The Mirage of Drinking Water Security in Chilean Patagonia: A Socio-Ecological Perspective
Abstract
1. Introduction
1.1. Drinking Water in the Global Context
1.2. Socio-Hydrology and Water Governance
1.3. Water Security in Chile
1.4. Scope of This Research
- (1)
- Where are drinking water systems located in western Patagonia, and what are the main characteristics of surface water sources?
- (2)
- How do leaders of rural drinking water systems perceive water security challenges regarding quality, quantity, and governance priorities, and what geographic and system characteristics influence these perceptions in Chilean Patagonia?
- (3)
- How can water security be assessed from a socio-hydrological perspective in a territory where the general assumption of abundant water resources contradicts a vast and complex geography and climate gradient?
2. Materials and Methods
2.1. Databases
2.2. Geospatial Study
2.3. WSI Analysis
2.4. Social Study
3. Results
3.1. Watersheds Characterization in Surface APR and APU Systems
3.2. WSI
3.3. Social Perceptions
3.3.1. Governance Priority Differences
3.3.2. Correlation Analysis
4. Discussion
4.1. The Biophysical Dimension of Water Security in Chilean Patagonia
4.1.1. Watershed Characterization
4.1.2. Water Stress
4.1.3. Current and Future Scenarios of Water Sources
4.2. The Social Dimensions of Water Security in Chilean Patagonia
4.2.1. Geographic and Water Security Influences on Governance Priorities
4.2.2. Climate Change and Monitoring Priorities
4.2.3. Water Rights System and Governance Adaptation
4.2.4. Watershed Vulnerability and Governance Response
4.2.5. Regional Context and Infrastructure Gaps
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
APR | Rural Drinking Water |
APU | Urban Drinking Water |
IWM | Integrated Watershed Management |
WUR | Water Use Right |
AI | Anthropization Index |
WSI | Water Stress Index |
WSI.ap | Water Stress Index for drinking water and land use activities |
WSI.da | Water Stress Index on consumptive WURs |
DGA | General Directorate of Water |
DOH | Directorate of Hydraulic Works |
Appendix A. WSI Data Dispersion According to WSI.da (Black Dots) and WSI.ap (Blue Dots)
Appendix B
Appendix B.1. Summary of Qualitative Comments That Expand on APR Governance Leaders’ Perceptions of Water Quality
Appendix B.2. Summary of Qualitative Comments That Expand on APR Governance Leaders’ Perceptions of Water Security
References
- United Nations. The Sustainable Development Goals Report 2024; United Nations: New York, NY, USA, 2024; pp. 1–48. ISBN 978-92-1-003135-6/978-92-1-358976-2. [Google Scholar]
- Grigg, N. Framework and function of integrated water resources management in support of sustainable development. Sustainability 2024, 16, 5441. [Google Scholar] [CrossRef]
- Garrick, D.; Gilson, G.; Hope, R.; Wagner, J.; Epstein, G.; Okoth, E.; Silas, F. We must account for the results of water governance to deliver the SDGs and beyond. Environ. Res. Water 2025, 1, 013001. [Google Scholar] [CrossRef]
- Herrfahrdt-Pähle, E.; Houdret, A.; Dombrowsky, I.; Cullmann, J.; Mukherji, A.; Unver, O.; Varady, R. Empowering global water governance: Taking the 2023 UN Water Conference outcomes forward to address the current water crises. Water Int. 2025, 50, 4–10. [Google Scholar] [CrossRef]
- Döring, S.; Kyungmee, K.; Swain, A. Integrating socio-hydrology, and peace and conflict research. J. Hydrol. 2024, 63, 131000. [Google Scholar] [CrossRef]
- Vardon, M.; Le, T.; Martinez-Lagunes, R.; Pule, O.; Schenau, S.; May, S.; Grafton, R. Accounting for water: A global review and indicators of best practice for improved water governance. Ecol. Econ. 2025, 227, 108396. [Google Scholar] [CrossRef]
- Bolognesi, T.; Gerlak, A.; Giuliani, G. Explaining and measuring social-ecological pathways: The case of global changes and water security. Sustainability 2018, 10, 4378. [Google Scholar] [CrossRef]
- Mishra, B.; Kumar, P.; Saraswat, C.; Chakraborty, S.; Gautam, A. Water security in a changing environment: Concept, challenges and solutions. Water 2021, 13, 490. [Google Scholar] [CrossRef]
- Díaz, M.; Rodríguez, C.; Casas, A. Adaptive Water Management From a Socio-Ecological Perspective: A Review of Co-Learning Strategies and Traditional Knowledge. Preprints 2025. [Google Scholar] [CrossRef]
- Sivapalan, M.; Savenije, H.; Blöschl, G. Socio-hydrology: A new science of people and water. Hydrol. Process. 2012, 26, 1270–1276. [Google Scholar] [CrossRef]
- Prakash, A.; George, R.; Barua, A. Socio-hydrological frameworks for adaptive governance: Addressing climate uncertainty in South Asia. Front. Water 2025, 7, 1556820. [Google Scholar] [CrossRef]
- Ostrom, E. A General Framework for Analyzing Sustainability of Social-Ecological Systems. Science 2009, 325, 419–422. [Google Scholar] [CrossRef]
- Saikia, P.; Jiménez, A. Governance attributes for building water resilience: A literature review. Water Int. 2023, 48, 809–838. [Google Scholar] [CrossRef]
- Sadoff, C.; Grey, D.; Borgomeo, E. Water Security; Oxford University Press: Oxford, UK, 2020. [Google Scholar] [CrossRef]
- Santos, E. Reforming Water Governance: Nordic Lessons for Southern Europe. Sustainability 2025, 17, 7079. [Google Scholar] [CrossRef]
- Ahopelto, L.; Sojamo, S.; Belinskij, A.; Soininen, N.; Keskinen, M. Water governance for water security: Analysing institutional strengths and challenges in Finland. Int. J. Water Resour. Dev. 2024, 40, 153–173. [Google Scholar] [CrossRef]
- Megdal, S.; Eden, S.; Shamir, E. Water governance, stakeholder engagement, and sustainable water resources management. Water 2017, 9, 190. [Google Scholar] [CrossRef]
- Akamani, K. The roles of adaptive water governance in enhancing the transition towards ecosystem-based adaptation. Water 2023, 15, 2341. [Google Scholar] [CrossRef]
- United Nations Water. Water Security & the Global Water Agenda: A UN-Water Analytical Brief; United Nations University Institute for Water, Environment & Health (UNU-INWEH): Richmond Hill, ON, Canada, 2013; pp. 1–47. [Google Scholar]
- Ministerio del Medio Ambiente, Climatic Change Law. Available online: https://www.bcn.cl/leychile/navegar?idNorma=1177286 (accessed on 14 August 2025).
- Escenarios Hídricos 2030. Radiografía del Agua. Brecha y Riesgo Hídrico en Chile; Fundación Chile: Santiago, Chile, 2018; ISBN 978-956-8200-42-8. [Google Scholar]
- Boisier, J.P.; Alvarez-Garreton, C.; Marinao, R.; Galleguillos, M. Increasing water stress in Chile evidenced by novel datasets of water availability, land use and water use. EGUsphere, 2024; preprint. [Google Scholar] [CrossRef]
- Super Intendencia de Servicios Sanitarios. Informe de Coberturas Sanitarias; Super Intendencia de Servicios Sanitarios: Santiago, Chile, 2023; pp. 1–22. [Google Scholar]
- Pineda-Morales, S.; Ortega-Argueta, A.; Ruiz-de-Oña-Plaza, C.; García-García, A.; Camacho-Valdéz, V.; Cortez-Lara, A. A review of domestic water management and adaptive governance in urban Latin America. Discov. Sustain. 2025, 6, 1–14. [Google Scholar] [CrossRef]
- Alvarez-Garreton, C.; Mendoza, P.A.; Boisier, J.P.; Addor, N.; Galleguillos, M.; Zambrano-Bigiarini, M.; Lara, A.; Puelma, C.; Cortes, G.; Garreaud, R.; et al. The CAMELS-CL dataset: Catchment attributes and meteorology for large sample studies—Chile dataset. Hydrol. Earth Syst. Sci. 2018, 22, 5817–5846. [Google Scholar] [CrossRef]
- Barría, P.; Rojas, M.; Moraga, P. Anthropocene and streamflow: Long-term perspective of streamflow variability and water rights. Elem. Sci. Anthr. 2019, 7, 2. [Google Scholar] [CrossRef]
- Marquet, P.; Lara, A.; Altamirano, A. Cambio de Uso del Suelo en Chile: Oportunidades de Mitigación ante la Emergencia Climática. Informe de la mesa Biodiversidad; Comité Científico COP25, Ministerio de Ciencia, Tecnología, Conocimiento e Innovación: Santiago, Chile, 2019. [Google Scholar]
- AMULEN-PUC. Radiografía del Agua Rural en Chile: Visualización de un Problema Oculto; Ediciones UC, Pontificia Universidad Católica de Chile: Santiago, Chile, 2019. [Google Scholar]
- Allan, J. Landscapes and riverscapes: The influence of land use on stream ecosystems. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 257–284. [Google Scholar] [CrossRef]
- Farley, K.; Jobbágy, E.; Jackson, R. Effects of afforestation on water yield: A global synthesis with implications for policy. Glob. Change Biol. 2005, 11, 1565–1576. [Google Scholar] [CrossRef]
- Brown, A.; Zhang, L.; McMahon, T.; Western, A.; Vertessy, R. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J. Hydrol. 2005, 310, 28–61. [Google Scholar] [CrossRef]
- Frêne, C.; Dörner, J.; Zúñiga, F.; Cuevas, J.G.; Alfaro, F.D.; Armesto, J.J. Eco-hydrological functions in forested catchments of southern Chile. Ecosystems 2020, 23, 307–323. [Google Scholar] [CrossRef]
- Marquet, P.; Buschmann, A.H.; Corcoran, D.; Díaz, P.; Fuentes-Castillo, T.; Garreaud, R.; Pliscoff, P.; Salazar, A. Global Change and Acceleration of Anthropic Pressures on Patagonian Ecosystems. In Conservación en la Patagonia Chilena; Castilla, J.C., Armesto, J.J., Eds.; Ediciones UC, Pontificia Universidad Católica de Chile: Santiago, Chile, 2023; pp. 33–65. [Google Scholar] [CrossRef]
- Barria, P.; Barria, I.; Guzman, C.; Chadwick, C.; Alvarez-Garreton, C.; Diaz-Vasconcellos, R.; Ocampo-Melgar, A.; Fuster, R. Water allocation under climate change: A diagnosis of the Chilean system. Elementa 2021, 9, 1–20. [Google Scholar] [CrossRef]
- Alvarez-Garreton, C.; Boisier, J.P.; Billi, M.; Lefort, I.; Marinao, R.; Barria, P. Protecting environmental flows to achieve long-term water security. J. Environ. Manag. 2023, 328, 116914. [Google Scholar] [CrossRef]
- Everard, M. A socio-ecological framework supporting catchment-scale water resource stewardship. Environ. Sci. Policy 2019, 91, 50–59. [Google Scholar]
- NASA JPL. NASADEM Merged DEM Global 1 arc Second V001. Distributed by OpenTopography. Available online: https://portal.opentopography.org/datasetMetadata?otCollectionID=OT.032021.4326.2 (accessed on 3 September 2025).
- CONAF—Corporación Nacional Forestal. Catastro de los Recursos Vegetacionales Nativos de Chile; Actualizaciones al año 2020; Departamento de Monitoreo de Ecosistemas Forestales: Santiago, Chile, 2023. [Google Scholar]
- Boisier, J. CR2MET: A high-resolution precipitation and temperature dataset for the period 1960–2021 in continental Chile. (v2.5) [Data set]. Zenodo 2023, 19739. [Google Scholar] [CrossRef]
- Hernández-Moreno, A.; Echeverria, C.; Sotomayor, B.; Soto, D. Relationship between anthropization and spatial patterns in two contrasting landscapes of Chile. Appl. Geogr. 2021, 137, 102599. [Google Scholar] [CrossRef]
- Boisier, J.P.; Alvarez-Garreton, C.; Cordero, R.R.; Damiani, A.; Gallardo, L.; Garreaud, R.D.; Lambert, F.; Ramallo, C.; Rojas, M.; Rondanelli, R. Anthropogenic drying in central-southern Chile evidenced by long-term observations and climate model simulations. Elem. Sci. Anthr. 2018, 6, 1–20. [Google Scholar] [CrossRef]
- Lindsay, J. Whitebox GAT: A case study in geomorphometric analysis. Comput. Geosci. 2016, 95, 75–84. [Google Scholar] [CrossRef]
- Wu, Q.; Brown, A. ‘Whitebox’: ‘WhiteboxTools’ R Frontend. R Package Version 2.2.0. 2022. Available online: https://CRAN.R-project.org/package=whitebox (accessed on 3 September 2025).
- Hox, J.J.; De Leeuw, E.D. A Comparison of Nonresponse in Mail, Telephone, and Face-to-Face Surveys: Applying Multilevel Modeling to Meta-Analysis. Qual. Quant. 1994, 28, 329–344. [Google Scholar] [CrossRef]
- Boland, M.; Sweeney, M.; Scallan, E.; Harrington, M.; Staines, A. Emerging Advantages and Drawbacks of Telephone Surveying in Public Health Research in Ireland and the U.K. BMC Public Health 2006, 6, 208. [Google Scholar] [CrossRef]
- Rybak, A. Survey Mode and Nonresponse Bias: A Meta-Analysis Based on the Data from the International Social Survey Programme Waves 1996–2018 and the European Social Survey Rounds 1 to 9. PLoS ONE 2023, 18, e0283092. [Google Scholar] [CrossRef]
- Van Quaquebeke, N.; Salem, M.; van Dijke, M.; Wenzel, R. Conducting organizational survey and experimental research online: From convenient to ambitious in study designs, recruiting, and data quality. Organ. Res. Methods 2022, 25, 789–816. [Google Scholar] [CrossRef]
- Parsons, J.A. Key informant. In Encyclopedia of Survey Research Methods; Sage Publications: Thousand Oaks, CA, USA, 2008; pp. 406–408. [Google Scholar] [CrossRef]
- Eyler, A.A.; Mayer, J.; Rafii, R.; Housemann, R.; Brownson, R.C.; King, A.C. Key informant surveys as a tool to implement and evaluate physical activity interventions in the community. Health Educ. Res. 1999, 14, 289–298. [Google Scholar] [CrossRef]
- Melo, P.D.O.; De Britto, R.M.; Fontainha, T.C.; Leiras, A.; Bandeira, R.A.D.M. Evaluation of Community Leaders’ Perception Regarding Alerta Rio, the Warning System for Landslides Caused by Heavy Rains in Rio de Janeiro. Nat. Hazards 2017, 89, 1343–1368. [Google Scholar] [CrossRef]
- Muellmann, S.; Brand, T.; Jürgens, D.; Gansefort, D.; Zeeb, H. How Many Key Informants Are Enough? Analysing the Validity of the Community Readiness Assessment. BMC Res. Notes 2021, 14, 85. [Google Scholar] [CrossRef] [PubMed]
- Gignac, G.; Szodorai, E. Effect size guidelines for individual differences researchers. Personal. Individ. Differ. 2016, 102, 74–78. [Google Scholar] [CrossRef]
- Funder, D.; Ozer, D. Evaluating effect size in psychological research: Sense and nonsense. Adv. Methods Pract. Psychol. Sci. 2019, 2, 156–168. [Google Scholar] [CrossRef]
- Astorga, A.; Moreno, P.; Reid, B. Watersheds and trees fall together: An analysis of intact forested watersheds in southern Patagonia (41–56 S). Forests 2018, 9, 385. [Google Scholar]
- Aguayo, R.; León-Muñoz, J.; Vargas-Baecheler, J.; Montecinos, A.; Garreaud, R.; Urbina, M.; Soto, D.; Iriarte, J. The glass half-empty: Climate change drives lower freshwater input in the coastal system of the Chilean Northern Patagonia. Clim. Change 2019, 155, 417–435. [Google Scholar]
- García-Lee, N.; Bravo, C.; Gónzalez-Reyes, Á.; Mardones, P. Spatial and temporal variability of the freezing level in Patagonia’s atmosphere. Weather Clim. Dyn. 2024, 5, 1137–1151. [Google Scholar] [CrossRef]
- Salazar, Á.; Thatcher, M.; Goubanova, K.; Bernal, P.; Gutiérrez, J.; Squeo, F. CMIP6 precipitation and temperature projections for Chile. Clim. Dyn. 2024, 62, 2475–2498. [Google Scholar] [CrossRef]
- Alvarez-Garreton, C.; Boisier, J.P.; Garreaud, R.; González, J.; Rondanelli, R.; Gayó, E.; Zambrano-Bigiarini, M. HESS Opinions: The unsustainable use of groundwater conceals a “Day Zero”. Hydrol. Earth Syst. Sci. 2024, 28, 1605–1616. [Google Scholar] [CrossRef]
- Budds, J. La demanda, evaluación y asignación del agua en el contexto de escasez: Un análisis del ciclo hidrosocial del valle del río La Ligua, Chile. Rev. Geogr. Norte Gd. 2012, 52, 167–184. [Google Scholar] [CrossRef]
- Bauer, C.J. Water conflicts and entrenched governance problems in Chile’s market model. Water Altern. 2015, 8, 147–172. Available online: http://www.water-alternatives.org/index.php/alldoc/articles/vol8/v8issue2/285-a8-2-8 (accessed on 30 August 2025).
- Urquiza, A.; Amigo, C.; Billi, M.; Cortés, J.; Labraña, J. Gobernanza policéntrica y problemas ambientales en el siglo XXI: Desafíos de coordinación social para la distribución de recursos hídricos en Chile. Pers. Soc. 2019, 33, 133. [Google Scholar] [CrossRef]
- Ostrom, E. Governing the Commons: The Evolution of Institutions for Collective Action; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Nicolas-Artero, C. Las organizaciones comunitarias de agua potable rural en América Latina: Un ejemplo de economía substantiva. [Community organizations of rural drinking water in Latin America: An example of substantive economy]. Polis 2016, 15, 165–189. [Google Scholar] [CrossRef]
- Abarzúa, G.; Glückler, J. Network Governance at the Margin of the State: Rural Drinking Water Communities in Chile. Environ. Manag. 2023, 71, 451–464. [Google Scholar] [CrossRef]
Variable | 1 | 2 | 3 |
---|---|---|---|
Size (0–10; 10–100; >100 km2) | 63.3 | 25.9 | 10.8 |
Unevenness (0–500; 500–1500; >1500 m) | 51.8 | 38.6 | 9.6 |
Average slope (0–30; 30–45; >45%) | 69.3 | 19.9 | 10.8 |
Form Factor (0–0.3; 0.3–0.6; >0.6) | 58.4 | 11.4 | 30.1 |
Compactness index (0–1.25; 1.25–1.75; >1.75) | 5.4 | 27.7 | 66.9 |
Orographic coefficient (0–0.1; 0.1–0.3; >0.3) | 76.5 | 12.7 | 10.8 |
Strahler Order (1–2; 3–4; >4) | 61.4 | 30.1 | 8.4 |
Annual precipitation (0–1000; 1000–2500; >2500 mm) | 14.5 | 64.5 | 21.1 |
Native Forest (0–33; 33–66; >66% of watershed surface) | 22.3 | 34.9 | 42.8 |
Anthropization Index (0–0.25; 0.25–0.50; >0.50) | 44.6 | 30.1 | 25.3 |
Water availability (0–10; 10–1000; >1000 L/s) | 10.3 | 60.9 | 28.8 |
Variable | 0–20% | 20–40% | >40% |
---|---|---|---|
WSI 2015–2020 | 58.1 | 15.5 | 26.5 |
WSI 2016 | 59.4 | 6.5 | 34.2 |
WSI.ap 2015–2020 | 87.1 | 7.1 | 5.8 |
WSI.ap 2016 | 85.8 | 2.6 | 11.6 |
WSI.da 2015–2020 | 66.7 | 10.9 | 22.4 |
WSI.da 2016 | 67.9 | 5.8 | 26.3 |
Variable | Comparison Type | Test | p-Value | Effect Size | Croup Means | Post Hoc Comparisons |
---|---|---|---|---|---|---|
User participation | Geography | Kruskal–Wallis | 0.006 ** | η2 = 0.089 | Mountain: 8.95 | Coastal > Valley * Mountain > Valley * |
Coastal: 8.77 | ||||||
Valley: 8.39 | ||||||
Regulatory compliance | Geography | Kruskal–Wallis | 0.009 ** | η2 = 0.083 | Coastal: 8.62 | Coastal > Mountain * |
Valley: 8.29 | ||||||
Mountain: 8.09 | ||||||
Infrastructure priority | Geography | Kruskal–Wallis | 0.025 * | η2 = 0.064 | Coastal: 8.86 Mountain: 8.86 | Coastal > Valley * |
Valley: 8.29 | ||||||
Water quality monitoring | Geography | Kruskal–Wallis | 0.017 * | η2 = 0.072 | Coastal: 8.66 Mountain: 8.55 Valley: 8.29 | Coastal > Valley * Mountain > Valley * |
Infrastructure | Monitoring_SYS | Regulations | User_Part | Techcapacity | Finan_Resour | AI | WSI | |
---|---|---|---|---|---|---|---|---|
Infrastructure | 1.000 | 0.340 * | 0.008 | 0.287 * | 0.144 | 0.231 † | −0.008 | 0.043 |
Monitoring_SYS | 0.340 | 1.000 | 0.718 * | 0.060 | 0.034 | −0.060 | 0.017 | 0.047 |
Regulations | 0.008 | 0.718 | 1.000 | −0.058 | 0.078 | 0.114 | 0.172 | 0.060 |
User_Part | 0.287 | 0.060 | −0.058 | 1.000 | 0.154 | 0.177 | −0.064 | −0.308 * |
Techcapacity | 0.144 | 0.034 | 0.078 | 0.154 | 1.000 | 0.078 | −0.057 | −0.284 * |
Finan_Resour | 0.231 | −0.060 | 0.114 | 0.177 | 0.078 | 1.000 | 0.099 | 0.029 |
AI | −0.008 | 0.017 | 0.172 | −0.064 | −0.057 | 0.099 | 1.000 | 0.353 ** |
WSI | 0.043 | 0.047 | 0.060 | −0.308 | −0.284 | 0.029 | 0.353 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frêne, C.; Astorga-Roine, A.; Gale, T.; Sotomayor, B.; Báez-Montenegro, A.; Boisier, J.P.; Alvarez-Garreton, C.; Reid, B.L. The Mirage of Drinking Water Security in Chilean Patagonia: A Socio-Ecological Perspective. Sustainability 2025, 17, 8519. https://doi.org/10.3390/su17188519
Frêne C, Astorga-Roine A, Gale T, Sotomayor B, Báez-Montenegro A, Boisier JP, Alvarez-Garreton C, Reid BL. The Mirage of Drinking Water Security in Chilean Patagonia: A Socio-Ecological Perspective. Sustainability. 2025; 17(18):8519. https://doi.org/10.3390/su17188519
Chicago/Turabian StyleFrêne, Cristián, Anna Astorga-Roine, Trace Gale, Benjamín Sotomayor, Andrea Báez-Montenegro, Juan P. Boisier, Camila Alvarez-Garreton, and Brian L. Reid. 2025. "The Mirage of Drinking Water Security in Chilean Patagonia: A Socio-Ecological Perspective" Sustainability 17, no. 18: 8519. https://doi.org/10.3390/su17188519
APA StyleFrêne, C., Astorga-Roine, A., Gale, T., Sotomayor, B., Báez-Montenegro, A., Boisier, J. P., Alvarez-Garreton, C., & Reid, B. L. (2025). The Mirage of Drinking Water Security in Chilean Patagonia: A Socio-Ecological Perspective. Sustainability, 17(18), 8519. https://doi.org/10.3390/su17188519