A Systematic Review of AI-Based Classifications Used in Agricultural Monitoring in the Context of Achieving the Sustainable Development Goals
Abstract
1. Introduction
2. Materials and Methods
2.1. Selection Criteria
- Addressed the topics of the research questions;
- Were published in peer-reviewed journals;
- Were published between 2020 and 2024;
- Were open access;
- Were written in English.
2.2. Information Sources
2.3. Search Strategy
2.4. Selection Process
3. Related Work
4. Results
4.1. Answer to the First Research Question (“What Are the Main Problems That Can Be Solved Through Incorporating AI-Driven Classification Techniques in the Field of Smart Agriculture and Environmental Monitoring?”)
- Land use mapping and crop detection;
- Crop yield monitoring;
- Flood-prone area detection;
- Forest and vegetation monitoring;
- Pest disease monitoring;
- Droughts prediction;
- Soil content analysis and soil production capacity detection.
4.1.1. Land Use Mapping and Crop Detection
4.1.2. Crop Yield Monitoring
4.1.3. Flood-Prone Area Detection
4.1.4. Forest and Vegetation Monitoring
4.1.5. Pest Disease Monitoring
4.1.6. Droughts Prediction
4.1.7. Soil Content Analysis and Soil Production Capacity Detection
4.2. Answer to the Second Research Question (“What Are the Main Methods and Strategies Used in This Technology?”)
4.2.1. Land Use Mapping and Crop Detection
4.2.2. Crop Yield Monitoring
4.2.3. Flood-Prone Area Detection
4.2.4. Forest and Vegetation Monitoring
4.2.5. Pest Disease Monitoring
4.2.6. Droughts Prediction
4.2.7. Soil Content Analysis and Soil Production Capacity Detection
4.3. Answer to the Third Research Question (“What Type of Data Can Be Used in This Regards?”)
4.3.1. Land Use Mapping and Crop Detection
4.3.2. Crop Yield Monitoring
4.3.3. Flood-Prone Area Detection
4.3.4. Forest and Vegetation Monitoring
4.3.5. Pest Disease Monitoring
4.3.6. Droughts Prediction
4.3.7. Soil Content Analysis and Soil Production Capacity Detection
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
ANN | Artificial Neural Network |
ARIMA | Autoregressive Integrated Moving Average |
BETAM | Border-Enhanced Triple Attention Mechanism |
CART | Classification and Regression Tree |
CHEOS | China High-Resolution Earth Observation System |
CNN | Convolutional Neural Network |
CRRF | Crop-Residue Random Forest |
DL | Deep Learning |
DNN | Deep Neural Network |
DT | Decision Tree |
EC | European Commission |
ERF | Extreme Random Forest |
ESA | European Space Agency |
FAO | Food and Agriculture Organization |
FCNN | Fully Connected Neural Network |
GAN | Generative Adversarial Network |
GA-RF | Genetic Algorithm-Optimized Random Forest |
GEDI | Global Ecosystem Dynamics Investigation |
GEE | Google Earth Engine |
GF | Gaofen |
GLM | Generalized Linear Model |
GNB | Gaussian Naïve Bayes |
GSD | Ground Sampling Distance |
GTB | Gradient Tree Boost |
IF | Isolation Forest |
IoT | Internet of Things |
kNN | k-Nearest Neighbor |
LASSO | Least Absolute Shrinkage and Selection Operator |
LiDAR | Light Detection and Ranging |
LR | Linear Regression |
LSTM | Long Short-Term Memory |
LVQ | Learning Vector Quantization |
ML | Machine Learning |
MLP | Multilayer Perceptron |
MSI | Multispectral Instrument |
NB | Normal Bayes |
NDVI | Normalized Difference Vegetation Index |
NIR | Near Infrared |
NN | Nearest Neighbor |
OC-SVM | One-Class Support Vector Machine |
OG-WOA | Optimal Guidance-Whale Optimization Algorithm |
OLI | Operational Land Imager |
OTB | Orfeo Toolbox |
OUDN | Object-Based U-Net-DenseNet |
PMC | Panchromatic and Multispectral Camera |
QDA | Quadratic Discriminant Analysis |
QHPO | Quantum Hippopotamus Optimization |
RF | Random Forest |
RNN | Recurrent Neural Network |
RSS-GAN | Remote Sensing Super-Resolution Generative Adversarial Network |
SAR | Synthetic Aperture Radar |
SCP | Semi-Automated Classification Plugin |
SDG | Sustainable Development Goal |
SEBAL | Surface Energy Balance Algorithm for Land |
SLR | Systematic Literature Review |
SNAP | Sentinel Application Platform |
SPOT | Satellite pour l’Observation de la Terre |
SS-RF | Stochastic Spatial Random Forest |
SVM | Support Vector Machine |
SWIR | Shortwave Infrared |
TIR | Thermal Infrared |
UAV | Unmanned Aerial Vehicle |
UAVSTAR | Uninhabited Arial Vehicle Synthetic Aperture Radar |
References
- Huo, D.; Malik, A.W.; Ravana, S.D.; Rahman, A.U.; Ahmedy, I. Mapping Smart Farming: Addressing Agricultural Challenges in Data-Driven Era. Renew. Sustain. Energy Rev. 2024, 189, 113858. [Google Scholar] [CrossRef]
- THE 17 GOALS|Sustainable Development. Available online: https://sdgs.un.org/goals (accessed on 9 July 2025).
- Maroli, A.; Narwane, V.S.; Gardas, B.B. Applications of IoT for Achieving Sustainability in Agricultural Sector: A Comprehensive Review. J. Environ. Manag. 2021, 298, 113488. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R. Enhancing Smart Farming through the Applications of Agriculture 4.0 Technologies. Int. J. Intell. Netw. 2022, 3, 150–164. [Google Scholar] [CrossRef]
- CAP at a Glance—European Commission. Available online: https://agriculture.ec.europa.eu/common-agricultural-policy/cap-overview/cap-glance_en (accessed on 9 July 2025).
- van der Velden, D.; Klerkx, L.; Dessein, J.; Debruyne, L. Governance by Satellite: Remote Sensing, Bureaucrats and Agency in the Common Agricultural Policy of the European Union. J. Rural. Stud. 2025, 114, 103558. [Google Scholar] [CrossRef]
- Cappelli, S.L.; Domeignoz-Horta, L.A.; Loaiza, V.; Laine, A.-L. Plant Biodiversity Promotes Sustainable Agriculture Directly and via Belowground Effects. Trends Plant Sci. 2022, 27, 674–687. [Google Scholar] [CrossRef] [PubMed]
- Lahssini, K.; Teste, F.; Dayal, K.R.; Durrieu, S.; Ienco, D.; Monnet, J.-M. Combining LiDAR Metrics and Sentinel-2 Imagery to Estimate Basal Area and Wood Volume in Complex Forest Environment via Neural Networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 4337–4348. [Google Scholar] [CrossRef]
- Pereira, P.; Brevik, E.C.; Muñoz-Rojas, M.; Miller, B.A.; Smetanova, A.; Depellegrin, D.; Misiune, I.; Novara, A.; Cerdà, A. Chapter 2—Soil Mapping and Processes Modeling for Sustainable Land Management. In Soil Mapping and Process Modeling for Sustainable Land Use Management; Pereira, P., Brevik, E.C., Muñoz-Rojas, M., Miller, B.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 29–60. ISBN 978-0-12-805200-6. [Google Scholar]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote Sensing for Agricultural Applications: A Meta-Review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of Remote Sensing in Precision Agriculture: A Review. Remote Sens. 2020, 12, 3136. [Google Scholar] [CrossRef]
- Verma, Y.; Verma, A.; Chatterjee, S.; Sagar, P. Remote Sensing Applications in Agriculture. In Recent Trends in Agriculture; Integrated Publications: New Delhi, India, 2024; pp. 159–180. ISBN 978-93-5834-170-6. [Google Scholar]
- Wang, J.; Wang, Y.; Li, G.; Qi, Z. Integration of Remote Sensing and Machine Learning for Precision Agriculture: A Comprehensive Perspective on Applications. Agronomy 2024, 14, 1975. [Google Scholar] [CrossRef]
- Jung, J.; Maeda, M.; Chang, A.; Bhandari, M.; Ashapure, A.; Landivar-Bowles, J. The Potential of Remote Sensing and Artificial Intelligence as Tools to Improve the Resilience of Agriculture Production Systems. Curr. Opin. Biotechnol. 2021, 70, 15–22. [Google Scholar] [CrossRef]
- Sustainable Development Report 2025. Available online: https://dashboards.sdgindex.org/ (accessed on 9 July 2025).
- Interlinkages—Goals|KnowSDGs. Available online: https://knowsdgs.jrc.ec.europa.eu/interlinkages/goals (accessed on 9 July 2025).
- Badea, A.C. Overview of the Sustainable Development Goals in Action and on the Involvement of UTCB in Sustainability Projects. EU-CONEXUS Seminar, 2025. Available online: https://www.eu-conexus.eu/en/joint-research-institutes-seminars/overview-of-the-sustainable-development-goals-in-action-and-on-the-involvement-of-utcb-in-sustainability-projects/ (accessed on 16 June 2025).
- Agricultural Production—Crops. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agricultural_production_-_crops (accessed on 9 July 2025).
- Parra-López, C.; Ben Abdallah, S.; Garcia-Garcia, G.; Hassoun, A.; Trollman, H.; Jagtap, S.; Gupta, S.; Aït-Kaddour, A.; Makmuang, S.; Carmona-Torres, C. Digital Technologies for Water Use and Management in Agriculture: Recent Applications and Future Outlook. Agric. Water Manag. 2025, 309, 109347. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, H.; Yang, X.; Shu, J.; Wu, Q.; Que, Y.; Yang, X.; Yi, X.; Khalil, I.; Zomaya, A.Y. Remote Sensing Revolutionizing Agriculture: Toward a New Frontier. Future Gener. Comput. Syst. 2025, 166, 107691. [Google Scholar] [CrossRef]
- Bilal, A.; Liu, X.; Long, H.; Shafiq, M.; Waqar, M. Increasing Crop Quality and Yield with a Machine Learning-Based Crop Monitoring System. Comput. Mater. Contin. 2023, 76, 2401–2426. [Google Scholar] [CrossRef]
- LavagnedOrtigue, O. (ESS) Land Statistics and Indicators 2000–2021. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/5c8b2707-1bcf-4c29-90e2-3487e583f71e/content (accessed on 9 July 2025).
- Sustainable Development. Available online: https://sdgs.un.org/ (accessed on 9 July 2025).
- Goal 2|Department of Economic and Social Affairs. Available online: https://sdgs.un.org/goals/goal2#targets_and_indicators (accessed on 9 July 2025).
- Nevavuori, P.; Narra, N.; Linna, P.; Lipping, T. Crop Yield Prediction Using Multitemporal UAV Data and Spatio-Temporal Deep Learning Models. Remote Sens. 2020, 12, 4000. [Google Scholar] [CrossRef]
- Assessing Flood Impact on Agricultural Production. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/89ae84da-5b93-464a-87b4-4d99c3083528/content (accessed on 9 July 2025).
- Atchyuth, B.A.S.; Swain, R.; Das, P. Near Real-Time Flood Inundation and Hazard Mapping of Baitarani River Basin Using Google Earth Engine and SAR Imagery. Environ. Monit. Assess. 2023, 195, 1331. [Google Scholar] [CrossRef]
- Liman Harou, I.; Whitney, C.; Kung’u, J.; Luedeling, E. Mapping Flood-Based Farming Systems with Bayesian Networks. Land 2020, 9, 369. [Google Scholar] [CrossRef]
- Duriaux Chavarría, J.-Y.; Baudron, F.; Sunderland, T. Retaining Forests within Agricultural Landscapes as a Pathway to Sustainable Intensification: Evidence from Southern Ethiopia. Agric. Ecosyst. Environ. 2018, 263, 41–52. [Google Scholar] [CrossRef]
- Fragoso-Medina, M.d.C.; Navarrete-Segueda, A.; Ceccon, E.; Martínez-Ramos, M. Effects of the Forests-Agriculture Conversion on the Availability and Diversity of Forest Products in a Neotropical Rainforest Region. Trees For. People 2024, 15, 100481. [Google Scholar] [CrossRef]
- FAO Forests and Forest Soils: An Essential Contribution to Agricultural Production and Global Food Security. Available online: http://www.fao.org/soils-portal (accessed on 9 July 2025).
- Zhang, J.; Cong, S.; Zhang, G.; Ma, Y.; Zhang, Y.; Huang, J. Detecting Pest-Infested Forest Damage through Multispectral Satellite Imagery and Improved UNet++. Sensors 2022, 22, 7440. [Google Scholar] [CrossRef]
- Alkan, E.; Aydin, A. Machine Learning-Based Prediction of Insect Damage Spread Using Auto-ARIMA Model. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2024, 45, 351–364. [Google Scholar] [CrossRef]
- Villani, G.; Tomei, F.; Pavan, V.; Pirola, A.; Spisni, A.; Marletto, V. The iCOLT Climate Service: Seasonal Predictions of Irrigation for Emilia-Romagna, Italy. Meteorol. Appl. 2021, 28, e2007. [Google Scholar] [CrossRef]
- Laipelt, L.; Rossi, J.B.; de Andrade, B.C.; Scherer-Warren, M.; Ruhoff, A. Assessing Evapotranspiration Changes in Response to Cropland Expansion in Tropical Climates. Remote Sens. 2024, 16, 3404. [Google Scholar] [CrossRef]
- Singh, T.; Kundroo, M.; Kim, T. WSN-Driven Advances in Soil Moisture Estimation: A Machine Learning Approach. Electronics 2024, 13, 1590. [Google Scholar] [CrossRef]
- Salmanpour, A.; Jamshidi, M.; Fatehi, S.; Ghanbarpouri, M.; Mirzavand, J. Assessment of Macronutrients Status Using Digital Soil Mapping Techniques: A Case Study in Maru’ak Area in Lorestan Province, Iran. Environ. Monit. Assess. 2023, 195, 513. [Google Scholar] [CrossRef] [PubMed]
- Budak, M.; Günal, E.; Kılıç, M.; Çelik, İ.; Sırrı, M.; Acir, N. Improvement of Spatial Estimation for Soil Organic Carbon Stocks in Yuksekova Plain Using Sentinel 2 Imagery and Gradient Descent–Boosted Regression Tree. Environ. Sci. Pollut. Res. 2023, 30, 53253–53274. [Google Scholar] [CrossRef]
- Chen, J.; Du, H.; Mao, F.; Huang, Z.; Chen, C.; Hu, M.; Li, X. Improving Forest Age Prediction Performance Using Ensemble Learning Algorithms Base on Satellite Remote Sensing Data. Ecol. Indic. 2024, 166, 112327. [Google Scholar] [CrossRef]
- Ameslek, O.; Zahir, H.; Latifi, H.; Bachaoui, E.M. Combining OBIA, CNN, and UAV Imagery for Automated Detection and Mapping of Individual Olive Trees. Smart Agric. Technol. 2024, 9, 100546. [Google Scholar] [CrossRef]
- Trentin, C.; Ampatzidis, Y.; Lacerda, C.; Shiratsuchi, L. Tree Crop Yield Estimation and Prediction Using Remote Sensing and Machine Learning: A Systematic Review. Smart Agric. Technol. 2024, 9, 100556. [Google Scholar] [CrossRef]
- Vasilakos, C.; Kavroudakis, D.; Georganta, A. Machine Learning Classification Ensemble of Multitemporal Sentinel-2 Images: The Case of a Mixed Mediterranean Ecosystem. Remote Sens. 2020, 12, 2005. [Google Scholar] [CrossRef]
- Li, Z.; Chen, B.; Wu, S.; Su, M.; Chen, J.M.; Xu, B. Deep Learning for Urban Land Use Category Classification: A Review and Experimental Assessment. Remote Sens. Environ. 2024, 311, 114290. [Google Scholar] [CrossRef]
- Wang, G.; Chen, J.; Mo, L.; Wu, P.; Yi, X. Border-Enhanced Triple Attention Mechanism for High-Resolution Remote Sensing Images and Application to Land Cover Classification. Remote Sens. 2024, 16, 2814. [Google Scholar] [CrossRef]
- Multilayer Perceptron—An Overview|ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/computer-science/multilayer-perceptron (accessed on 9 July 2025).
- Gevaert, C.M.; Belgiu, M. Assessing the Generalization Capability of Deep Learning Networks for Aerial Image Classification Using Landscape Metrics. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103054. [Google Scholar] [CrossRef]
- Vinaykumar, V.N.; Babu, J.A.; Frnda, J. Optimal Guidance Whale Optimization Algorithm and Hybrid Deep Learning Networks for Land Use Land Cover Classification. EURASIP J. Adv. Signal Process. 2023, 2023, 13. [Google Scholar] [CrossRef]
- Albarakati, H.M.; Khan, M.A.; Hamza, A.; Khan, F.; Kraiem, N.; Jamel, L.; Almuqren, L.; Alroobaea, R. A Novel Deep Learning Architecture for Agriculture Land Cover and Land Use Classification from Remote Sensing Images Based on Network-Level Fusion of Self-Attention Architecture. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 6338–6353. [Google Scholar] [CrossRef]
- Kong, J.; Ryu, Y.; Jeong, S.; Zhong, Z.; Choi, W.; Kim, J.; Lee, K.; Lim, J.; Jang, K.; Chun, J.; et al. Super Resolution of Historic Landsat Imagery Using a Dual Generative Adversarial Network (GAN) Model with CubeSat Constellation Imagery for Spatially Enhanced Long-Term Vegetation Monitoring. ISPRS J. Photogramm. Remote Sens. 2023, 200, 1–23. [Google Scholar] [CrossRef]
- PyTorch. Available online: https://pytorch.org/ (accessed on 9 July 2025).
- Hamidi, M.; Homayouni, S.; Safari, A.; Hasani, H. Deep Learning Based Crop-Type Mapping Using SAR and Optical Data Fusion. Int. J. Appl. Earth Obs. Geoinf. 2024, 129, 103860. [Google Scholar] [CrossRef]
- Snevajs, H.; Charvat, K.; Onckelet, V.; Kvapil, J.; Zadrazil, F.; Kubickova, H.; Seidlova, J.; Batrlova, I. Crop Detection Using Time Series of Sentinel-2 and Sentinel-1 and Existing Land Parcel Information Systems. Remote Sens. 2022, 14, 1095. [Google Scholar] [CrossRef]
- Gackstetter, D.; Körner, M.; Yu, K. Approaching Holistic Crop Type Mapping in Europe through Winter Vegetation Classification and the Hierarchical Crop and Agriculture Taxonomy. Int. J. Appl. Earth Obs. Geoinf. 2024, 134, 104159. [Google Scholar] [CrossRef]
- Di Tommaso, S.; Wang, S.; Vajipey, V.; Gorelick, N.; Strey, R.; Lobell, D.B. Annual Field-Scale Maps of Tall and Short Crops at the Global Scale Using GEDI and Sentinel-2. Remote Sens. 2023, 15, 4123. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, S.; Zhang, W. Dilated Spectral–Spatial Gaussian Transformer Net for Hyperspectral Image Classification. Remote Sens. 2024, 16, 287. [Google Scholar] [CrossRef]
- Yue, J.; Tian, Q. Estimating Fractional Cover of Crop, Crop Residue, and Soil in Cropland Using Broadband Remote Sensing Data and Machine Learning. Int. J. Appl. Earth Obs. Geoinf. 2020, 89, 102089. [Google Scholar] [CrossRef]
- Alotaibi, Y.; Rajendran, B.; Rani, K.G.; Rajendran, S. Dipper Throated Optimization with Deep Convolutional Neural Network-Based Crop Classification for Remote Sensing Image Analysis. PeerJ Comput. Sci. 2024, 10, e1828. [Google Scholar] [CrossRef]
- Aljanabi, F.; Dedeoglu, M.; Şeker, C. Environmental Monitoring of Land Use/ Land Cover by Integrating Remote Sensing and Machine Learning Algorithms. J. Eng. Sustain. Dev. 2024, 28, 455–466. [Google Scholar] [CrossRef]
- Sachit, M.; Khazael, S.; Atiyah, H. Evaluating the Performance of Supervised Classification Algorithms in Classifying SENTINEL-2A Images on Land Cover and Land Uses of a Part of Baghdad, Iraq. Iraqi J. Sci. 2024, 65, 7349–7363. [Google Scholar] [CrossRef]
- Atef, I.; Ahmed, W.; Abdel-Maguid, R.H. Modelling of Land Use Land Cover Changes Using Machine Learning and GIS Techniques: A Case Study in El-Fayoum Governorate, Egypt. Environ. Monit. Assess. 2023, 195, 637. [Google Scholar] [CrossRef]
- de Souza, F.E.S.; Rodrigues, J.I.d.J. Evaluation of Machine Learning Algorithms in the Classification of Multispectral Images from the Sentinel-2A/2B Orbital Sensor for Mapping the Environmental Dynamics of Ria Formosa (Algarve, Portugal). ISPRS Int. J. Geo-Inf. 2023, 12, 361. [Google Scholar] [CrossRef]
- Mhanna, S.; Halloran, L.J.S.; Zwahlen, F.; Asaad, A.H.; Brunner, P. Using Machine Learning and Remote Sensing to Track Land Use/Land Cover Changes Due to Armed Conflict. Sci. Total Environ. 2023, 898, 165600. [Google Scholar] [CrossRef]
- Lukas, P.; Melesse, A.M.; Kenea, T.T. Prediction of Future Land Use/Land Cover Changes Using a Coupled CA-ANN Model in the Upper Omo–Gibe River Basin, Ethiopia. Remote Sens. 2023, 15, 1148. [Google Scholar] [CrossRef]
- Kutz, K.; Cook, Z.; Linderman, M. Object Based Classification of a Riparian Environment Using Ultra-High Resolution Imagery, Hierarchical Landcover Structures, and Image Texture. Sci. Rep. 2022, 12, 11291. [Google Scholar] [CrossRef]
- Ali, U.; Esau, T.J.; Farooque, A.A.; Zaman, Q.U.; Abbas, F.; Bilodeau, M.F. Limiting the Collection of Ground Truth Data for Land Use and Land Cover Maps with Machine Learning Algorithms. ISPRS Int. J. Geo-Inf. 2022, 11, 333. [Google Scholar] [CrossRef]
- Lin, M.-H.; Lin, Y.-T.; Tsai, M.-L.; Chen, Y.-Y.; Chen, Y.-C.; Wang, H.-C.; Wang, C.-K. Mapping Land-Use and Land-Cover Changes through the Integration of Satellite and Airborne Remote Sensing Data. Environ. Monit. Assess. 2024, 196, 246. [Google Scholar] [CrossRef]
- Ojwang, G.O.; Ogutu, J.O.; Said, M.Y.; Ojwala, M.A.; Kifugo, S.C.; Verones, F.; Graae, B.J.; Buitenwerf, R.; Olff, H. An Integrated Hierarchical Classification and Machine Learning Approach for Mapping Land Use and Land Cover in Complex Social-Ecological Systems. Front. Remote Sens. 2024, 4, 1188635. [Google Scholar] [CrossRef]
- Barboza, E.; Salazar, W.; Gálvez-Paucar, D.; Valqui Valqui, L.; Valqui Valqui, L.; Zagaceta, L.; Malca, J.; Vásquez, H.; Arbizu, C. Cloud Computing Application for the Analysis of Land Use and Land Cover Changes in Dry Forests of Peru. Int. J. Environ. Impacts 2024, 7, 505–514. [Google Scholar] [CrossRef]
- Ha, T.V.; Tuohy, M.; Irwin, M.; Tuan, P.V. Monitoring and Mapping Rural Urbanization and Land Use Changes Using Landsat Data in the Northeast Subtropical Region of Vietnam. Egypt. J. Remote Sens. Space Sci. 2020, 23, 11–19. [Google Scholar] [CrossRef]
- Dantas, C.F.; Gaetano, R.; Paris, C.; Ienco, D. Reuse Out-of-Year Data to Enhance Land Cover Mapping via Feature Disentanglement and Contrastive Learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 1681–1694. [Google Scholar] [CrossRef]
- Rousset, G.; Despinoy, M.; Schindler, K.; Mangeas, M. Assessment of Deep Learning Techniques for Land Use Land Cover Classification in Southern New Caledonia. Remote Sens. 2021, 13, 2257. [Google Scholar] [CrossRef]
- Ouchra, H.; Belangour, A.; Erraissi, A. Comparison of Machine Learning Methods for Satellite Image Classification: A Case Study of Casablanca Using Landsat Imagery and Google Earth Engine. J. Environ. Earth Sci. 2023, 5, 118–134. [Google Scholar] [CrossRef]
- Rajesh, S.; Nisia, T.G.; Arivazhagan, S.; Abisekaraj, R. Land Cover/Land Use Mapping of LISS IV Imagery Using Object-Based Convolutional Neural Network with Deep Features. J. Indian Soc. Remote Sens. 2020, 48, 145–154. [Google Scholar] [CrossRef]
- Wang, J.; Feng, Y.; Tong, X.; Lei, Z.; Xi, M.; Zhou, Y.; Tang, P. Classification Evaluation and Improvement of Airborne PolSAR Images for Land Use Mapping Using Deep Learning. Geocarto Int. 2024, 39, 2401937. [Google Scholar] [CrossRef]
- Fayaz, M.; Nam, J.; Dang, L.M.; Song, H.-K.; Moon, H. Land-Cover Classification Using Deep Learning with High-Resolution Remote-Sensing Imagery. Appl. Sci. 2024, 14, 1844. [Google Scholar] [CrossRef]
- Hu, K.; Zhang, E.; Dai, X.; Xia, M.; Zhou, F.; Weng, L.; Lin, H. MCSGNet: A Encoder–Decoder Architecture Network for Land Cover Classification. Remote Sens. 2023, 15, 2810. [Google Scholar] [CrossRef]
- Sahu, M.; Dash, R. Cognitive Land Cover Mapping: A Three-Layer Deep Learning Architecture for Remote Sensing Data Classification. Environ. Chall. 2024, 15, 100876. [Google Scholar] [CrossRef]
- Li, X.; Zhao, H.; Wu, D.; Liu, Q.; Tang, R.; Li, L.; Xu, Z.; Lyu, X. SLMFNet: Enhancing Land Cover Classification of Remote Sensing Images through Selective Attentions and Multi-Level Feature Fusion. PLoS ONE 2024, 19, e0301134. [Google Scholar] [CrossRef]
- Xiao, J.; Cheng, T.; Chen, D.; Chen, H.; Li, N.; Lu, Y.; Cheng, L. Robust Land Cover Classification with Local–Global Information Decoupling to Address Remote Sensing Anomalous Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 5774–5789. [Google Scholar] [CrossRef]
- Hao, M.; Dong, X.; Jiang, D.; Yu, X.; Ding, F.; Zhuo, J. Land-Use Classification Based on High-Resolution Remote Sensing Imagery and Deep Learning Models. PLoS ONE 2024, 19, e0300473. [Google Scholar] [CrossRef] [PubMed]
- Masolele, R.; De Sy, V.; Marcos, D.; Verbesselt, J.; Gieseke, F.; Mulatu, K.; Moges, Y.; Sebrala Ahmed, H.; Martius, C.; Herold, M. Using High-Resolution Imagery and Deep Learning to Classify Land-Use Following Deforestation: A Case Study in Ethiopia. GIScience Remote Sens. 2022, 59, 1446–1472. [Google Scholar] [CrossRef]
- Wang, S.; Zou, X.; Li, K.; Xing, J.; Cao, T.; Tao, P. Towards Robust Pansharpening: A Large-Scale High-Resolution Multi-Scene Dataset and Novel Approach. Remote Sens. 2024, 16, 2899. [Google Scholar] [CrossRef]
- Nigar, A.; Li, Y.; Jat Baloch, M.Y.; Alrefaei, A.F.; Almutairi, M.H. Comparison of Machine and Deep Learning Algorithms Using Google Earth Engine and Python for Land Classifications. Front. Environ. Sci. 2024, 12, 1378443. [Google Scholar] [CrossRef]
- Ali, K.; Johnson, B.A. Land-Use and Land-Cover Classification in Semi-Arid Areas from Medium-Resolution Remote-Sensing Imagery: A Deep Learning Approach. Sensors 2022, 22, 8750. [Google Scholar] [CrossRef]
- Aljebreen, M.; Mengash, H.A.; Alamgeer, M.; Alotaibi, S.S.; Salama, A.S.; Hamza, M.A. Land Use and Land Cover Classification Using River Formation Dynamics Algorithm with Deep Learning on Remote Sensing Images. IEEE Access 2024, 12, 11147–11156. [Google Scholar] [CrossRef]
- Zaabar, N.; Niculescu, S.; Kamel, M.M. Application of Convolutional Neural Networks with Object-Based Image Analysis for Land Cover and Land Use Mapping in Coastal Areas: A Case Study in Ain Témouchent, Algeria. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 5177–5189. [Google Scholar] [CrossRef]
- Mahmoud, R.; Hassanin, M.; Al Feel, H.; Badry, R.M. Machine Learning-Based Land Use and Land Cover Mapping Using Multi-Spectral Satellite Imagery: A Case Study in Egypt. Sustainability 2023, 15, 9467. [Google Scholar] [CrossRef]
- Lemenkova, P. Support Vector Machine Algorithm for Mapping Land Cover Dynamics in Senegal, West Africa, Using Earth Observation Data. Earth 2024, 5, 420–462. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, T.; Zeng, C.; Hao, Q.; Chen, Z.; Liang, X. Semantic-Aware Contrastive Adaptation Bridges Domain Discrepancy for Unsupervised Remote Sensing. IEEE Access 2024, 12, 140734–140747. [Google Scholar] [CrossRef]
- Mienye, I.D.; Swart, T.G.; Obaido, G. Recurrent Neural Networks: A Comprehensive Review of Architectures, Variants, and Applications. Information 2024, 15, 517. [Google Scholar] [CrossRef]
- Ouchra, H.; Belangour, A.; Erraissi, A. Comparing Unsupervised Land Use Classification of Landsat 8 OLI Data Using K-Means and LVQ Algorithms in Google Earth Engine: A Case Study of Casablanca. Int. J. Geoinform. 2023, 19, 83–92. [Google Scholar] [CrossRef]
- Diack, I.; Diene, S.M.; Louise, L.; Aziz, D.A.; Benjamin, H.; Olivier, R.; Philippe, L.; Alain, A.; Idrissa, S.; Moussa, D. Combining UAV and Sentinel-2 Imagery for Estimating Millet FCover in a Heterogeneous Agricultural Landscape of Senegal. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 7305–7322. [Google Scholar] [CrossRef]
- Kobe, M.; Elias, M.; Merbach, I.; Schädler, M.; Bumberger, J.; Pause, M.; Mollenhauer, H. Automated Workflow for High-Resolution 4D Vegetation Monitoring Using Stereo Vision. Remote Sens. 2024, 16, 541. [Google Scholar] [CrossRef]
- Kalecinski, N.I.; Skakun, S.; Torbick, N.; Huang, X.; Franch, B.; Roger, J.-C.; Vermote, E. Crop Yield Estimation at Different Growing Stages Using a Synergy of SAR and Optical Remote Sensing Data. Sci. Remote Sens. 2024, 10, 100153. [Google Scholar] [CrossRef]
- Sabo, F.; Meroni, M.; Waldner, F.; Rembold, F. Is Deeper Always Better? Evaluating Deep Learning Models for Yield Forecasting with Small Data. Environ. Monit. Assess. 2023, 195, 1153. [Google Scholar] [CrossRef]
- Lv, Z.; Meng, R.; Man, J.; Zeng, L.; Wang, M.; Xu, B.; Gao, R.; Sun, R.; Zhao, F. Modeling of Winter Wheat fAPAR by Integrating Unmanned Aircraft Vehicle-Based Optical, Structural and Thermal Measurement. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102407. [Google Scholar] [CrossRef]
- Wu, Z.; Dong, Z.; Yang, K.; Liu, Q.; Wang, W. Floodwater Extraction from UAV Orthoimagery Based on a Transformer Model. Remote Sens. 2024, 16, 4052. [Google Scholar] [CrossRef]
- Pech-May, F.; Aquino-Santos, R.; Delgadillo-Partida, J. Sentinel-1 SAR Images and Deep Learning for Water Body Mapping. Remote Sens. 2023, 15, 3009. [Google Scholar] [CrossRef]
- Xiang, J.; Zang, Z.; Tang, X.; Zhang, M.; Cao, P.; Tang, S.; Wang, X. Rapid Forest Change Detection Using Unmanned Aerial Vehicles and Artificial Intelligence. Forests 2024, 15, 1676. [Google Scholar] [CrossRef]
- Ecke, S.; Stehr, F.; Frey, J.; Tiede, D.; Dempewolf, J.; Klemmt, H.-J.; Endres, E.; Seifert, T. Towards Operational UAV-Based Forest Health Monitoring: Species Identification and Crown Condition Assessment by Means of Deep Learning. Comput. Electron. Agric. 2024, 219, 108785. [Google Scholar] [CrossRef]
- Perbet, P.; Guindon, L.; Côté, J.-F.; Béland, M. Evaluating Deep Learning Methods Applied to Landsat Time Series Subsequences to Detect and Classify Boreal Forest Disturbances Events: The Challenge of Partial and Progressive Disturbances. Remote Sens. Environ. 2024, 306, 114107. [Google Scholar] [CrossRef]
- Lucas, M.; Pukrop, M.; Beckschäfer, P.; Waske, B. Individual tree detection and crown delineation in the Harz National Park from 2009 to 2022 using mask R–CNN and aerial imagery. ISPRS Open J. Photogramm. Remote Sens. 2024, 13, 100071. [Google Scholar] [CrossRef]
- Wang, H.; Hu, C.; Zhang, R.; Qian, W. SegForest: A Segmentation Model for Remote Sensing Images. Forests 2023, 14, 1509. [Google Scholar] [CrossRef]
- Slagter, B.; Reiche, J.; Marcos, D.; Mullissa, A.; Lossou, E.; Peña-Claros, M.; Herold, M. Monitoring Direct Drivers of Small-Scale Tropical Forest Disturbance in near Real-Time with Sentinel-1 and -2 Data. Remote Sens. Environ. 2023, 295, 113655. [Google Scholar] [CrossRef]
- Retallack, A.; Finlayson, G.; Ostendorf, B.; Lewis, M. Using Deep Learning to Detect an Indicator Arid Shrub in Ultra-High-Resolution UAV Imagery. Ecol. Indic. 2022, 145, 109698. [Google Scholar] [CrossRef]
- Guo, Y.; Long, T.; Jiao, W.; Zhang, X.; He, G.; Wang, W.; Peng, Y.; Xiao, H. Siamese Detail Difference and Self-Inverse Network for Forest Cover Change Extraction Based on Landsat 8 OLI Satellite Images. Remote Sens. 2022, 14, 627. [Google Scholar] [CrossRef]
- Mäyrä, J.; Keski-Saari, S.; Kivinen, S.; Tanhuanpää, T.; Hurskainen, P.; Kullberg, P.; Poikolainen, L.; Viinikka, A.; Tuominen, S.; Kumpula, T.; et al. Tree Species Classification from Airborne Hyperspectral and LiDAR Data Using 3D Convolutional Neural Networks. Remote Sens. Environ. 2021, 256, 112322. [Google Scholar] [CrossRef]
- He, S.; Du, H.; Zhou, G.; Li, X.; Mao, F.; Zhu, D.; Xu, Y.; Zhang, M.; Huang, Z.; Liu, H.; et al. Intelligent Mapping of Urban Forests from High-Resolution Remotely Sensed Imagery Using Object-Based U-Net-DenseNet-Coupled Network. Remote Sens. 2020, 12, 3928. [Google Scholar] [CrossRef]
- Li, Y.; Min, S.; Song, B.; Yang, H.; Wang, B.; Wu, Y. Multisource High-Resolution Remote Sensing Image Vegetation Extraction with Comprehensive Multifeature Perception. Remote Sens. 2024, 16, 712. [Google Scholar] [CrossRef]
- Zheng, J.; Chen, D.; Zhang, H.; Zhang, G.; Zhen, Q.; Liu, S.; Zhang, N.; Zhao, H. Remote Sensing Identification of Picea schrenkiana Var. tianschanica in GF-1 Images Based on a Multiple Mixed Attention U-Net Model. Forests 2024, 15, 2039. [Google Scholar] [CrossRef]
- Nguyen, T.-A.; Rußwurm, M.; Lenczner, G.; Tuia, D. Multi-Temporal Forest Monitoring in the Swiss Alps with Knowledge-Guided Deep Learning. Remote Sens. Environ. 2024, 305, 114109. [Google Scholar] [CrossRef]
- Roßberg, T.; Schmitt, M. A Globally Applicable Method for NDVI Estimation from Sentinel-1 SAR Backscatter Using a Deep Neural Network and the SEN12TP Dataset. PFG J. Photogramm. Remote Sens. Geoinf. Sci. 2023, 91, 171–188. [Google Scholar] [CrossRef]
- Nguyen-Trong, K.; Tran-Xuan, H. Coastal Forest Cover Change Detection Using Satellite Images and Convolutional Neural Networks in Vietnam. IAES Int. J. Artif. Intell. (IJ-AI) 2022, 11, 930–938. [Google Scholar] [CrossRef]
- Torres, D.L.; Turnes, J.N.; Soto Vega, P.J.; Feitosa, R.Q.; Silva, D.E.; Marcato Junior, J.; Almeida, C. Deforestation Detection with Fully Convolutional Networks in the Amazon Forest from Landsat-8 and Sentinel-2 Images. Remote Sens. 2021, 13, 5084. [Google Scholar] [CrossRef]
- de Andrade, R.B.; Mota, G.L.A.; da Costa, G.A.O.P. Deforestation Detection in the Amazon Using DeepLabv3+ Semantic Segmentation Model Variants. Remote Sens. 2022, 14, 4694. [Google Scholar] [CrossRef]
- Rodrigues, J.; Dias, M.A.; Negri, R.; Hussain, S.M.; Casaca, W. A Robust Dual-Mode Machine Learning Framework for Classifying Deforestation Patterns in Amazon Native Lands. Land 2024, 13, 1427. [Google Scholar] [CrossRef]
- Wang, S.; Cui, D.; Wang, L.; Peng, J. Applying Deep-Learning Enhanced Fusion Methods for Improved NDVI Reconstruction and Long-Term Vegetation Cover Study: A Case of the Danjiang River Basin. Ecol. Indic. 2023, 155, 111088. [Google Scholar] [CrossRef]
- Sklyar, E.; Rees, G. Assessing Changes in Boreal Vegetation of Kola Peninsula via Large-Scale Land Cover Classification between 1985 and 2021. Remote Sens. 2022, 14, 5616. [Google Scholar] [CrossRef]
- Marsetič, A.; Kanjir, U. Forecasting Vegetation Behavior Based on PlanetScope Time Series Data Using RNN-Based Models. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 5015–5025. [Google Scholar] [CrossRef]
- Roßberg, T.; Schmitt, M. Dense NDVI Time Series by Fusion of Optical and SAR-Derived Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 7748–7758. [Google Scholar] [CrossRef]
- Wahelo, T.T.; Mengistu, D.A.; Merawi, T.M. Spatiotemporal Trends and Drivers of Forest Cover Change in Metekel Zone Forest Areas, Northwest Ethiopia. Environ. Monit. Assess. 2024, 196, 1170. [Google Scholar] [CrossRef] [PubMed]
- Isoaho, A.; Elo, M.; Marttila, H.; Rana, P.; Lensu, A.; Räsänen, A. Monitoring Changes in Boreal Peatland Vegetation after Restoration with Optical Satellite Imagery. Sci. Total Environ. 2024, 957, 177697. [Google Scholar] [CrossRef]
- Prodromou, M.; Theocharidis, C.; Gitas, I.Z.; Eliades, F.; Themistocleous, K.; Papasavvas, K.; Dimitrakopoulos, C.; Danezis, C.; Hadjimitsis, D. Forest Habitat Mapping in Natura2000 Regions in Cyprus Using Sentinel-1, Sentinel-2 and Topographical Features. Remote Sens. 2024, 16, 1373. [Google Scholar] [CrossRef]
- Mansouri, J.; Jafari, M.; Taheri Dehkordi, A. Continuous Mapping of Forest Canopy Height Using ICESat-2 Data and a Weighted Kernel Integration of Multi-Temporal Multi-Source Remote Sensing Data Aided by Google Earth Engine. Environ. Sci. Pollut. Res. 2024, 31, 49757–49779. [Google Scholar] [CrossRef]
- Engda, E.M.; Bojer, A.K.; Mekonnen, Z.A.; Tegegn, W.W. Assessment of Forest Cover Dynamics in Dedo District, Oromia Region, Ethiopia, Using Machine Learning Algorithm. J. Sens. 2024, 2024, 4020990. [Google Scholar] [CrossRef]
- Ziegler, A.; Heisig, J.; Ludwig, M.; Reudenbach, C.; Meyer, H.; Nauss, T. Using GEDI as Training Data for an Ongoing Mapping of Landscape-Scale Dynamics of the Plant Area Index. Environ. Res. Lett. 2023, 18, 075003. [Google Scholar] [CrossRef]
- Mouret, F.; Morin, D.; Martin, H.; Planells, M.; Vincent-Barbaroux, C. Toward an Operational Monitoring of Oak Dieback with Multispectral Satellite Time Series: A Case Study in Centre-Val De Loire Region of France. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 643–659. [Google Scholar] [CrossRef]
- Jiang, H.; Chen, A.; Wu, Y.; Zhang, C.; Chi, Z.; Li, M.; Wang, X. Vegetation Monitoring for Mountainous Regions Using a New Integrated Topographic Correction (ITC) of the SCS + C Correction and the Shadow-Eliminated Vegetation Index. Remote Sens. 2022, 14, 3073. [Google Scholar] [CrossRef]
- Liu, X.; Fatoyinbo, T.E.; Thomas, N.M.; Guan, W.W.; Zhan, Y.; Mondal, P.; Lagomasino, D.; Simard, M.; Trettin, C.C.; Deo, R.; et al. Large-Scale High-Resolution Coastal Mangrove Forests Mapping Across West Africa with Machine Learning Ensemble and Satellite Big Data. Front. Earth Sci. 2021, 8, 560933. [Google Scholar] [CrossRef]
- Guisao-Betancur, A.; Gómez Déniz, L.; Marulanda-Tobón, A. Forest/Nonforest Segmentation Using Sentinel-1 and -2 Data Fusion in the Bajo Cauca Subregion in Colombia. Remote Sens. 2024, 16, 5. [Google Scholar] [CrossRef]
- Zheng, X.; Jia, J.; Chen, J.; Guo, S.; Sun, L.; Zhou, C.; Wang, Y. Hyperspectral Image Classification with Imbalanced Data Based on Semi-Supervised Learning. Appl. Sci. 2022, 12, 3943. [Google Scholar] [CrossRef]
- Rose, M.B.; Mills, M.; Franklin, J.; Larios, L. Mapping Fractional Vegetation Cover Using Unoccupied Aerial Vehicle Imagery to Guide Conservation of a Rare Riparian Shrub Ecosystem in Southern California. Remote Sens. 2023, 15, 5113. [Google Scholar] [CrossRef]
- John, E.; Bunting, P.; Hardy, A.; Silayo, D.S.; Masunga, E. A Forest Monitoring System for Tanzania. Remote Sens. 2021, 13, 3081. [Google Scholar] [CrossRef]
- Holloway-Brown, J.; Helmstedt, K.J.; Mengersen, K.L. Stochastic Spatial Random Forest (SS-RF) for Interpolating Probabilities of Missing Land Cover Data. J. Big Data 2020, 7, 55. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Q.; Wang, X.; Sheng, Y.; Tian, W.; Ren, Y. A Tree Species Classification Model Based on Improved YOLOv7 for Shelterbelts. Front. Plant Sci. 2024, 14, 1265025. [Google Scholar] [CrossRef]
- Wang, Z.; Mo, Z.; Liang, Y.; Yang, Z.; Liao, X.; Wang, Z.; Zhang, Q. A Web-Based Prototype System for Deforestation Detection on High-Resolution Remote Sensing Imagery with Deep Learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 18593–18612. [Google Scholar] [CrossRef]
- Alshehri, M.; Ouadou, A.; Scott, G.J. Deep Transformer-Based Network Deforestation Detection in the Brazilian Amazon Using Sentinel-2 Imagery. IEEE Geosci. Remote Sens. Lett. 2024, 21, 3355104. [Google Scholar] [CrossRef]
- Turkulainen, E.; Honkavaara, E.; Näsi, R.; Oliveira, R.A.; Hakala, T.; Junttila, S.; Karila, K.; Koivumäki, N.; Pelto-Arvo, M.; Tuviala, J.; et al. Comparison of Deep Neural Networks in the Classification of Bark Beetle-Induced Spruce Damage Using UAS Images. Remote Sens. 2023, 15, 4928. [Google Scholar] [CrossRef]
- Kislov, D.E.; Korznikov, K.A.; Altman, J.; Vozmishcheva, A.S.; Krestov, P.V. Extending Deep Learning Approaches for Forest Disturbance Segmentation on Very High-Resolution Satellite Images. Remote Sens. Ecol. Conserv. 2021, 7, 355–368. [Google Scholar] [CrossRef]
- Junttila, S.; Näsi, R.; Koivumäki, N.; Imangholiloo, M.; Saarinen, N.; Raisio, J.; Holopainen, M.; Hyyppä, H.; Hyyppä, J.; Lyytikäinen-Saarenmaa, P.; et al. Multispectral Imagery Provides Benefits for Mapping Spruce Tree Decline Due to Bark Beetle Infestation When Acquired Late in the Season. Remote Sens. 2022, 14, 909. [Google Scholar] [CrossRef]
- Iordache, M.-D.; Mantas, V.; Baltazar, E.; Pauly, K.; Lewyckyj, N. A Machine Learning Approach to Detecting Pine Wilt Disease Using Airborne Spectral Imagery. Remote Sens. 2020, 12, 2280. [Google Scholar] [CrossRef]
- Et-Brasil/geeSEBAL 2025. Available online: https://github.com/et-brasil/geeSEBAL (accessed on 9 July 2025).
- Liu, Q.; Wu, Z.; Cui, N.; Zheng, S.; Zhu, S.; Jiang, S.; Wang, Z.; Gong, D.; Wang, Y.; Zhao, L. Soil Moisture Content Estimation of Drip-Irrigated Citrus Orchard Based on UAV Images and Machine Learning Algorithm in Southwest China. Agric. Water Manag. 2024, 303, 109069. [Google Scholar] [CrossRef]
- dos Santos, E.P.; Moreira, M.C.; Fernandes-Filho, E.I.; Demattê, J.A.M.; Dionizio, E.A.; Silva, D.D.d.; Cruz, R.R.P.; Moura-Bueno, J.M.; dos Santos, U.J.; Costa, M.H. Sentinel-1 Imagery Used for Estimation of Soil Organic Carbon by Dual-Polarization SAR Vegetation Indices. Remote Sens. 2023, 15, 5464. [Google Scholar] [CrossRef]
- Tayebi, M.; Rosas, J.T.F.; Mendes, W.d.S.; Poppiel, R.R.; Ostovari, Y.; Ruiz, L.F.C.; dos Santos, N.V.; Cerri, C.E.P.; Silva, S.H.G.; Curi, N.; et al. Drivers of Organic Carbon Stocks in Different LULC History and along Soil Depth for a 30 Years Image Time Series. Remote Sens. 2021, 13, 2223. [Google Scholar] [CrossRef]
- Jia, X.; Cao, Y.; O’Connor, D.; Zhu, J.; Tsang, D.C.W.; Zou, B.; Hou, D. Mapping Soil Pollution by Using Drone Image Recognition and Machine Learning at an Arsenic-Contaminated Agricultural Field. Environ. Pollut. 2021, 270, 116281. [Google Scholar] [CrossRef]
- Boonupara, T.; Udomkun, P.; Gibson-Poole, S.; Hamilton, A.; Kaewlom, P. Assessing Plant Pigmentation Impacts: A Novel Approach Integrating UAV and Multispectral Data to Analyze Atrazine Metabolite Effects from Soil Contamination. Smart Agric. Technol. 2024, 9, 100570. [Google Scholar] [CrossRef]
- S1 Mission. Available online: https://sentiwiki.copernicus.eu/web/s1-mission (accessed on 9 July 2025).
- S2 Mission. Available online: https://sentiwiki.copernicus.eu/web/s2-mission (accessed on 9 July 2025).
- Landsat-8—Earth Online. Available online: https://earth.esa.int/eogateway/missions/landsat-8 (accessed on 9 July 2025).
- Landsat 4|Landsat Science. Available online: https://landsat.gsfc.nasa.gov/satellites/landsat-4/ (accessed on 9 July 2025).
- GF-1 (Gaofen-1)—eoPortal. Available online: https://www.eoportal.org/satellite-missions/gaofen-1 (accessed on 9 July 2025).
- GF-2 (Gaofen-2)—eoPortal. Available online: https://www.eoportal.org/satellite-missions/gaofen-2 (accessed on 9 July 2025).
- NASA—NSSDCA—Spacecraft—Details. Available online: https://www.nasa.gov/ (accessed on 9 July 2025).
- PlanetScope—Earth Online. Available online: https://earth.esa.int/eogateway/missions/planetscope (accessed on 9 July 2025).
- WorldView-2—Earth Online. Available online: https://earth.esa.int/eogateway/missions/worldview-2 (accessed on 9 July 2025).
- WorldView-3—Earth Online. Available online: https://earth.esa.int/eogateway/missions/worldview-3 (accessed on 9 July 2025).
- WorldView-4—Earth Online. Available online: https://earth.esa.int/eogateway/missions/worldview-4 (accessed on 9 July 2025).
- SPOT—Earth Online. Available online: https://earth.esa.int/eogateway/missions/spot (accessed on 9 July 2025).
- What Is UAVSAR?—UAVSAR. Available online: https://uavsar.jpl.nasa.gov/education/what-is-uavsar.html (accessed on 9 July 2025).
- Earth Science Data Systems, N. GEDI Lidar|NASA Earthdata. Available online: https://www.earthdata.nasa.gov/data/instruments/gedi-lidar (accessed on 9 July 2025).
- DigitalGlobe—30 Cm. Available online: https://microsites.maxar.com/30cm/ (accessed on 9 July 2025).
- Zenmuse P1—UAV Load Gimbal Camera—DJI Enterprise. Available online: https://enterprise.dji.com/cn/zenmuse-p1 (accessed on 9 July 2025).
- Yang, W.; Liu, T.; Jiang, P.; Qi, A.; Deng, L.; Liu, Z.; He, Y. A Forest Wildlife Detection Algorithm Based on Improved YOLOv5s. Animals 2023, 13, 3134. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Dong, Y.; Xia, Y.; Xu, D.; Xu, F.; Chen, F. Wildlife Real-Time Detection in Complex Forest Scenes Based on YOLOv5s Deep Learning Network. Remote Sens. 2024, 16, 1350. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
Data Source | Type | URL |
---|---|---|
Scopus | Digital Library | https://www.scopus.com (accessed on 18 March 2025) |
Web of Science | Digital Library | https://clarivate.com/academia-government/scientific-and-academic-research/research-discovery-and-referencing/web-of-science/ (accessed on 18 March 2025) |
Group | Keywords |
---|---|
Group 1 | “Artificial Intelligence”, “Deep Learning”, “Machine Learning” |
Group 2 | “Remote Sensing”, “Image Classification”, “Point Cloud Classification”, “Agriculture” |
Group 3 | “Environmental Monitoring”, “Land Use Mapping”, “Flood-Prone Area Detection”, “Forest Monitoring”, “Pest Disease Monitoring”, “Droughts Prediction”, “Soil Content Analysis”, “Soil Production Capacity Detection”, “Vegetation Monitoring”, “Crop Detection”, “Crop Yield Monitoring” |
Digital Library | Search Algorithm |
---|---|
Scopus | (TITLE-ABS-KEY(“Artificial Intelligence” OR “Deep Learning” OR “Machine Learning”)) AND (TITLE-ABS-KEY(“Remote Sensing” OR “Image Classification” OR “Point Cloud Classification” OR “Agriculture”)) AND (TITLE-ABS-KEY(“Environmental Monitoring” OR “Land Use Mapping” OR “Flood-Prone Area Detection” OR “Forest Monitoring” OR “Pest Disease Monitoring” OR “Droughts Prediction” OR “Soil Content Analysis” OR “Soil Production Capacity Detection” OR “Vegetation Monitoring” OR “Crop Detection” OR “Crop Yield Monitoring”)) |
WoS | TS = (“Artificial Intelligence” OR “Deep Learning” OR “Machine Learning”) AND TS = (“Remote Sensing” OR “Image Classification” OR “Point Cloud Classification” OR “Agriculture”) AND TS = (“Environmental Monitoring” OR “Land Use Mapping” OR “Flood-Prone Area Detection” OR “Forest Monitoring” OR “Pest Disease Monitoring” OR “Droughts Prediction” OR “Soil Content Analysis” OR “Soil Production Capacity Detection” OR “Vegetation Monitoring” OR “Crop Detection” OR “Crop Yield Monitoring”) |
Main Topic | Focuses on Problems Related to Agriculture | Focuses on Problems Related to Vegetation and Forests | Focuses on Types of AI Algorithms for Data Extraction | Focuses on Available Data Types | Focuses on Data Sources | Reference |
---|---|---|---|---|---|---|
Applications of IoT in smart farming | ✓ | x | x | x | x | https://www.sciencedirect.com/science/article/pii/S1364032123007165 (accessed on 9th July 2025) [1] |
Applications of IoT in agricultural sector | ✓ | x | x | x | x | https://www.sciencedirect.com/science/article/pii/S0301479721015504 (accessed on 9th July 2025) [3] |
The use of remote sensing in agriculture | ✓ | x | ✓ | x | ✓ | https://www.sciencedirect.com/science/article/pii/S0167739X24006551 (accessed on 9th July 2025) [20] |
The use of remote sensing in agriculture | ✓ | x | x | ✓ | x | https://www.sciencedirect.com/science/article/pii/S0034425719304213 (accessed on 9th July 2025) [10] |
Water resources use and management in agriculture | ✓ | x | x | x | x | https://www.sciencedirect.com/science/article/pii/S0378377425000617 (accessed on 9th July 2025) [19] |
The use of remote sensing and machine learning in agriculture | ✓ | x | ✓ | x | x | https://www.mdpi.com/2073-4395/14/9/1975 (accessed on 9th July 2025) [13] |
Category | Most Used Algorithm Type | Most Used Software Product | Most Used Data Type | Most Used Data Source |
---|---|---|---|---|
Land use mapping and crop detection | DT-based models | Python programming | Satellite imagery | Sentinel data |
Crop yield monitoring | DT-based models | Python programming | Satellite imagery | Sentinel data |
Flood-prone area detection | CNNs and other DNNs | ArcGIS | Radar data | Sentinel data |
Forest and vegetation monitoring | CNNs and other DNNs | Python programming | Satellite imagery | Sentinel data |
Pest disease monitoring | CNNs and other DNNs | Agisoft | Satellite imagery | Sentinel data |
Droughts prediction | - | - | - | - |
Soil content analysis and soil production capacity detection | DT-based models | Python programming | Satellite imagery | Sentinel data |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nan, V.A.; Badea, G.; Badea, A.C.; Grădinaru, A.P. A Systematic Review of AI-Based Classifications Used in Agricultural Monitoring in the Context of Achieving the Sustainable Development Goals. Sustainability 2025, 17, 8526. https://doi.org/10.3390/su17198526
Nan VA, Badea G, Badea AC, Grădinaru AP. A Systematic Review of AI-Based Classifications Used in Agricultural Monitoring in the Context of Achieving the Sustainable Development Goals. Sustainability. 2025; 17(19):8526. https://doi.org/10.3390/su17198526
Chicago/Turabian StyleNan, Vasile Adrian, Gheorghe Badea, Ana Cornelia Badea, and Anca Patricia Grădinaru. 2025. "A Systematic Review of AI-Based Classifications Used in Agricultural Monitoring in the Context of Achieving the Sustainable Development Goals" Sustainability 17, no. 19: 8526. https://doi.org/10.3390/su17198526
APA StyleNan, V. A., Badea, G., Badea, A. C., & Grădinaru, A. P. (2025). A Systematic Review of AI-Based Classifications Used in Agricultural Monitoring in the Context of Achieving the Sustainable Development Goals. Sustainability, 17(19), 8526. https://doi.org/10.3390/su17198526