Sustainable Transportation Optimisation of Waste Electrical and Electronic Equipment Using AI-Based Evolutionary Algorithms
Abstract
1. Introduction
- Efficient WEEE management can contribute to the recovery of valuable and rare materials that can be reused in the production of new electronic devices, reducing the need to extract new resources and promoting the sustainable use of energy in manufacturing.
- Smart cities can implement intelligent waste management systems that optimise the collection and transportation of WEEE, reducing traffic congestion and carbon emissions. AI technology can analyse waste generation patterns and plan efficient collection routes, promoting cleaner and more sustainable communities.
- Proper management of WEEE prevents hazardous e-waste from reaching landfills and contaminating soil and water resources. Advanced technologies enable the accurate tracking and management of this waste, protecting biodiversity and terrestrial ecosystems from the harmful effects of toxic materials.
- Knowledge-Based Systems. KBS can help in the identification and classification of different types of electronic waste. Using rules based on knowledge about the physical and chemical characteristics of the devices, these systems can diagnose the type of WEEE and classify it appropriately for treatment. Knowledge-Based Systems [1] can be: Expert Systems [2], Fuzzy Logic Systems [3], Rule-Based Systems [4].
- Data-Based Systems. Data-based systems offer a powerful tool to address this problem, providing advanced methods to analyse, optimise and improve the efficiency of WEEE collection, sorting and recycling processes. Data-Based Systems can be: Machine Learning [5,6,7], Deep Learning [8,9], Ensemble Algorithms [10,11,12], Generative AI [13,14,15], Regenerative AI [13].
- Heuristic-Based Systems. Heuristic-based systems are powerful tools for solving complex optimisation problems that are common in the management of WEEE. These systems use nature-inspired methods and practical rules to find efficient solutions to problems that may be difficult to tackle using conventional techniques. Heuristic-Based Systems can be: Evolutionary Algorithms [16].
2. Electrical and Electronic Waste Transportation
- The WEEETP deals with e-waste and hazardous waste, which require specialised transport and disposal procedures, involving additional considerations on safety, environmental regulations and risk management. These factors are not present in the classical VRPTW.
- Unlike traditional routing issues in the VRPTW, the WEEETP must address challenges such as compatibility between the type of vehicles and the nature of the waste, as well as specific staff training and compliance with environmental regulations.
- The combination of these advanced algorithms provides more robust and accurate solutions for route optimisation, with better handling of the variability of e-waste transport demands and operating conditions.
- In the WEEETP, operational costs and penalties can be linked to additional factors, such as carbon emissions or compliance with e-waste recycling and disposal regulations, adding complexity to the optimisation problem.
- Since WEEE (e-waste) transport is closely related to sustainability and environmental impact, WEEETP can incorporate sustainability objectives that are not present in traditional VRPTW, such as optimising resource use and reducing the carbon footprint.
- Collection Centre (CA). CA is where electronic and hazardous waste is collected. CA is the point of contact between humans and the deposit of e-waste of all kinds. There are two containers at the centre: one for computer waste and another for dangerous waste and pollutants (specifically, items considered contaminants include batteries and car batteries).
- Pick-up Centre (CS). CS is where the CA for electronic waste is received for electronics (computers, tablets, phones), appliances, and other electronic waste. These items are separated for recycling and destruction, and, if the item is dangerous, it is set aside as dangerous and polluting waste.
- Computer recycling facility (RC). RC is where computer-related waste, classified as computers, mobile phones, tablets, and laptops, is received. If these items can be reused, they are recycled. Otherwise, they are transported to waste disposal for destruction.
- Deposit of hazardous and polluting waste (RP). RP is where electronics containing circuits or highly polluting components and items that have a risk of explosion are taken.
- Deposit of waste for destruction (RD). RD is where the waste is stored to be destroyed. The items taken here involve no risk to the environment.
- Select an NP-complete problem A (WEEETP).
- Define a formal language L1 for the NP-complete problem A. We define the language: L1 = {I, TW, F, V, C, D, DC1, La1, Lo1, De1, RT1, DT1, ST1, …, DCₙ, Laₙ, Loₙ, Deₙ, RTₙ, DTₙ, STₙ}. Here, I denotes the instance name (e.g., EWasteXX.txt), TW the time window, F the fleet type (homogeneous or heterogeneous), V the number of vehicles, C the capacity, and D the demand. Each distribution centre DCᵢ is associated with its latitude Laᵢ and longitude Loᵢ, a client demand Deᵢ, a ready time RTᵢ, a due time DTᵢ, and a service time STᵢ. The alphabet is defined as: Σ = {0,1,2,3,4,5,6,7,8,9,{,},.,;,=,-,E,W,T}. The admissible syntax of the instances is then specified by the following BNF grammar:<instance> ::= <NameProblem> <Equal> <Sentences> ;<Sentences> ::= <KOpen> <TNum> <Semicolon> <NumList> <Semicolon> <NumCap> <KClose> ;<TNum> ::= <Num> ;<NumCap> ::= <Num> ;<NumList> ::= <Num> | <NumList> <Comma> <Num> ;<Num> ::= <Integer> | <Decimal> ;<Integer> ::= <Digit> | <Integer> <Digit> ;<Decimal> ::= <Integer> <Dot> <Integer> |<Negative> <Integer> <Dot> <Integer> |<Integer> <Dot> |<Dot> <Integer> ;<Digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 ;<NameProblem> ::= 'EWT' ;<Equal> ::= '=' ;<KOpen> ::= '{' ;<KClose> ::= '}' ;<Semicolon> ::= ';' ;<Comma> ::= ',' ;<Negative> ::= '-' ;<Dot> ::= '.' ;
- Select an NP-complete problem B (VRP).
- Define a formal language L2 for the NP-complete problem B. We define the language: L2 = { VN, C, ( CN1, XCO1, YCO1, D1, RT1, DT1, ST1, …, CN_z, XCO_z, YCO_z, D_z, RT_z, DT_z, ST_z ) }. Here, VN denotes the Vehicle Number, C the Capacity, CN the Customer Number, XCO the X coordinate, YCO the Y coordinate, D the Demand, RT the Ready Time, DT the Due Date, and ST the Service Time. The alphabet is defined as: Σ = {0,1,2,3,4,5,6,7,8,9,{,},,,;,=,.,V,R,P}. The admissible syntax of the instances is then specified by the following BNF grammar:<instance> ::= <NameProblem> <Equal> <Sentences> ;<Sentences> ::= <KOpen> <TNum> <Semicolon> <NumList> <Semicolon> <NumCap> <KClose> ;<TNum> ::= <Num> ;<NumCap> ::= <Num> ;<NumList> ::= <Num> | <NumList> <Comma> <Num> ;<Num> ::= <Integer> | <Decimal> ;<Integer> ::= <Digit> | <Integer> <Digit> ;<Decimal> ::= <Integer> <Dot> <Integer> |<Negative> <Integer> <Dot> <Integer> |<Integer> <Dot> |<Dot> <Integer> ;<Digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 ;<NameProblem> ::= 'VRP' ;<Equal> ::= '=' ;<KOpen> ::= '{' ;<KClose> ::= '}' ;<Semicolon> ::= ';' ;<Comma> ::= ',' ;<Negative> ::= '-' ;<Dot> ::= '.' ;
- Construct a compiler that transforms in polynomial time a source language into a target language . In the lexical analysis phase of the compiler, a source language is transformed into tokens. The next information shows the token declaration for the GNU Flex software used in the lexical phase.
/* ---------- Definitions ---------- */
A [aA] B [bB] C [cC] D [dD] E [eE] F [fF] G [gG] H [hH] I [iI] J [jJ] K [kK] L [lL] M [mM] N [nN] O [oO] P [pP] Q [qQ] R [rR] S [sS] T [tT] U [uU] V [vV] W [wW] X [xX] Y [yY] Z [zZ] Digit [0-9]
/* ------------- Rules ------------- */
"=" {return EQUAL;}
"," {return COMMA;}
";" {return SEMICOLON;}
"\." {return DOT;}
"\{" {return KOPEN;}
"\}" {return KCLOSE;}
{DIGIT}+ {return DIGSEQ;}
/* Ignore any other single character */
. {/* ignore */}
3. Results and Discussion
Set t = 0. The population P (0) is initialized at random. The chromosomes of the population P (t) are evaluated using the fitness function, and the algorithm retains the most successful individual. The selected chromosomes make up an intermediate population P1, representing candidates for the mating pool. The crossover is applied to the chromosomes from the mating pool and to obtain the new population P2. The mutation operator is applied to the population P2. The outcome is the new generation P(t + 1). Set t = t + 1, if t < M, where M is the maximum number of generations, then go to step 2. Otherwise, stop. |
Set . The population is initialised at random. The chromosomes of the population are evaluated using the fitness function, and it retains the most successful individual. The selected chromosomes comprise an intermediate population , representing candidates for the mating pool. The crossover is applied to the chromosomes from the mating pool and obtain the new population . The mutation operator is applied to the population , producing(POP). Evaluate the offspring success: child’s fitness value better than a worse parent. Calculate the percentage of next population members that have successful mating of the total population size: Complete the population with individuals randomly chosen from the pool of individuals that were also created by crossover but did not achieve the success criterion. Calculate Actual selection pressure: Detect if premature convergence has occurred with: Set , if , where is the maximum number of generations, then go to step 2. Otherwise, stop. |
The object variables are initialized at random; strategy variables get a value of 3.0, and the rotation angles get a random value between and . The initial for each individual. Obtain descendants using the recombination operator in the current parent's population. Mutate every descendant. Choose a new population and reorder the set of parents with the set of descendants. Continue with step 3, until termination criteria: . |
The object variables are initialized at random; strategy variables get a value of 3.0, and rotation angles get at a random value between and . The initial for each individual. Obtain descendants using the recombination operator in the current parent population. Mutate every descendant. Evaluate the offspring success: child’s fitness value better than a worse parent. Calculate the percentage of the next population members that have successful mating of the total population size: Complete the population with individuals randomly chosen from the pool of individuals who were also created by crossover but did not achieve the success criterion. Calculate Actual selection pressure: Detect if a premature convergence has occurred with: Choose a new population and reorder the set of parents with the set of descendants. Continue with step 3, until termination criteria: . |
4. Conclusions
- To carry out the test on the instance repository, 100 instances were used, evaluated by each of the algorithms mentioned above, in 33 runs. As part of the result of the process, in the solution of the real instance, we observed that the proposed model achieves the objective of efficient e-waste collection, with the best use of resources by travelling a short distance with the least number of vehicles and, in turn, covering the demand with a service offered within the established time window.
- As part of the solutions for the 100 instances, the OSES (Offspring Selection Evolution Strategy) algorithm showed better performance in 63 of the 100 instances, generating the best result compared to other algorithms. This algorithm also had an average run time of 00:13.9, compared to the ES (Evolution Strategy) algorithm, which obtained the best solution in 67 instances, but with an average run time of 03:50.9.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Duda, R.O.; Shortliffe, E.H. Expert Systems Research. Science 1983, 220, 261–268. [Google Scholar] [CrossRef]
- McCorduck, P. The Fifth Generation: Artificial Intelligence and Japan’s Computer Challenge to the World; Addison-Wesley: Reading, MA, USA, 1983. [Google Scholar]
- Zadeh, L.A. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Buchanan, B.G.; Shortliffe, E.H. Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project; Addison-Wesley: Reading, MA, USA, 1984. [Google Scholar]
- Samuel, A.L. Some studies in machine learning using the game of checkers. IBM J. Res. Dev. 1959, 3, 210–229. [Google Scholar] [CrossRef]
- MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 27 December 1965–7 January 1966; University of California Press: Berkeley, CA, USA, 1967; Volume 1. [Google Scholar]
- Sutton, R.S. Temporal Credit Assignment in Reinforcement Learning. Ph.D. Thesis, University of Massachusetts Amherst, Amherst, MA, USA, 1984. [Google Scholar]
- LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1989, 1, 541–551. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Wolpert, D.H. Stacked generalization. Neural Netw. 1992, 5, 241–259. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. arXiv 2014, arXiv:1406.2661. [Google Scholar] [CrossRef]
- Kingma, D.P.; Welling, M. Auto-encoding variational Bayes. arXiv 2013, arXiv:1312.6114. [Google Scholar]
- Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving language understanding by generative pre-training. OpenAI Prepr. 2018; in press. Available online: https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf (accessed on 14 September 2025).
- Holland, J.H. Adaptation in Natural and Artificial Systems; University of Michigan Press: Cambridge, MA, USA, 1975. [Google Scholar]
- Oliveira Neto, G.C.d.; de Araujo, S.A.; Gomes, R.A.; Alliprandini, D.H.; Flausino, F.R.; Amorim, M. Simulation of Electronic Waste Reverse Chains for the Sao Paulo Circular Economy: An Artificial Intelligence-Based Approach for Economic and Environmental Optimizations. Sensors 2023, 23, 9046. [Google Scholar] [CrossRef]
- Puzzo, G.; Prati, G. Unraveling the influence of convenience situational factors on e-waste recycling behaviors: A goal-framing theory approach. Sustain. Dev. 2024, 33, 1174–1191. [Google Scholar] [CrossRef]
- Ghisellini, P.; Quinto, I.; Passaro, R.; Ulgiati, S. Circular economy management of waste electrical and electronic equipment (weee) in italian urban systems: Comparison and perspectives. Sustainability 2023, 15, 9054. [Google Scholar] [CrossRef]
- Odnevall, I.; Brookman-Amissah, M.; Stábile, F.; Ekvall, M.T.; Herting, G.; Vargas, M.B.; Messing, M.E.; Sturve, J.; Hansson, L.-A.; Isaxon, C.; et al. Characterization and toxic potency of airborne particles formed upon waste from electrical and electronic equipment waste recycling: A case study. Acs Environ. Au 2023, 3, 370–382. [Google Scholar] [CrossRef]
- Zhang, L.; Song, G.; Yu, K.; Cheng, Y.; Zhao, X.; Lv, L.; Qian, H.; Liu, G. Carbon trading in china reduces the dependence of household waste electrical and electronic equipment recycling on government subsidies. Environ. Sci. Technol. 2023, 57, 16153–16165. [Google Scholar] [CrossRef]
- Abogunrin-Olafisoye, O.B.; Adeyi, O.; Adeyi, A.J.; Oke, E.O.; Ojediran, G.O. Sustainable waste electrical and electronics equipment recycling in nigeria, policies and emerging technologies. Environ. Qual. Manag. 2025, 34, e70020. [Google Scholar] [CrossRef]
- Sharifidarabad, H. Cu recovery from e-wastes. In Copper Overview—From Historical Aspects to Applications; IntechOpen: London, UK, 2024. [Google Scholar] [CrossRef]
- Kozlovska, M.; Duris, A.; Strukova, Z.; Tazikova, A. An expert knowledge-based system to evaluate the efficiency of dry construction methods. Appl. Sci. 2023, 13, 11741. [Google Scholar] [CrossRef]
- Cottes, M.; Mainardis, M.; Simeoni, P. Assessing the techno-economic feasibility of waste electric and electronic equipment treatment plant: A multi-decisional modeling approach. Sustainability 2023, 15, 16248. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, M.; Qin, J.; Chen, S.; Zhou, S.; Huang, R.; Zeng, X.; Han, Y.; Liu, Y.; Shang, M.; et al. Integrative assessments of e-waste impacts and greenhouse gas emissions in China: Integrating pollution sequestration and resource recovery. ACS Sustain. Resour. Manag. 2025, 2, 766–774. [Google Scholar] [CrossRef]
- Vidal, I.; Sucozhañay, G.; Haupt, M.; Vanegas, P. Towards the definition of weee recycling targets in Ecuador. A case of study for mobile phones. Waste Manag. Res. J. A Sustain. Circ. Econ. 2023, 41, 1539–1548. [Google Scholar] [CrossRef]
- Burat, F.; Dinç, N.İ.; Dursun, H.N.; Ulusoy, U. The role of particle size and shape on the recovery of copper from different electrical and electronic equipment waste. Minerals 2023, 13, 847. [Google Scholar] [CrossRef]
- Ghisellini, P.; Passaro, R.; Ulgiati, S. Environmental and social life cycle assessment of waste electrical and electronic equipment management in Italy according to EU directives. Environments 2023, 10, 106. [Google Scholar] [CrossRef]
- Martin, N.; Pandiammal, P.; Gandhi, N.R. Decision making on E-waste management methods using minimization of regret with interval-valued intuitionistic fuzzy sets. Malaya J. Mat. 2020, 8, 222–224. [Google Scholar] [CrossRef]
- Ni, Z.; Chan, H.K.; Tan, Z. Systematic literature review of reverse logistics for e-waste: Overview, analysis, and future research agenda. Int. J. Logist. Res. Appl. 2021, 26, 843–871. [Google Scholar] [CrossRef]
- Jude, A.B.; Singh, D.; Islam, S.; Jameel, M.; Srivastava, S.; Prabha, B.; Kshirsagar, P.R. An Artificial Intelligence Based Predictive Approach for Smart Waste Management. Wirel. Pers. Commun. 2021, 127, 15–16. [Google Scholar] [CrossRef]
- Ruiz-Vanoye, J.A.; Pérez-Ortega, J.; Díaz-Parra, O.; Frausto-Solís, J.; Fraire Huacuja, H.J.; Cruz-Reyes, L. Survey of polynomial transformations between NP-complete problems. J. Comput. Appl. Math. 2011, 235, 4851–4865. [Google Scholar] [CrossRef]
- Ruiz-Vanoye, J.A.; Pérez-Ortega, J.; Pazos Rangel, R.A.; Díaz-Parra, O.; Fraire-Huacuja, H.J.; Frausto-Solís, J.; Cruz-Reyes, L. Application of formal languages in polynomial transformations of instances between NP-complete problems. J. Zhejiang Univ. Sci. C 2013, 14, 623–633. [Google Scholar] [CrossRef]
- Bäck, T. Evolutionary Computation 1: Basic Algorithms and Operators; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Mitchell, M. An Introduction to Genetic Algorithms; MIT Press: Hollister, CA, USA, 1998. [Google Scholar]
- Bäck, T. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms; Oxford University Press: Oxford, UK, 1996. [Google Scholar]
- Ortiz, D.M.; Velásquez, J.D.; Jaramillo, P. Estrategias evolutivas como una opción para la optimización de funciones no lineales con restricciones. Rev. Ing. Univ. De Medellin 2011, 10, 117–126. [Google Scholar]
- Hansen, N.; Ostermeier, A. Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 2001, 9, 159–195. [Google Scholar] [CrossRef] [PubMed]
- Lasdon, L.; Duarte, A.; Glover, F.; Laguna, M.; Martí, R. Adaptive memory programming for constrained global optimization. Comput. Oper. Res. 2010, 37, 1500–1509. [Google Scholar] [CrossRef]
Research | Based Systems | Aportation |
---|---|---|
[23] | KBS | Implementing expert systems can facilitate these processes by automating decision-making, providing resource allocation recommendations, and optimizing collection routes for WEEE, ultimately leading to improved sustainability outcomes |
[24] | Data-Based Systems | These systems leverage data analytics, machine learning, and artificial intelligence to optimize the collection, transportation, recycling, and disposal of electronic waste. |
[25] | Knowledge-Based Systems | Cottes et al. propose a techno-economic modeling approach for assessing the feasibility of WEEE treatment plants, relying heavily on KBS to evaluate economic and operational performance, thus providing stakeholders with a comprehensive toolkit for effective plant management. |
[26] | Data-Based Systems | Huang et al. discuss the importance of data analytics in measuring greenhouse gas emissions and resource recovery from WEEE, showcasing how DBS can integrate environmental data to inform policy decisions and operational practices, although their study emphasizes the situation in China. |
[27] | Data-Based Systems | The utilization of data-driven models can significantly enhance the understanding of urban WEEE flows, thus aiding in the establishment of efficient recycling targets. |
[28] | Heuristic-Based Systems | Burat et al. investigate the recovery of valuable materials, utilizing heuristic methods to optimize the separation and recycling processes for various WEEE components. |
[25,29] | Heuristic-Based Systems | The combination of KBS for expert insights and DBS for robust data analysis presents a path toward more effective decision-making frameworks in e-waste management. |
[30] | Fuzzy Logic Systems | They developed a decision-making tool on E-waste management methods using minimisation of regret with interval-valued intuitionistic fuzzy sets. |
[31] | Heuristic-Based Systems | They reviewed the reverse logistics of WEEE in developed and developing countries, identifying opportunities for optimisation using heuristic-based systems. |
[32] | convolutional neural network | Jude and colleagues proposed an artificial intelligence-based predictive framework for smart waste management. They employed a convolutional neural network (CNN) to forecast waste generation, addressing the challenges posed by data variability and incomplete records. The study demonstrated that this method significantly improves the accuracy of waste volume prediction, which is essential for designing more efficient and sustainable collection and treatment systems. |
I | TW | |||||
---|---|---|---|---|---|---|
F | V | C | D | |||
DC | La | Lo | De | RT | DT | ST |
0 | La0 | Lo0 | De0 | RT0 | DT0 | ST0 |
… | … | … | … | … | … | … |
30 | Lan | Lon | Den | RTn | DTn | STn |
-Waste-01–30.txt | ||||||
---|---|---|---|---|---|---|
Fleet | Num vehicles | Capacity (kg) | Demand (kg) | |||
H | 20 | 3000 | 60,000 | |||
Collection Center | Minutes | |||||
Num | Latitude | Longitude | Demand CA (kg) | Ready Time | Due Time | Service Time |
1 | 20.752829 | −100.449832 | 0 | 420 | 1050 | 0 |
2 | 20.030209 | −98.841938 | 1767 | 540 | 1260 | 45 |
3 | 20.059819 | −98.767274 | 586 | 660 | 1260 | 45 |
4 | 20.122984 | −98.735402 | 2282 | 660 | 1260 | 45 |
5 | 20.098306 | −98.767937 | 36 | 660 | 1260 | 45 |
6 | 20.096825 | −98.76164 | 2655 | 660 | 1260 | 45 |
7 | 20.128219 | −98.731907 | 340 | 600 | 1260 | 45 |
8 | 20.053558 | −98.779779 | 2699 | 540 | 1260 | 45 |
9 | 20.057846 | −98.776151 | 1127 | 660 | 1140 | 45 |
10 | 20.063298 | −98.778091 | 1794 | 660 | 1260 | 45 |
11 | 20.060236 | −98.769966 | 1887 | 660 | 1260 | 45 |
12 | 20.118674 | −98.742286 | 627 | 660 | 1260 | 45 |
13 | 20.127274 | −98.733103 | 1909 | 660 | 1260 | 45 |
14 | 20.128209 | −98.731896 | 661 | 660 | 1260 | 45 |
15 | 20.129303 | −98.732076 | 1434 | 660 | 1260 | 45 |
16 | 20.128876 | −98.730544 | 2743 | 660 | 1260 | 45 |
17 | 20.124761 | −98.730271 | 1332 | 660 | 1260 | 45 |
18 | 20.093422 | −98.759056 | 307 | 660 | 1140 | 45 |
19 | 20.114379 | −98.749249 | 1391 | 600 | 1260 | 45 |
20 | 20.081224 | −98.728593 | 2639 | 660 | 1260 | 45 |
21 | 20.111087 | −98.760279 | 1286 | 480 | 1260 | 45 |
22 | 20.053548 | −98.779768 | 2737 | 540 | 1260 | 45 |
23 | 20.055045 | −98.782607 | 2973 | 600 | 1260 | 45 |
24 | 20.126574 | −98.731184 | 1700 | 660 | 1260 | 45 |
25 | 20.098138 | −98.768129 | 1142 | 660 | 1260 | 45 |
26 | 19.364115 | −99.048609 | 2237 | 660 | 1260 | 45 |
27 | 20.752829 | −100.449832 | 1008 | 660 | 1260 | 45 |
28 | 19.361424 | −99.196768 | 2439 | 660 | 1260 | 45 |
29 | 19.353929 | −99.114616 | 1144 | 660 | 1260 | 45 |
30 | 19.34967 | −99.159222 | 652 | 660 | 1260 | 45 |
Instance | GA | OSGA | ES | OSES |
---|---|---|---|---|
EW1 | Dist: 62.507566 #Veh: 17 Time: 01:16.3 | Dist: 62.570756 #Veh: 17 Time: 02:08.7 | Dist: 62.507566 #Veh: 17 Time: 00:04.0 | Dist: 62.507566 #Veh: 17 Time: 02:16.2 |
EW2 | Dist: 27.568182 #Veh: 18 Time: 01:13.2 | Dist: 27.568182 #Veh: 18 Time: 02:37.5 | Dist: 27.568182 #Veh: 18 Time: 00:30.6 | Dist: 27.568182 #Veh: 18 Time: 01:04.2 |
EW3 | Dist: 27.221213 #Veh: 20 Time: 00:53.6 | Dist: 27.221213 #Veh: 20 Time: 02:02.0 | Dist: 27.221213 #Veh: 20 Time: 00:10.9 | Dist: 28.79063 #Veh: 20 Time: 00:59.7 |
EW4 | Dist: 37.232173 #Veh: 15 Time: 01:17.4 | Dist: 37.218797 #Veh: 15 Time: 03:01.8 | Dist: 37.218797 #Veh: 15 Time: 00:10.4 | Dist: 37.384005 #Veh: 15 Time: 01:11.5 |
EW5 | Dist: 27.568182 #Veh: 18 Time: 01:23.1 | Dist: 27.568182 #Veh: 18 Time: 02:55.2 | Dist: 27.568182 #Veh: 18 Time: 00:22.1 | Dist: 27.623549 #Veh: 18 Time: 01:08.0 |
EW6 | Dist: 43.595797 #Veh: 17 Time: 01:27.1 | Dist: 43.595797 #Veh: 17 Time: 06:36.3 | Dist: 43.595797 #Veh: 17 Time: 00:16.3 | Dist: 44.852987 #Veh: 16 Time: 02:30.7 |
EW7 | Dist: 24.40535 #Veh: 16 Time: 00:31.0 | Dist: 24.402844 #Veh: 16 Time: 04:32.4 | Dist: 24.402844 #Veh: 16 Time: 00:23.5 | Dist: 24.444569 #Veh: 16 Time: 02:23.7 |
EW8 | Dist: 28.514534 #Veh: 17 Time: 01:26.3 | Dist: 28.504195 #Veh: 17 Time: 03:12.9 | Dist: 28.504195 #Veh: 17 Time: 00:20.0 | Dist: 29.039056 #Veh: 17 Time: 02:54.8 |
EW9 | Dist: 35.653599 #Veh: 14 Time: 01:06.6 | Dist: 34.879333 #Veh: 14 Time: 04:32.5 | Dist: 34.915125 #Veh: 14 Time: 00:10.9 | Dist: 35.870247 #Veh: 14 Time: 01:28.1 |
EW10 | Dist: 34.612012 #Veh: 16 Time: 01:23.3 | Dist: 34.612012 #Veh: 16 Time: 02:55.2 | Dist: 34.612012 #Veh: 16 Time: 00:12.5 | Dist: 34.612012 #Veh: 16 Time: 01:08.4 |
EW11 | Dist: 39.267533 #Veh: 18 Time: 00:46.0 | Dist: 39.267533 #Veh: 18 Time: 03:24.6 | Dist: 39.267533 #Veh: 18 Time: 00:07.5 | Dist: 39.267533 #Veh: 18 Time: 00:36.3 |
EW12 | Dist: 26.677795 #Veh: 18 Time: 00:54.7 | Dist: 26.677795 #Veh: 18 Time: 02:37.6 | Dist: 26.677795 #Veh: 18 Time: 00:14.6 | Dist: 26.677795 #Veh: 18 Time: 02:10.6 |
EW13 | Dist: 21.651024 #Veh: 12 Time: 00:51.5 | Dist: 21.651024 #Veh: 12 Time: 01:05.3 | Dist: 21.651024 #Veh: 12 Time: 00:13.7 | Dist: 21.651024 #Veh: 12 Time: 00:39.8 |
EW14 | Dist: 22.620359 #Veh: 13 Time: 01:00.7 | Dist: 22.620359 #Veh: 13 Time: 03:01.2 | Dist: 22.620359 #Veh: 13 Time: 00:10.4 | Dist: 22.836019 #Veh: 14 Time: 00:48.6 |
EW15 | Dist: 33.614401 #Veh: 18 Time: 00:40.4 | Dist: 33.614401 #Veh: 18 Time: 02:12.5 | Dist: 33.614401 #Veh: 18 Time: 00:06.8 | Dist: 33.614401 #Veh: 18 Time: 00:44.0 |
EW16 | Dist: 32.712498 #Veh: 17 Time: 00:32.7 | Dist: 32.712498 #Veh: 17 Time: 00:51.3 | Dist: 32.712498 #Veh: 17 Time: 00:09.6 | Dist: 32.960182 #Veh: 17 Time: 01:07.9 |
EW17 | Dist: 25.897119 #Veh: 16 Time: 00:56.4 | Dist: 25.897119 #Veh: 16 Time: 03:13.7 | Dist: 25.897119 #Veh: 16 Time: 00:11.7 | Dist: 25.897119 #Veh: 16 Time: 01:14.9 |
EW18 | Dist: 32.955567 #Veh: 14 Time: 01:11.7 | Dist: 32.839482 #Veh: 14 Time: 01:50.9 | Dist: 32.843833 #Veh: 14 Time: 00:16.9 | Dist: 32.843833 #Veh: 14 Time: 01:22.7 |
EW19 | Dist: 27.182308 #Veh: 15 Time: 00:39.9 | Dist: 27.182308 #Veh: 15 Time: 03:23.0 | Dist: 27.182308 #Veh: 15 Time: 00:17.0 | Dist: 27.182308 #Veh: 15 Time: 01:22.3 |
EW20 | Dist: 35.230723 #Veh: 15 Time: 01:15.3 | Dist: 35.137462 #Veh: 15 Time: 02:20.6 | Dist: 35.137462 #Veh: 15 Time: 00:10.2 | Dist: 35.322731 #Veh: 15 Time: 01:43.9 |
EW21 | Dist: 26.886448 #Veh: 19 Time: 01:26.2 | Dist: 26.886448 #Veh: 19 Time: 03:58.1 | Dist: 26.886448 #Veh: 19 Time: 00:07.6 | Dist: 26.886448 #Veh: 19 Time: 01:24.4 |
EW22 | Dist: 49.262455 #Veh: 17 Time: 01:06.4 | Dist: 49.262455 #Veh: 17 Time: 03:53.3 | Dist: 49.262455 #Veh: 17 Time: 00:09.1 | Dist: 51.985491 #Veh: 18 Time: 01:13.1 |
EW23 | Dist: 31.838255 #Veh: 19 Time: 01:10.2 | Dist: 31.838255 #Veh: 19 Time: 04:12.4 | Dist: 31.838255 #Veh: 19 Time: 00:21.9 | Dist: 31.838255 #Veh: 19 Time: 01:32.1 |
EW24 | Dist: 27.803411 #Veh: 15 Time: 01:08.8 | Dist: 27.803411 #Veh: 15 Time: 03:18.2 | Dist: 27.803411 #Veh: 15 Time: 00:10.5 | Dist: 27.829163 #Veh: 15 Time: 01:45.8 |
EW25 | Dist: 28.371217 #Veh: 20 Time: 00:49.5 | Dist: 27.931706 #Veh: 19 Time: 03:47.5 | Dist: 27.931706 #Veh: 19 Time: 00:20.7 | Dist: 30.352478 #Veh: 20 Time: 00:47.7 |
EW26 | Dist: 40.907654 #Veh: 20 Time: 01:18.8 | Dist: 45.121866 #Veh: 20 Time: 04:05.4 | Dist: 43.831705 #Veh: 20 Time: 00:15.4 | Dist: 45.894011 #Veh: 20 Time: 00:47.6 |
EW27 | Dist: 38.999202 #Veh: 17 Time: 00:53.6 | Dist: 38.999202 #Veh: 17 Time: 03:23.2 | Dist: 38.999202 #Veh: 20 Time: 00:12.0 | Dist: 39.056672 #Veh: 17 Time: 01:22.9 |
EW28 | Dist: 30.085323 #Veh: 17 Time: 01:23.3 | Dist: 30.085323 #Veh: 17 Time: 03:36.2 | Dist: 30.085323 #Veh: 17 Time: 00:12.2 | Dist: 30.490975 #Veh: 17 Time: 01:41.1 |
EW29 | Dist: 30.866102 #Veh: 20 Time: 01:40.5 | Dist: 32.604814 #Veh: 20 Time: 01:29.6 | Dist: 32.050868 #Veh: 20 Time: 00:14.7 | Dist: 34.180135 #Veh: 20 Time: 01:39.3 |
EW30 | Dist: 32.342994 #Veh: 20 Time: 01:14.3 | Dist: 33.3571 #Veh: 20 Time: 04:15.8 | Dist: 33.404621 #Veh: 20 Time: 00:12.2 | Dist: 33.942188 #Veh: 20 Time: 01:18.9 |
EW31 | Dist: 25.785707 #Veh: 19 Time: 01:19.2 | Dist: 25.785707 #Veh: 19 Time: 04:48.1 | Dist: 25.785707 #Veh: 19 Time: 00:10.7 | Dist: 25.813241 #Veh: 19 Time: 02:18.1 |
EW32 | Dist: 29.74987 #Veh: 16 Time: 01:19.2 | Dist: 29.74987 #Veh: 16 Time: 02:34.9 | Dist: 29.74987 #Veh: 16 Time: 00:12.8 | Dist: 29.757853 #Veh: 16 Time: 01:31.4 |
EW33 | Dist: 27.507111 #Veh: 16 Time: 01:26.5 | Dist: 27.506717 #Veh: 16 Time: 03:45.5 | Dist: 27.506717 #Veh: 16 Time: 00:15.7 | Dist: 27.630505 #Veh: 16 Time: 01:17.1 |
EW34 | Dist: 31.186599 #Veh: 16 Time: 00:39.3 | Dist: 31.186599 #Veh: 16 Time: 03:43.6 | Dist: 31.186599 #Veh: 16 Time: 00:11.1 | Dist: 32.010692 #Veh: 16 Time: 02:49.2 |
EW35 | Dist: 38.392616 #Veh: 20 Time: 00:52.8 | Dist: 37.482973 #Veh: 18 Time: 03:44.2 | Dist: 37.520155 #Veh: 18 Time: 00:34.3 | Dist: 38.145798 #Veh: 19 Time: 00:46.5 |
EW36 | Dist: 46.11107 #Veh: 20 Time: 00:52.7 | Dist: 46.11107 #Veh: 20 Time: 04:14.4 | Dist: 46.11107 #Veh: 20 Time: 00:08.7 | Dist: 46.138714 #Veh: 20 Time: 01:02.2 |
EW37 | Dist: 39.719761 #Veh: 17 Time: 01:10.4 | Dist: 39.719761 #Veh: 17 Time: 04:00.2 | Dist: 39.719761 #Veh: 17 Time: 00:06.4 | Dist: 39.956847 #Veh: 17 Time: 02:19.9 |
EW38 | Dist: 41.203126 #Veh: 19 Time: 01:38.9 | Dist: 41.203126 #Veh: 19 Time: 04:22.8 | Dist: 41.203126 #Veh: 19 Time: 00:14.8 | Dist: 38.067569 #Veh: 18 Time: 04:02.3 |
EW39 | Dist: 25.678597 #Veh: 18 Time: 01:18.9 | Dist: 25.678597 #Veh: 18 Time: 04:12.3 | Dist: 25.678597 #Veh: 18 Time: 00:21.4 | Dist: 25.678597 #Veh: 18 Time: 01:15.3 |
EW40 | Dist: 30.216749 #Veh: 17 Time: 00:31.4 | Dist: 30.216749 #Veh: 17 Time: 05:21.5 | Dist: 30.216749 #Veh: 17 Time: 00:08.2 | Dist: 31.927701 #Veh: 18 Time: 01:20.1 |
EW41 | Dist: 23.42494 #Veh: 19 Time: 01:05.2 | Dist: 22.922326 #Veh: 19 Time: 04:30.3 | Dist: 22.922326 #Veh: 19 Time: 00:04.8 | Dist: 23.485707 #Veh: 19 Time: 01:05.7 |
EW42 | Dist: 21.248344 #Veh: 15 Time: 01:16.3 | Dist: 21.248344 #Veh: 15 Time: 04:50.9 | Dist: 21.248344 #Veh: 15 Time: 00:07.3 | Dist: 21.248344 #Veh: 15 Time: 01:30.5 |
EW43 | Dist: 33.226438 #Veh: 20 Time: 01:16.3 | Dist: 33.516193 #Veh: 20 Time: 05:49.4 | Dist: 33.516193 #Veh: 20 Time: 00:19.5 | Dist: 33.609933 #Veh: 20 Time: 02:16.8 |
EW44 | Dist: 34.532568 #Veh: 18 Time: 01:08.4 | Dist: 34.532568 #Veh: 18 Time: 03:36.2 | Dist: 34.532568 #Veh: 18 Time: 00:09.3 | Dist: 35.778809 #Veh: 18 Time: 02:48.1 |
EW45 | Dist: 43.559444 #Veh: 20 Time: 01:08.8 | Dist: 44.856488 #Veh: 20 Time: 02:00.6 | Dist: 43.871232 #Veh: 20 Time: 00:10.2 | Dist: 44.289528 #Veh: 20 Time: 00:50.2 |
EW46 | Dist: 39.714587 #Veh: 20 Time: 00:29.8 | Dist: 42.824911 #Veh: 20 Time: 03:55.9 | Dist: 41.947592 #Veh: 20 Time: 00:23.6 | Dist: 42.891392 #Veh: 20 Time: 00:35.0 |
EW47 | Dist: 24.357285 #Veh: 14 Time: 00:34.0 | Dist: 24.357285 #Veh: 14 Time: 04:26.5 | Dist: 24.357285 #Veh: 14 Time: 00:09.7 | Dist: 24.578766 #Veh: 15 Time: 00:56.6 |
EW48 | Dist: 39.650017 #Veh: 19 Time: 00:58.9 | Dist: 39.650017 #Veh: 19 Time: 06:55.6 | Dist: 39.650017 #Veh: 19 Time: 00:10.6 | Dist: 39.650017 #Veh: 19 Time: 01:22.5 |
EW49 | Dist: 31.271915 #Veh: 15 Time: 00:56.3 | Dist: 31.271915 #Veh: 15 Time: 03:46.2 | Dist: 31.271915 #Veh: 15 Time: 00:14.2 | Dist: 32.360006 #Veh: 15 Time: 02:56.9 |
EW50 | Dist: 29.333133 #Veh: 16 Time: 01:25.1 | Dist: 29.333133 #Veh: 16 Time: 03:54.7 | Dist: 29.333133 #Veh: 16 Time: 00:11.8 | Dist: 29.333133 #Veh: 16 Time: 01:48.8 |
EW51 | Dist: 44.97789 #Veh: 20 Time: 00:29.6 | Dist: 44.663648 #Veh: 20 Time: 04:31.9 | Dist: 44.742312 #Veh: 20 Time: 00:10.9 | Dist: 44.205225 #Veh: 20 Time: 00:46.5 |
EW52 | Dist: 33.476677 #Veh: 17 Time: 01:16.7 | Dist: 33.476677 #Veh: 17 Time: 03:42.1 | Dist: 33.476677 #Veh: 17 Time: 00:08.0 | Dist: 37.103782 #Veh: 19 Time: 02:12.8 |
EW53 | Dist: 39.751805 #Veh: 19 Time: 01:28.0 | Dist: 39.751805 #Veh: 19 Time: 04:29.6 | Dist: 39.751805 #Veh: 19 Time: 00:08.7 | Dist: 39.84094 #Veh: 19 Time: 01:38.6 |
EW54 | Dist: 23.658023 #Veh: 17 Time: 01:19.7 | Dist: 23.658023 #Veh: 17 Time: 03:16.8 | Dist: 23.658023 #Veh: 17 Time: 00:16.4 | Dist: 23.658023 #Veh: 17 Time: 01:29.0 |
EW55 | Dist: 25.351151 #Veh: 18 Time: 01:29.4 | Dist: 25.351151 #Veh: 18 Time: 06:39.9 | Dist: 25.351151 #Veh: 18 Time: 00:19.5 | Dist: 26.247055 #Veh: 18 Time: 02:00.7 |
EW56 | Dist: 41.992446 #Veh: 18 Time: 00:54.5 | Dist: 41.992446 #Veh: 18 Time: 02:12.4 | Dist: 41.992446 #Veh: 18 Time: 00:14.4 | Dist: 42.239238 #Veh: 18 Time: 01:25.0 |
EW57 | Dist: 31.779488 #Veh: 16 Time: 00:57.3 | Dist: 31.779488 #Veh: 16 Time: 04:14.5 | Dist: 31.779488 #Veh: 16 Time: 00:12.3 | Dist: 31.836395 #Veh: 16 Time: 00:53.2 |
EW58 | Dist: 31.209647 #Veh: 18 Time: 00:45.0 | Dist: 31.209647 #Veh: 18 Time: 04:01.9 | Dist: 31.209647 #Veh: 18 Time: 00:11.7 | Dist: 31.27764 #Veh: 19 Time: 02:00.7 |
EW59 | Dist: 35.510156 #Veh: 15 Time: 00:53.9 | Dist: 35.487279 #Veh: 15 Time: 03:17.7 | Dist: 35.338287 #Veh: 15 Time: 00:18.7 | Dist: 35.72326 #Veh: 15 Time: 01:20.3 |
EW60 | Dist: 27.626122 #Veh: 17 Time: 01:30.7 | Dist: 27.626122 #Veh: 17 Time: 04:15.8 | Dist: 27.626122 #Veh: 17 Time: 00:09.4 | Dist: 27.626122 #Veh: 17 Time: 01:41.2 |
EW61 | Dist: 35.236308 #Veh: 15 Time: 01:35.4 | Dist: 35.226466 #Veh: 15 Time: 03:20.8 | Dist: 20.155375 #Veh: 18 Time: 00:37.3 | Dist: 36.082496 #Veh: 15 Time: 03:18.8 |
EW62 | Dist: 36.276229 #Veh: 17 Time: 01:22.2 | Dist: 36.276229 #Veh: 17 Time: 05:00.1 | Dist: 36.276229 #Veh: 17 Time: 00:15.9 | Dist: 36.455822 #Veh: 17 Time: 02:48.8 |
EW63 | Dist: 25.506982 #Veh: 16 Time: 00:56.7 | Dist: 25.506982 #Veh: 16 Time: 04:02.1 | Dist: 25.506982 #Veh: 16 Time: 00:09.1 | Dist: 30.937439 #Veh: 19 Time: 00:55.4 |
EW64 | Dist: 38.322254 #Veh: 18 Time: 00:53.2 | Dist: 38.322254 #Veh: 18 Time: 04:29.5 | Dist: 38.322254 #Veh: 18 Time: 00:05.9 | Dist: 38.322254 #Veh: 18 Time: 01:32.8 |
EW65 | Dist: 39.207524 #Veh: 18 Time: 01:04.7 | Dist: 39.207524 #Veh: 18 Time: 03:49.8 | Dist: 39.207524 #Veh: 18 Time: 00:08.5 | Dist: 39.207524 #Veh: 18 Time: 01:08.2 |
EW66 | Dist: 33.307968 #Veh: 15 Time: 00:53.1 | Dist: 32.981886 #Veh: 15 Time: 03:35.0 | Dist: 33.010055 #Veh: 15 Time: 00:09.9 | Dist: 33.499264 #Veh: 15 Time: 00:43.2 |
EW67 | Dist: 24.604106 #Veh: 17 Time: 01:06.7 | Dist: 24.604106 #Veh: 17 Time: 04:40.6 | Dist: 24.604106 #Veh: 17 Time: 00:13.5 | Dist: 24.833096 #Veh: 17 Time: 01:22.8 |
EW68 | Dist: 26.89195 #Veh: 17 Time: 01:24.0 | Dist: 26.89195 #Veh: 17 Time: 03:49.9 | Dist: 33.928705 #Veh: 20 Time: 00:19.8 | Dist: 26.89195 #Veh: 17 Time: 02:34.9 |
EW69 | Dist: 41.204193 #Veh: 20 Time: 01:10.9 | Dist: 43.541014 #Veh: 20 Time: 03:55.7 | Dist: 42.677632 #Veh: 20 Time: 00:16.2 | Dist: 41.525479 #Veh: 20 Time: 00:54.0 |
EW70 | Dist: 28.843037 #Veh: 14 Time: 01:34.8 | Dist: 28.843037 #Veh: 13 Time: 03:27.8 | Dist: 28.843037 #Veh: 13 Time: 00:27.1 | Dist: 29.31832 #Veh: 14 Time: 00:49.8 |
EW71 | Dist: 24.288568 #Veh: 18 Time: 00:32.8 | Dist: 24.288568 #Veh: 18 Time: 04:33.2 | Dist: 24.288568 #Veh: 18 Time: 00:07.9 | Dist: 24.288568 #Veh: 18 Time: 00:35.1 |
EW72 | Dist: 29.26674 #Veh: 16 Time: 01:37.4 | Dist: 29.26674 #Veh: 16 Time: 03:36.1 | Dist: 29.26674 #Veh: 16 Time: 00:06.5 | Dist: 29.543764 #Veh: 16 Time: 00:37.2 |
EW73 | Dist: 26.340479 #Veh: 16 Time: 01:27.8 | Dist: 26.340479 #Veh: 16 Time: 03:44.5 | Dist: 26.340479 #Veh: 16 Time: 00:14.3 | Dist: 26.996283 #Veh: 17 Time: 01:40.2 |
EW74 | Dist: 29.006756 #Veh: 16 Time: 01:05.8 | Dist: 28.943446 #Veh: 16 Time: 3:45.9 | Dist: 28.943446 #Veh: 16 Time: 00:14.0 | Dist: 29.068167 #Veh: 16 Time: 00:35.7 |
EW75 | Dist: 28.051201 #Veh: 14 Time: 00:43.5 | Dist: 28.051201 #Veh: 14 Time: 05:23.1 | Dist: 28.051201 #Veh: 14 Time: 00:13.6 | Dist: 28.530133 #Veh: 14 Time: 00:43.8 |
EW76 | Dist: 29.645699 #Veh: 20 Time: 01:17.4 | Dist: 28.826119 #Veh: 20 Time: 04:24.6 | Dist: 29.287905 #Veh: 20 Time: 00:15.9 | Dist: 28.862949 #Veh: 20 Time: 02:33.3 |
EW77 | Dist: 26.425897 #Veh: 18 Time: 01:08.7 | Dist: 26.425897 #Veh: 18 Time: 04:00.6 | Dist: 26.425897 #Veh: 18 Time: 00:07.9 | Dist: 26.425897 #Veh: 18 Time: 02:24.9 |
EW78 | Dist: 32.617926 #Veh: 20 Time: 01:05.4 | Dist: 32.617926 #Veh: 20 Time: 04:33.2 | Dist: 32.617926 #Veh: 20 Time: 00:16.8 | Dist: 32.816363 #Veh: 20 Time: 02:26.5 |
EW79 | Dist: 37.441773 #Veh: 20 Time: 00:48.6 | Dist: 43.140995 #Veh: 20 Time: 05:26.1 | Dist: 39.891936 #Veh: 20 Time: 00:09.4 | Dist: 41.108342 #Veh: 20 Time: 00:53.6 |
EW80 | Dist: 37.468562 #Veh: 17 Time: 01:00.3 | Dist: 37.468562 #Veh: 17 Time: 01:21.0 | Dist: 37.468562 #Veh: 17 Time: 00:11.6 | Dist: 48.443849 #Veh: 20 Time: 00:43.2 |
EW81 | Dist: 34.257061 #Veh: 19 Time: 00:59.8 | Dist: 34.257061 #Veh: 19 Time: 04:06.8 | Dist: 34.257061 #Veh: 19 Time: 00:08.2 | Dist: 34.257061 #Veh: 19 Time: 01:24.8 |
EW82 | Dist: 25.821875 #Veh: 15 Time: 01:08.0 | Dist: 25.821875 #Veh: 15 Time: 04:02.3 | Dist: 25.821875 #Veh: 15 Time: 00:15.6 | Dist: 26.198512 #Veh: 15 Time: 01:52.9 |
EW83 | Dist: 38.691455 #Veh: 17 Time: 01:03.3 | Dist: 38.691455 #Veh: 17 Time: 04:32.7 | Dist: 38.691455 #Veh: 17 Time: 00:09.0 | Dist: 38.874496 #Veh: 17 Time: 01:46.7 |
EW84 | Dist: 31.82273 #Veh: 20 Time: 01:15.5 | Dist: 34.48017 #Veh: 20 0 Time: 4:39.4 | Dist: 32.321791 #Veh: 20 Time: 00:27.9 | Dist: 32.69019 #Veh: 20 Time: 00:44.7 |
EW85 | Dist: 22.409474 #Veh: 16 Time: 01:02.1 | Dist: 22.270508 #Veh: 16 Time: 04:05.3 | Dist: 22.270508 #Veh: 16 Time: 00:06.5 | Dist: 22.679345 #Veh: 16 Time: 01:11.5 |
EW86 | Dist: 34.206519 #Veh: 19 Time: 02:00.4 | Dist: 34.031981 #Veh: 20 Time: 04:56.6 | Dist: 34.206519 #Veh: 19 Time: 00:18.7 | Dist: 34.206519 #Veh: 19 Time: 02:26.8 |
EW87 | Dist: 34.82462 #Veh: 18 Time: 01:03.7 | Dist: 34.206519 #Veh: 19 Time: 04:30.7 | Dist: 34.82462 #Veh: 18 Time: 00:11.0 | Dist: 35.0878 #Veh: 18 Time: 02:24.1 |
EW88 | Dist: 31.0066 #Veh: 20 Time: 01:12.2 | Dist: 33.703066 #Veh: 20 Time: 05:08.0 | Dist: 32.47382 #Veh: 20 Time: 00:27.3 | Dist: 31.769766 #Veh: 20 Time: 00:58.6 |
EW89 | Dist: 27.238656 #Veh: 18 Time: 01:19.8 | Dist: 27.238656 #Veh: 18 Time: 04:39.8 | Dist: 27.238656 #Veh: 18 Time: 00:11.3 | Dist: 27.368549 #Veh: 18 Time: 02:51.7 |
EW90 | Dist: 31.618367 #Veh: 20 Time: 01:13.7 | Dist: 34.031981 #Veh: 20 Time: 04:56.6 | Dist: 32.617682 #Veh: 20 Time: 00:13.1 | Dist: 34.34981 #Veh: 20 Time: 01:05.0 |
EW91 | Dist: 20.177009 #Veh: 15 Time: 01:14.3 | Dist: 20.919498 #Veh: 16 Time: 00:48.1 | Dist: 20.919498 #Veh: 16 Time: 00:21.0 | Dist: 23.652164 #Veh: 18 Time: 02:23.1 |
EW92 | Dist: 29.912426 #Veh: 17 Time: 00:52.9 | Dist: 29.912426 #Veh: 17 Time: 04:28.3 | Dist: 29.912426 #Veh: 17 Time: 00:16.1 | Dist: 30.30263 #Veh: 16 Time: 01:27.8 |
EW93 | Dist: 24.51688 #Veh: 16 Time: 00:52.1 | Dist: 24.51688 #Veh: 16 Time: 04:06.5 | Dist: 24.51688 #Veh: 16 Time: 00:10.1 | Dist: 24.51688 #Veh: 16 Time: 00:48.3 |
EW94 | Dist: 26.32926 #Veh: 17 Time: 00:34.0 | Dist: 26.32926 #Veh: 17 Time: 04:18.6 | Dist: 26.32926 #Veh: 17 Time: 00:10.2 | Dist: 26.335416 #Veh: 17 Time: 00:42.4 |
EW95 | Dist: 28.302758 #Veh: 17 Time: 01:19.1 | Dist: 28.302758 #Veh: 17 Time: 04:06.7 | Dist: 28.302758 #Veh: 17 Time: 00:10.1 | Dist: 28.330702 #Veh: 17 Time: 01:34.7 |
EW96 | Dist: 35.7187 #Veh: 20 Time: 01:12.8 | Dist: 38.765241 #Veh: 20 Time: 03:38.6 | Dist: 38.367394 #Veh: 20 Time: 00:12.9 | Dist: 39.170992 #Veh: 20 Time: 01:19.5 |
EW97 | Dist: 43.128456 #Veh: 20 Time: 00:24.4 | Dist: 44.114772 #Veh: 20 Time: 04:15.6 | Dist: 43.346033 #Veh: 20 Time: 00:21.0 | Dist: 46.46703 #Veh: 20 Time: 00:37.2 |
EW98 | Dist: 27.510259 #Veh: 20 Time: 01:41.4 | Dist: 28.536837 #Veh: 20 Time: 04:00.2 | Dist: 28.826729 #Veh: 20 Time: 00:13.5 | Dist: 30.059932 #Veh: 19 Time: 00:31.5 |
EW99 | Dist: 31.084244 #Veh: 20 Time: 01:14.3 | Dist: 34.030671 #Veh: 20 Time: 04:47.1 | Dist: 33.248751 #Veh: 20 Time: 00:23.9 | Dist: 33.908077 #Veh: 20 Time: 01:41.9 |
EW100 | Dist: 33.231389 #Veh: 20 Time: 00:35.6 | Dist: 33.231389 #Veh: 20 Time: 04:21.9 | Dist: 33.231389 #Veh: 20 Time: 00:10.3 | Dist: 33.278191 #Veh: 20 Time: 01:34.0 |
Algorithms | Run | Best Solution Distance | Best Solution Travel Time | Best Solution Vehicle Utilization | Execution Time |
---|---|---|---|---|---|
GA | 22 | 62.507566 | 12,091.2952 | 17 | 01:16.3 |
OSGA | 31 | 62.570756 | 12,046.3175 | 17 | 02:08.7 |
ES | 11 | 62.507566 | 22,666.3362 | 17 | 00:04.0 |
OSES | 25 | 62.507566 | 12,046.4697 | 17 | 02:16.2 |
Vehicles | Nodes | Routes |
---|---|---|
1 | 0 | Hércules 401 A Bodega 2, Polígono Empresarial Santa Rosa Jáuregui, 76,220 Santiago de Querétaro, Qro. |
27 | Calzada de los Leones 145, local 26, col. Las Águilas, del. Álvaro Obregón. | |
0 | Hércules 401 A Bodega 2, Polígono Empresarial Santa Rosa Jáuregui, 76,220 Santiago de Querétaro, Qro. | |
2 | 0 | Hércules 401 A Bodega 2, Polígono Empresarial Santa Rosa Jáuregui, 76,220 Santiago de Querétaro, Qro. |
12 | Calle Vicente Guerrero 509, Centro, 42,000 Pachuca de Soto, Hgo. | |
13 | Calle Ignacio Allende 207, Centro, 42,000 Pachuca de Soto, Hgo. | |
6 | Calle Ignacio Allende 207, Centro, 42,000 Pachuca de Soto, Hgo. | |
0 | Hércules 401 A Bodega 2, Polígono Empresarial Santa Rosa Jáuregui, 76,220 Santiago de Querétaro, Qro. | |
3 | 0 | Hércules 401 A Bodega 2, Polígono Empresarial Santa Rosa Jáuregui, 76,220 Santiago de Querétaro, Qro. |
22 | Villas de Pachuca, 42,083 Pachuca de Soto, Hgo | |
0 | Hércules 401 A Bodega 2, Polígono Empresarial Santa Rosa Jáuregui, 76,220 Santiago de Querétaro, Qro. | |
4 | 0 | Hércules 401 A Bodega 2, Polígono Empresarial Santa Rosa Jáuregui, 76,220 Santiago de Querétaro, Qro. |
19 | S/N, Blvrd Luis Donaldo Colosio, Colinas de Plata, 42,186 Pachuca de Soto, Hgo. | |
17 | Gran Patio Pachuca, Blvrd Luis Donaldo Colosio 2009, Ex Hda De Coscotitlan, 42,064 Pachuca de Soto, Hgo. | |
0 | Hércules 401 A Bodega 2, Polígono Empresarial Santa Rosa Jáuregui, 76,220 Santiago de Querétaro, Qro. | |
5 | 0 | Hércules 401 A Bodega 2, Polígono Empresarial Santa Rosa Jáuregui, 76,220 Santiago de Querétaro, Qro. |
25 | Av. 5 no. 17, col. Renovación, del. Iztapalapa. | |
0 | Hércules 401 A Bodega 2, Polígono Empresarial Santa Rosa Jáuregui, 76,220 Santiago de Querétaro, Qro. | |
6 | 0 | Hércules 401 A Bodega 2, Polígono Empresarial Santa Rosa Jáuregui, 76,220 Santiago de Querétaro, Qro. |
24 | Galerías Pachuca, Camino Real de La Plata 100, Zona Plateada, 42,084 Pachuca de Soto, Hgo. | |
4 | Plaza Galerías, Camino Real de La Plata 100, Zona Plateada, 42,084 Pachuca de Soto, Hgo. | |
18 | Calle Artículo 3 27, Constitución, 42,080 Pachuca de Soto, Hgo. | |
0 | Hércules 401 A Bodega 2, Polígono Empresarial Santa Rosa Jáuregui, 76,220 Santiago de Querétaro, Qro. | |
7 | 0 | Hércules 401 A Bodega 2, Polígono Empresarial Santa Rosa Jáuregui, 76,220 Santiago de Querétaro, Qro. |
21 | De Los Canarios 125, Villas de Pachuca, 42,083 Pachuca de Soto, Hgo. | |
0 | Hércules 401 A Bodega 2, Polígono Empresarial Santa Rosa Jáuregui, 76,220 Santiago de Querétaro, Qro. | |
8 | 0 | Hércules 401 A Bodega 2, Polígono Empresarial Santa Rosa Jáuregui, 76,220 Santiago de Querétaro, Qro. |
15 | Plaza de la Constitución 104, Centro, 42,000 Pachuca de Soto, Hgo. | |
0 | Hércules 401 A Bodega 2, Polígono Empresarial Santa Rosa Jáuregui, 76,220 Santiago de Querétaro, Qro. | |
9 | 0 | Hércules 401 A Bodega 2, Polígono Empresarial Santa Rosa Jáuregui, 76,220 Santiago de Querétaro, Qro. |
1 | Av. Hgo., Acayuca | |
0 | Hércules 401 A Bodega 2, Polígono Empresarial Santa Rosa Jáuregui, 76,220 Santiago de Querétaro, Qro. | |
10 | 0 | Hércules 401 A Bodega 2, Polígono Empresarial Santa Rosa Jáuregui, 76,220 Santiago de Querétaro, Qro. |
2 | Av. De los árboles, el Venado, Pachuca | |
10 | Los 42083, Av. de los Árboles 203, Los Cipreses, Pachuca de Soto, Hgo. | |
0 | Hércules 401 A Bodega 2, Polígono Empresarial Santa Rosa Jáuregui, 76,220 Santiago de Querétaro, Qro. | |
11 | 0 | Hércules 401 A Bodega 2, Polígono Empresarial Santa Rosa Jáuregui, 76,220 Santiago de Querétaro, Qro. |
9 | Callejón Hacienda Tlahuelilpan 90, Juan C. Doria, 42,083 Pachuca de Soto, Hgo. | |
8 | Plaza Gran Sur, Blvrd Nuevo Hidalgo 509, La Colonia, 42,083 Pachuca de Soto, Hgo | |
0 | Hércules 401 A Bodega 2, Polígono Empresarial Santa Rosa Jáuregui, 76,220 Santiago de Querétaro, Qro. | |
12 | 0 | Hércules 401 A Bodega 2, Polígono Empresarial Santa Rosa Jáuregui, 76,220 Santiago de Querétaro, Qro. |
26 | Poniente 146 # 710 A Industrial Vallejo, Azcapotzalco | |
28 | Trigo 93, colonia Granjas Iztapalapa. Delegación Iztapalapa. | |
29 | M.A. Quevedo No. 24–205, Coyoacán. | |
0 | Hércules 401 A Bodega 2, Polígono Empresarial Santa Rosa Jáuregui, 76,220 Santiago de Querétaro, Qro. | |
13 | 0 | Hércules 401 A Bodega 2, Polígono Empresarial Santa Rosa Jáuregui, 76,220 Santiago de Querétaro, Qro. |
11 | 12 de Octubre 102, La Villita, 42,060 Pachuca de Soto, Hgo. | |
3 | Calle Belisario Domínguez 122-B, Centro, 42,000 Pachuca de Soto, Hgo. | |
0 | Hércules 401 A Bodega 2, Polígono Empresarial Santa Rosa Jáuregui, 76,220 Santiago de Querétaro, Qro. | |
14 | 0 | Hércules 401 A Bodega 2, Polígono Empresarial Santa Rosa Jáuregui, 76,220 Santiago de Querétaro, Qro. |
20 | Av. Javier Rojo Gómez 501, AmpSta Julia, 42,080 Pachuca de Soto, Hgo. | |
23 | Leandro Valle 108, Centro, 42,000 Pachuca de Soto, Hgo. | |
0 | Hércules 401 A Bodega 2, Polígono Empresarial Santa Rosa Jáuregui, 76,220 Santiago de Querétaro, Qro. | |
15 | 0 | Hércules 401 A Bodega 2, Polígono Empresarial Santa Rosa Jáuregui, 76,220 Santiago de Querétaro, Qro. |
5 | Blvd. km 7.7, S/N Comercial Plaza, Pachuca, Hgo, Blvrd Luis Donaldo Colosio, Centro, 42,093 Pachuca de Soto, Hgo. | |
0 | Hércules 401 A Bodega 2, Polígono Empresarial Santa Rosa Jáuregui, 76,220 Santiago de Querétaro, Qro. | |
16 | 0 | Hércules 401 A Bodega 2, Polígono Empresarial Santa Rosa Jáuregui, 76,220 Santiago de Querétaro, Qro. |
7 | De Los Canarios 125, Villas de Pachuca, 42,083 Pachuca de Soto, Hgo. | |
0 | Hércules 401 A Bodega 2, Polígono Empresarial Santa Rosa Jáuregui, 76,220 Santiago de Querétaro, Qro. | |
17 | 0 | Hércules 401 A Bodega 2, Polígono Empresarial Santa Rosa Jáuregui, 76,220 Santiago de Querétaro, Qro. |
16 | Plaza Morelos, Calle José Ma Morelos y Pavon 205, Centro, 42,000 Pachuca de Soto, Hgo. | |
14 | Calle Vicente Guerrero 306-A, Centro, 42,000 Pachuca de Soto, Hgo. | |
0 | Hércules 401 A Bodega 2, Polígono Empresarial Santa Rosa Jáuregui, 76,220 Santiago de Querétaro, Qro. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Vanoye, J.A.; Díaz-Parra, O.; Trejo-Macotela, F.R.; Liceaga-Ortiz-De-La-Peña, J.M.; León, M.L.; León, E.L.; Aguilar-Ortiz, J.; Fuentes-Penna, A. Sustainable Transportation Optimisation of Waste Electrical and Electronic Equipment Using AI-Based Evolutionary Algorithms. Sustainability 2025, 17, 8389. https://doi.org/10.3390/su17188389
Ruiz-Vanoye JA, Díaz-Parra O, Trejo-Macotela FR, Liceaga-Ortiz-De-La-Peña JM, León ML, León EL, Aguilar-Ortiz J, Fuentes-Penna A. Sustainable Transportation Optimisation of Waste Electrical and Electronic Equipment Using AI-Based Evolutionary Algorithms. Sustainability. 2025; 17(18):8389. https://doi.org/10.3390/su17188389
Chicago/Turabian StyleRuiz-Vanoye, Jorge A., Ocotlán Díaz-Parra, Francisco R. Trejo-Macotela, José M. Liceaga-Ortiz-De-La-Peña, Myrna Lezama León, Evangelina Lezama León, Jaime Aguilar-Ortiz, and Alejandro Fuentes-Penna. 2025. "Sustainable Transportation Optimisation of Waste Electrical and Electronic Equipment Using AI-Based Evolutionary Algorithms" Sustainability 17, no. 18: 8389. https://doi.org/10.3390/su17188389
APA StyleRuiz-Vanoye, J. A., Díaz-Parra, O., Trejo-Macotela, F. R., Liceaga-Ortiz-De-La-Peña, J. M., León, M. L., León, E. L., Aguilar-Ortiz, J., & Fuentes-Penna, A. (2025). Sustainable Transportation Optimisation of Waste Electrical and Electronic Equipment Using AI-Based Evolutionary Algorithms. Sustainability, 17(18), 8389. https://doi.org/10.3390/su17188389