, G.; Wang, Y.; Li, W.; Zheng, Z.; Yang, J.; et al. Global Stable Isotope Dataset for Surface Water. Earth Syst. Sci. Data 2025, 17, 1–11. [Google Scholar] [CrossRef]
- You, J.; Wang, S.; Ha, M.; Kang, A.; Lei, X.; Chen, B.; Yu, Y.; Chai, B. Comparative hydrologic performance of cascading and distributed green-gray infrastructure: Experimental evidence for spatial optimization in urban waterlogging mitigation. J. Hydrol. 2025, 662, 133979. [Google Scholar] [CrossRef]
- Yu, W.; Wang, P.; Zhao, M.; Qu, Y.; Du, X. Fluid-structure interaction simulation of floating structure interacting with the combined effect of wave-current-earthquake based on CFD method. Ocean Eng. 2025, 339, 122192. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, J.; Zhu, T.; Li, J. Experimental and MPM modelling of widened levee failure under the combined effect of heavy rainfall and high riverine water levels. Comput. Geotech. 2025, 184, 107259. [Google Scholar] [CrossRef]
- Kishor, K.; Aggarwal, A.; Srivastava, P.K.; Sharma, Y.K.; Lee, J.; Ghobadi, F. A Systematic Literature Review of MODFLOW Combined with Artifcial Neural Networks(ANNs) for Groundwater Flow Modelling. Water 2025, 17, 2375. [Google Scholar] [CrossRef]
- Saqr, A.M.; Kartal, V.; Karakoyun, E.; Abd-Elmaboud, M.E. Improving the Accuracy of GWL Forecasting by Coupling Ensemble Machine Learning Model and Coronavirus Herd Immunity Optimizer. Water Resour. Manag. 2025, 27, 106268. [Google Scholar] [CrossRef]
- Makhlouf, A.; El-Rawy, M.; Kanae, S.; Ibrahim, M.G.; Sharaan, M. Integrating MODFLOW and Machine Learning for Detecting Optimum Groundwater Abstraction Considering Sustainable Drawdown and Climate Changes. J. Hydrol. 2024, 637, 131428. [Google Scholar] [CrossRef]
- Qiao, C.; Wang, Y.; Liu, Y.; Li, J.; Zhang, H.; Lu, J. Study of Water Resources Optimal Operation Model of Multireservoir: A Case Study of Kuitun River Basin in Northwestern China. Wirel. Commun. Mob. Comput. 2022, 17, 919. [Google Scholar] [CrossRef]
- Li, Q.; Tao, H.; Aihemaiti, M.; Jiang, Y.; Su, Y.; Yang, W. Spatial Distribution Characteristics and Enrichment Factors of High-Fluorine Groundwater in the Kuitun River Basin of Xinjiang Uygur Autonomous Region in China. Desalination Water Treat. 2021, 223, 208–217. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Z.; Mou, J.; He, H. Impact of Glacier Change on Water Resources in the Kuytun River Basin, Tianshan Mountains During the Recent 50 Years. Geogr. Sin. 2017, 37, 1771–1777. [Google Scholar] [CrossRef]
- Zhao, L.; Sun, M.; Sun, H.; Gong, N.; Yan, L. Discharge Simulation and Sensitivity to Climate Change of the Kuytun River Basin on the North Slope of Tianshan Mountains, China. J. Mt. Res. 2018, 36, 722–730. [Google Scholar] [CrossRef]
- Shi, J.; Wang, S.; Qu, P.; Shao, J. Time Series Prediction Model Using LSTM-Transformer Neural Network for Mine Water Inflow. Sci. Rep. 2024, 14, 8214. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liu, C.; Xu, Y.; Niu, C.; Li, R.; Li, M.; Hu, C.; Tian, L. An Interpretable Hybrid Deep Learning Model for Flood Forecasting Based on Transformer and LSTM. J. Hydrol. Reg. Stud. 2024, 54, 101873. [Google Scholar] [CrossRef]
- Motawej, H. Integrating MODFLOW and LSTM Models for Enhanced Groundwater Management in the Coastal Plains of Lattakia Governorate. Water Pract. Technol. 2024, 20, 413–423. [Google Scholar] [CrossRef]
- Zong, R.; Wang, Z.; Li, W.; Ayantobo, O.O.; Li, h.; Song, L. Assessing the impact of seasonal freezing and thawing on the soil microbial quality in arid northwest China. Sci. Total Environ. 2023, 863, 161029. [Google Scholar] [CrossRef]
- Zhang, X.; Dong, F.; Chen, G.; Dai, Z. Advance Prediction of Coastal GWLs with Temporal Convolutional and Long Short-Term Memory Networks. Hydrol. Earth Syst. Sci. 2023, 27, 83–96. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Lo, Z.V.; Lee, J.-W. GWL Prediction with Deep Learning Methods. Water 2023, 15, 3118. [Google Scholar] [CrossRef]
- Lara-Benítez, P.; Carranza-García, M.; Luna-Romera, J.M.; Riquelme, J.C. Temporal Convolutional Networks Applied to Energy-Related Time Series Forecasting. Appl. Sci. 2020, 10, 2322. [Google Scholar] [CrossRef]
- Wang, M.; Qin, F. A TCN-Linear Hybrid Model for Chaotic Time Series Forecasting. Entropy. 2024, 26, 467. [Google Scholar] [CrossRef]
- Guo, D.; Duan, P.; Yang, Z.; Zhang, X.; Su, Y. Convolutional Neural Network and Bidirectional Long Short-Term Memory (CNN-BiLSTM)-Attention-Based Prediction of the Amount of Silica Powder Moving in and out of a Warehouse. Energies 2024, 17, 3757. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, X.; Liu, S.; Shang, X.; Xu, Z.; Zhao, J. A Study on GWL Calculation Based on PCA-CIWOABP. Front. Earth Sci. 2024, 12, 1445241. [Google Scholar] [CrossRef]
- Haji-Aghajany, S.; Amerian, Y.; Amiri-Simkooei, A. Impact of Climate Change Parameters on GWL: Implications for Two Subsidence Regions in Iran Using Geodetic Observations and Artificial Neural Networks (ANN). Remote Sens. 2023, 15, 1555. [Google Scholar] [CrossRef]
- Li, W.; Finsa, M.M.; Laskey, K.B.; Houser, P.; Douglas-Bate, R. GWL Prediction with Machine Learning to Support Sustainable Irrigation in Water Scarcity Regions. Water 2023, 15, 3473. [Google Scholar] [CrossRef]
- Kidmose, J.; Refsgaard, J.C.; Troldborg, L.; Seaby, L.P.; Escrivà, M.M. Climate Change Impact on GWLs: Ensemble Modelling of Extreme Values. Hydrol. Earth Syst. Sci. 2013, 17, 1619–1634. [Google Scholar] [CrossRef]
- Baud, B.; Lachassagne, P.; Dumont, M.; Toulier, A.; Hendrayana, H.; Fadillah, A.; Dorfliger, N. Review: Andesitic Aquifers—Hydrogeological Conceptual Models and Insights Relevant to Applied Hydrogeology. Hydrogeol. J. 2024, 32, 1259–1286. [Google Scholar] [CrossRef]
- Tian, C.; Wang, L.; Li, F.; Zhang, X.; Jiao, W.; Medici, M.; Kaseke, F.; Beysens, D. The Moisture Origin of Dew: Insights from Three Sites with Contrasting Climatic Conditions. Hydrol. Process. 2023, 37, e14902. [Google Scholar] [CrossRef]
- Mohammed, M.A.A.; Szabó, N.P.; Mikita, V.; Szűcs, P. Tracking the Spatiotemporal Evolution of Groundwater Chemistry in the Quaternary Aquifer System of Debrecen Area, Hungary: Integration of Classical and Unsupervised Learning Methods. Environ. Sci. Pollut. Res. 2025, 32, 6884–6903. [Google Scholar] [CrossRef]
- Di Lena, F.; Berardi, M.; Masciale, R.; Portoghese, I. Network Dynamics for Modelling Artificial Groundwater Recharge by a Cluster of Infiltration Basins. Hydrol. Process. 2023, 37, 14876. [Google Scholar] [CrossRef]
- Wan, R.; Tian, C.; Zhang, W.; Deng, W.; Yang, F. A Multivariate Temporal Convolutional Attention Network for Time-Series Forecasting. Electronics 2022, 11, 1516. [Google Scholar] [CrossRef]
- Parasar, P.; Krishna, A.P. Explainable AI-driven assessment of hydro climatic interactions shaping river discharge dy-namics in a monsoonal basin. Sci Rep. 2025, 15, 27302. [Google Scholar] [CrossRef] [PubMed]
- Lim, B.; Arık, S.Ö.; Loeff, N.; Pfister, T. Temporal Fusion Transformers for Interpretable Multi-Horizon Time Series Forecasting. Int. J. Forecast. 2021, 37, 1748–1764. [Google Scholar] [CrossRef]
- Liu, C.; Liu, D.; Mu, L. Improved Transformer Model for Enhanced Monthly Streamflow Predictions of the Yangtze River. IEEE Access. 2022, 10, 58240–58253. [Google Scholar] [CrossRef]
- Dikshit, A.; Pradhan, B.; Assiri, M.E.; Almazroui, M.; Park, H.J. Solving Transparency in Drought Forecasting Using Attention Models. Sci. Total Environ. 2022, 837, 155856. [Google Scholar] [CrossRef]
- Shakoor, A.; Shah, S.A.; Sattar, M.N.; Ogunrinde, A.T.; Alharbi, R.S.; Rehman, F.u. Hydroclimate Drivers and Spatiotem-poral Dynamics of Reference Evapotranspiration in a Changing Climate. Water. 2025, 17, 2586. [Google Scholar] [CrossRef]
- Santos, J.F.; Carriço, N.; Miri, M.; Raziei, T. Distributed Composite Drought Index Based on Principal Component Analy-sis and Temporal Dependence Assessment. Water 2025, 17, 17. [Google Scholar] [CrossRef]
- Xiang, X.; Guo, S.; Cui, Z.; Wang, L.; Xu, C.-Y. Improving Flood Forecast Accuracy Based on Explainable Convolutional Neural Network by Grad-CAM Method. J. Hydrol. 2024, 642, 131867. [Google Scholar] [CrossRef]
- Noor, F.; Haq, S.; Rakib, M.; Ahmed, T.; Jamal, Z.; Siam, Z.S.; Hasan, R.T.; Adnan, M.S.G.; Dewan, A.; Rahman, R.M. Water Level Forecasting Using Spatiotemporal Attention-Based Long Short-Term Memory Network. Water 2022, 14, 612. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Chang, T.-Y.; Chow, H.-Y.; Li, S.-L.; Ou, C.-Y. Using Convolutional Neural Networks to Build a Lightweight Flood Height Prediction Model with Grad-CAM for the Selection of Key Grid Cells in Radar Echo Maps. Water 2022, 14, 155. [Google Scholar] [CrossRef]
Variable Name | Unit | Description |
---|---|---|
Precipitation | mm | Daily total precipitation |
Evaporation | mm | Daily evaporation |
Air temperature | °C | Daily mean air temperature |
Groundwater level | m | Previous-day(s) GWL |
Well ID | Latitude (°N) | Longitude (°E) | Mean GWL (m) | Period |
---|---|---|---|---|
KY4 | 44.4506 | 85.1228 | 394.5317 | 2019.1–2021.12 |
WS5 | 44.9835 | 84.3532 | 266.2015 | 2019.1–2021.12 |
WS10 | 44.4447 | 84.5178 | 430.8993 | 2019.1–2021.12 |
Wells | Model | R2 | RMSE | MSE | MAE |
---|---|---|---|---|---|
KY4 | CBA | 0.853 | 1.2527 | 1.5114 | 1.0055 |
CGA | 0.94807 | 0.7217 | 0.5209 | 0.5664 | |
GMS | 0.9617 | 0.6286 | 0.3951 | 0.5145 | |
TTL | 0.964 | 0.6357 | 0.4042 | 0.4461 | |
WS5 | CBA | 0.7761 | 3.2406 | 10.5 | 2.4873 |
CGA | 0.9574 | 1.3841 | 1.9157 | 1.1054 | |
GMS | 0.63 | 0.8229 | 0.67 | 0.6662 | |
TTL | 0.96 | 1.3894 | 1.9306 | 1.2449 | |
WS10 | CBA | 0.75901 | 3.0217 | 9.1309 | 2.4284 |
CGA | 0.9331 | 1.5722 | 2.4719 | 1.2627 | |
GMS | 0.9821 | 0.8493 | 0.7223 | 0.6364 | |
TTL | 0.9056 | 1.8799 | 3.5341 | 1.7602 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Du, M.; Ma, X.; Hu, S.; Tuo, Z. Groundwater Level Prediction Using a Hybrid TCN–Transformer–LSTM Model and Multi-Source Data Fusion: A Case Study of the Kuitun River Basin, Xinjiang. Sustainability 2025, 17, 8544. https://doi.org/10.3390/su17198544
Liu Y, Du M, Ma X, Hu S, Tuo Z. Groundwater Level Prediction Using a Hybrid TCN–Transformer–LSTM Model and Multi-Source Data Fusion: A Case Study of the Kuitun River Basin, Xinjiang. Sustainability. 2025; 17(19):8544. https://doi.org/10.3390/su17198544
Chicago/Turabian StyleLiu, Yankun, Mingliang Du, Xiaofei Ma, Shuting Hu, and Ziyun Tuo. 2025. "Groundwater Level Prediction Using a Hybrid TCN–Transformer–LSTM Model and Multi-Source Data Fusion: A Case Study of the Kuitun River Basin, Xinjiang" Sustainability 17, no. 19: 8544. https://doi.org/10.3390/su17198544
APA StyleLiu, Y., Du, M., Ma, X., Hu, S., & Tuo, Z. (2025). Groundwater Level Prediction Using a Hybrid TCN–Transformer–LSTM Model and Multi-Source Data Fusion: A Case Study of the Kuitun River Basin, Xinjiang. Sustainability, 17(19), 8544. https://doi.org/10.3390/su17198544