Spatiotemporal Evolution and Driving Factors of Tourism Eco-Efficiency: A Three-Stage Super-Efficiency SBM Approach
Abstract
1. Introduction
2. Data Sources and Methods
2.1. Indicator System Construction
2.2. Data Sources
2.3. Processing and Methods
2.3.1. Three-Stage Super-Efficiency SBM Approach
- Stage I: Super-Efficient SBM Approach
- 2.
- Stage II: Stochastic Frontier Gravity Model SFA
- 3.
- Stage III: Super-Efficient SBM Approach
2.3.2. Standard Deviation Ellipse
2.3.3. Geographical Detector
3. Results
3.1. Results of TEE Measurement in the GFZ Coastal City Clusters Based on the Three-Stage Super-Efficient SBM Approach
3.1.1. Stage I
3.1.2. Stage II
3.1.3. Stage III
3.2. Characteristics of Time-Series Changes of TEE in the GFZ Coastal City Clusters
3.3. Characteristics of Spatial Evolution of TEE in the GFZ Coastal City Clusters
3.4. Driving Factors of TEE in the GFZ Coastal City Clusters
4. Discussions
4.1. TEE Measurement Based on the Three-Stage Super-Efficient SBM Approach
4.2. The Spatiotemporal Evolution of TEE
4.3. The Driving Mechanism of TEE
4.4. Implications and Outlooks
- It is recommended that the municipal government establish a “tourism eco-efficiency synergistic enhancement center”; delineate the ecological red line of tourism development; implement a system of replacing industrial land with tourism land for cities with declining efficiency, such as Putian and Sanming; set up a subsidy fund for green technology; and prioritize support for the introduction of sulfur dioxide abatement technology for endogenous efficiency shortfalls, such as in Lishui.
- Although this study did not analyze policy differences between provinces, the spatial and temporal distribution characteristics of ecological governance suggest that differences in environmental regulatory intensity between Guangdong, Fujian, and Zhejiang Provinces should be considered. These differences have led to variations in TEE growth rates. For example, Fujian Province has established an inter-city ecological compensation mechanism, transferring funds for environmental governance from efficient cities, such as Ningde and Fuzhou, to less developed cities, like Sanming and Nanping; Zhejiang Province has implemented digital regulation, integrating sulfur dioxide emission data from Lishui City into the provincial ecological cloud platform for real-time tracking; the technological advantages of the Bay Area will be enhanced in Guangdong Province; and the “cultural tourism–industrial symbiosis park” model will be promoted in Chaozhou and Shantou to achieve a balance between development and protection.
5. Conclusions
- This study is based on a three-stage super-efficiency SBM approach, and after accounting for the role of extraneous environmental variables, including regional affluence, sectoral composition, government intervention, and urban greening, the mean value of TEE for each municipality in the study area was significantly higher, and external variables had a significant effect on the efficiency (Gamma value > 0.6).
- Regarding the temporal evolution, the TEE as a whole showed a fluctuating upward trend; spatially, the TEE within the GFZ coastal city clusters showed a top-down downward trend from 2010 to 2016 and a top-down upward trend from 2016 to 2021. The directional distribution ellipse for TEE exhibited a northeast–southwest orientation, with its center of gravity displaced southwestward.
- Regarding the TEE influencing factors, TEE was mainly influenced by internal drivers in 2010–2016, and the role of external development factors within the Guangdong-Fujian–Zhejiang coastal metropolitan belts increased in 2016–2021, indicating that the tourism industry relied mainly on the accumulation of internal resources in the initial period, and that synergistic development integrating with external resources became increasingly important over time.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TEE | Tourism Ecological Efficiency |
EE | Ecological Efficiency |
GFZ | Guangdong, Fujian, Zhejiang |
SBM | Slacks-Based Measure |
DEA | Data Envelopment Analysis |
References
- Ayres, R.; Ferrer, G.; Van Leynseele, T. Eco-efficiency, asset recovery and remanufacturing. Eur. Manag. J. 1997, 15, 557–574. [Google Scholar] [CrossRef]
- Bleischwitz, R. Cognitive and institutional perspectives of eco-efficiency. Ecol. Econ. 2003, 46, 453–467. [Google Scholar] [CrossRef]
- Ma, D.; Wang, Y.; Wang, Z.; Zhang, X.; Zhang, J.; Luo, P. Low-carbon city pilot policy and ecological efficiency of tourism: A quasi-natural experiment from China. Hum. Settl. Sustain. 2025, 1, 63–76. [Google Scholar] [CrossRef]
- Huppes, G.; Ishikawa, M. Eco-efficiency and Its xsTerminology. J. Ind. Ecol. 2005, 9, 43–46. [Google Scholar] [CrossRef]
- Gössling, S.; Peeters, P.; Ceron, J.-P.; Dubois, G.; Patterson, T.; Richardson, R.B. The eco-efficiency of tourism. Ecol. Econ. 2005, 54, 417–434. [Google Scholar] [CrossRef]
- Peng, H.; Zhang, J.; Lu, L.; Tang, G.; Yan, B.; Xiao, X.; Han, Y. Eco-efficiency and its determinants at a tourism destination: A case study of Huangshan National Park, China. Tour. Manag. 2017, 60, 201–211. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, L. Ecological efficiency management of tourism scenic spots based on carbon footprint analysis. Int. J. Low-Carbon Technol. 2020, 15, Ctaa023. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y. Spatial-temporal evolution and influencing factors of tourism eco-efficiency in China’s Beijing-Tianjin-Hebei region. Front. Environ. Sci. 2022, 10, 1067835. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhu, K.; Zhou, Q.; Archi, Y.E.; Kabil, M.; Remenyik, B.; Dávid, L.D. Tourism Ecological Efficiency and Sustainable Development in the Hanjiang River Basin: A Super-Efficiency Slacks-Based Measure Model Study. Sustainability 2023, 15, 6159. [Google Scholar] [CrossRef]
- Perch-Nielsen, S.; Sesartic, A.; Stucki, M. The greenhouse gas intensity of the tourism sector: The case of Switzerland. Environ. Sci. Policy 2010, 13, 131–140. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, J.; Fu, Z. Tourism eco-efficiency of Chinese coastal cities—Analysis based on the DEA-Tobit model. Ocean Coast. Manag. 2017, 148, 164–170. [Google Scholar] [CrossRef]
- Chen, Z.; Ding, T. Investigating and improving the ecological efficiency of urban agglomeration based on Super-SBM model. Environ. Sci. Pollut. Res. 2023, 30, 115628–115645. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, R. Research on eco-efficiency measurement, spatiotemporal analysis and prosperity warning based on the three-stage chain network SBM and MS-DDFM. Heliyon 2023, 9, e13079. [Google Scholar] [CrossRef]
- Li, D.; Zhai, Y.; Tian, G.; Mendako, R.K. Tourism Eco-Efficiency and Influence Factors of Chinese Forest Parks under Carbon Peaking and Carbon Neutrality Target. Sustainability 2022, 14, 13979. [Google Scholar] [CrossRef]
- Cao, T.; Shen, Q.; Han, X. Study on measurement and drivers of low-carbon tourism eco-efficiency: Evidence from Jiangsu Province. Environ. Sci. Pollut. Res. 2023, 30, 68877–68888. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Gui, Q.; Yang, Y.; Gong, G.; Chen, X. Tourism eco-efficiency and its influencing factors under the constraint of energy conservation and emissions reduction in China. Environ. Dev. Sustain. 2023, 27, 3731–3755. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y. Regional Differences in Tourism Eco-Efficiency in the Beijing–Tianjin–Hebei Region: Based on Data from 13 Cities. Sustainability 2023, 15, 2907. [Google Scholar] [CrossRef]
- Sellers-Rubio, R.; Casado-Díaz, A.B. Analyzing hotel efficiency from a regional perspective: The role of environmental determinants. Int. J. Hosp. Manag. 2018, 75, 75–85. [Google Scholar] [CrossRef]
- Guo, L.; Li, P.; Zhang, J.; Xiao, X.; Peng, H. Do socio-economic factors matter? A comprehensive evaluation of tourism eco-efficiency determinants in China based on the Geographical Detector Model. J. Environ. Manag. 2022, 320, 115812. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xu, C. Geodetector: Principle and Prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar] [CrossRef]
- Zhang, S.; Chi, L.; Zhang, T.; Ju, H. Spatio-temporal pattern and influencing factors of border tourism efficiency in China. J. Geogr. Sci. 2024, 34, 2288–2312. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, A.; Wang, C.; Shi, Y. Spatial and temporal evolution and influencing factors of tourism eco-efficiency in Fujian province under the target of carbon peak. Sci. Rep. 2023, 13, 23074. [Google Scholar] [CrossRef]
- Jarratt, D.; Davies, N. Planning for Climate Change Impacts: Coastal Tourism Destination Resilience Policies. Tour. Plan. Dev. 2019, 17, 423–440. [Google Scholar] [CrossRef]
- Sun, Y.; Hou, G. Analysis on the Spatial-Temporal Evolution Characteristics and Spatial Network Structure of Tourism Eco-Efficiency in the Yangtze River Delta Urban Agglomeration. Int. J. Environ. Res. Public Health 2021, 18, 2577. [Google Scholar] [CrossRef] [PubMed]
- Xie, P. Handbook on Tourism Planning; Edward Elgar Publishing: Cheltenham, UK, 2023. [Google Scholar]
- Sun, Y.; Hou, G.; Huang, Z.; Zhong, Y. Spatial-Temporal Differences and Influencing Factors of Tourism Eco-Efficiency in China’s Three Major Urban Agglomer-ations Based on the Super-EBM Model. Sustainability 2020, 12, 4156. [Google Scholar] [CrossRef]
- Smeral, E. Tourism Satellite Accounts: A Critical Assessment. J. Travel Res. 2006, 45, 92–98. [Google Scholar] [CrossRef]
- Larry, D.; Peter, F.; Ray, S. Evaluating tourism”s economic effects: New and old approaches. Tour. Manag. 2003, 25, 307–317. [Google Scholar]
- Zhou, Y.; Kong, Y.; Zhang, T. The spatial and temporal evolution of provincial eco-efficiency in China based on SBM modified three-stage data envel-opment analysis. Environ. Sci. Pollut. Res. 2020, 27, 8557–8569. [Google Scholar] [CrossRef]
- He, L.; Zha, J.; Loo, H.A. How to improve tourism energy efficiency to achieve sustainable tourism: Evidence from China. Curr. Issues Tour. 2020, 23, 1–16. [Google Scholar] [CrossRef]
- Kelly, J.; Williams, P. Tourism destination water management strategies: An eco-efficiency modelling approach. Leisure/Loisir 2007, 31, 427–452. [Google Scholar] [CrossRef]
- Kytzia, S.; Walz, A.; Wegmann, M. How can tourism use land more efficiently? A model-based approach to land-use efficiency for tourist destinations. Tour. Manag. 2011, 32, 629–640. [Google Scholar] [CrossRef]
- Hearne, R.R.; Salinas, Z.M. The use of choice experiments in the analysis of tourist preferences for ecotourism development in Costa Rica. J. Environ. Manag. 2002, 65, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Fried, H.O.; Lovell, C.A.K.; Schmidt, S.S.; Yaisawarng, S. Accounting for Environmental Effects and Statistical Noise in Data Envelopment Analysis. J. Prod. Anal. 2002, 17, 157–174. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W.; Han, J.Y. Total factor carbon emission performance: A Malmquist index analysis. Energy Econ. 2010, 32, 194–201. [Google Scholar] [CrossRef]
- Wagner, M. The carbon Kuznets curve: A cloudy picture emitted by bad econometrics? Resour. Energy Econ. 2008, 30, 388–408. [Google Scholar] [CrossRef]
- Simmar, P.; Gupta, B.; Chopra, S. Impact of sustainable development on economic growth: Evidence from OECD countries. J. Indian Manag. Strategy 2022, 27, 54–61. [Google Scholar]
- Lv, Y.; Hao, B.; Sarker, M.N.I.; Zeng, X.; Hu, X. Exploring the nexus between urban green space and sustainable tourism: Potential for the green economy. Int. J. Tour. Res. 2024, 26, e2700. [Google Scholar] [CrossRef]
- Li, J.; Xu, L.; Tang, L.; Wang, S.; Li, L. Big data in tourism research: A literature review. Tour. Manag. 2018, 68, 301–323. [Google Scholar] [CrossRef]
- Fu, J.; Zhang, H. Study on the evolutionary characteristics of the spatial association network of tourism eco-efficiency and its formation effect in China. J. Environ. Manag. 2025, 379, 124706. [Google Scholar] [CrossRef]
- Latruffe, L.; Kelvin, B.; Sophia, D.; Zawalinska, K. Determinants of technical efficiency of crop and livestock farms in Poland. Appl. Econ. 2004, 36, 1255–1263. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- An, C.; Muhtar, P.; Xiao, Z. Spatiotemporal Evolution of Tourism Eco-Efficiency in Major Tourist Cities in China. Sustainability 2022, 14, 13158. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 2002, 143, 32–41. [Google Scholar] [CrossRef]
- Zhao, X.; Lu, X.; Liu, Y.; Lin, J.; An, J. Tourist movement patterns understanding from the perspective of travel party size using mobile tracking data: A case study of Xi’an, China. Tour. Manag. 2018, 69, 368–383. [Google Scholar] [CrossRef]
- Zhang, H.; Duan, Y.; Wang, H.; Han, Z.; Wang, H. An empirical analysis of tourism eco-efficiency in ecological protection priority areas based on the DPSIR-SBM model: A case study of the Yellow River Basin, China. Ecol. Inform. 2022, 70, 101720. [Google Scholar] [CrossRef]
- Gössling, S.; Scott, D.; Hall, C.M. Inter-market variability in CO2 emission-intensities in tourism: Implications for destination marketing and carbon management. Tour. Manag. 2015, 46, 203–212. [Google Scholar] [CrossRef]
- Xie, B.-C.; Duan, N.; Wang, Y.-S. Environmental efficiency and abatement cost of China’s industrial sectors based on a three-stage data envelopment analysis. J. Clean. Prod. 2017, 153, 626–636. [Google Scholar] [CrossRef]
- Li, Y.; Shi, X.; Emrouznejad, A.; Liang, L. Environmental performance evaluation of Chinese industrial systems: A network SBM approach. J. Oper. Res. Soc. 2017, 69, 825–839. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, B.; Zeng, H. The effect of environmental regulation on external trade: Empirical evidences from Chinese economy. J. Clean. Prod. 2016, 114, 55–61. [Google Scholar] [CrossRef]
- Song, M.; Peng, L.; Shang, Y.; Zhao, X. Green technology progress and total factor productivity of resource-based enterprises: A perspective of technical com-pensation of environmental regulation. Technol. Forecast. Soc. Change 2022, 174, 121276. [Google Scholar] [CrossRef]
- Rodríguez-Pose, A.; Crescenzi, R. Mountains in a flat world: Why proximity still matters for the location of economic activity. Camb. J. Reg. Econ. Soc. 2008, 1, 371–388. [Google Scholar] [CrossRef]
- Kubickova, M. The Role of Government in Tourism: Linking Competitiveness, Freedom, and Developing Economies. Czech. J. Tour. 2016, 5, 73–92. [Google Scholar] [CrossRef]
- Seto, K.C.; Reenberg, A.; Boone, C.G.; Fragkias, M.; Haase, D.; Langanke, T.; Marcotullio, P.; Munroe, D.K.; Olah, B.; Simon, D. Urban land teleconnections and sustainability. Proc. Natl. Acad. Sci. USA 2012, 109, 7687–7692. [Google Scholar] [CrossRef] [PubMed]
- Banister, D. The sustainable mobility paradigm. Transp. Policy 2008, 15, 73–80. [Google Scholar] [CrossRef]
Type | Indicator System | Specific Indicators | Unit of Measure |
---|---|---|---|
Input indicators | Resources | Number of A-class scenic spots | Classifier for individuals or groups of individuals |
Services | Number of star-rated hotels | Units | |
Capital | Fixed capital stock of tourism | Billion | |
Labor | Employees in the tourism industry | Million | |
Output indicators | Desired output | Gross tourism income | Billion CNY |
Total tourism reception | Million | ||
Non-expected outputs | Tourism wastewater emissions | Million tons | |
Sulfur dioxide emissions from tourism | Tons | ||
Tourism fume and dust emissions | Tons |
Level 1 Indicators | Level 2 Indicators | Specific Indicators | Unit |
---|---|---|---|
Economic development | Tourism economics | GDP per capital | CNY |
Industrial structure | Structure of the tourism industry | Proportion of total tourism Revenue to tertiary industry output value | Percent |
External environment | Traffic | Road passenger traffic volume | Million |
Government intervention | Fiscal expenditure | Percent | |
Urbanization level | Proportion of urban population | Percent | |
Greening level | Urban green space area | Hectares |
City | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fuzhou | 0.088 | 0.095 | 0.099 | 0.107 | 0.128 | 0.141 | 0.189 | 0.240 | 0.306 | 1.001 | 0.233 | 0.207 |
Xiamen | 0.150 | 0.127 | 0.151 | 0.200 | 0.187 | 0.250 | 0.440 | 0.583 | 0.830 | 1.035 | 1.002 | 1.060 |
Putian | 0.058 | 0.059 | 0.056 | 0.087 | 0.107 | 0.119 | 0.150 | 0.355 | 0.601 | 1.053 | 1.007 | 1.051 |
Sanming | 0.045 | 0.062 | 0.067 | 0.079 | 0.101 | 0.115 | 0.127 | 0.219 | 0.299 | 0.564 | 1.030 | 1.015 |
Quanzhou | 0.137 | 0.141 | 0.159 | 0.165 | 0.178 | 0.182 | 0.202 | 0.266 | 0.321 | 0.361 | 0.200 | 0.196 |
Zhangzhou | 0.071 | 0.080 | 0.084 | 0.079 | 0.093 | 0.103 | 0.119 | 0.141 | 0.171 | 0.200 | 0.142 | 0.252 |
Nanping | 0.086 | 0.154 | 0.174 | 0.179 | 0.207 | 0.239 | 0.353 | 0.557 | 0.827 | 1.051 | 1.034 | 1.019 |
Longyan | 0.073 | 0.082 | 0.100 | 0.115 | 0.153 | 0.162 | 0.201 | 0.240 | 0.381 | 0.436 | 0.405 | 0.518 |
Ningde | 0.053 | 0.085 | 0.092 | 0.139 | 0.169 | 0.205 | 0.265 | 0.271 | 0.468 | 1.001 | 0.671 | 1.205 |
Wenzhou | 0.129 | 0.118 | 0.137 | 0.159 | 0.189 | 0.198 | 0.330 | 0.502 | 1.077 | 1.011 | 1.011 | 1.06 |
Lishui | 0.195 | 0.231 | 0.277 | 0.288 | 0.323 | 0.388 | 0.481 | 0.597 | 1.001 | 1.047 | 1.118 | 1.136 |
Quzhou | 0.080 | 0.104 | 0.113 | 0.139 | 0.181 | 0.244 | 0.322 | 0.633 | 1.010 | 1.018 | 0.782 | 1.067 |
Shantou | 0.088 | 0.093 | 0.105 | 0.111 | 0.134 | 0.204 | 0.408 | 0.698 | 1.010 | 1.057 | 0.276 | 0.560 |
Chaozhou | 0.109 | 0.120 | 0.134 | 0.144 | 0.217 | 0.245 | 0.308 | 0.398 | 0.602 | 1.089 | 0.520 | 0.218 |
Jieyang | 0.072 | 0.099 | 0.111 | 0.115 | 0.135 | 0.151 | 0.194 | 0.287 | 1.061 | 1.111 | 0.733 | 1.184 |
Meizhou | 0.148 | 0.262 | 0.248 | 1.028 | 0.465 | 1.021 | 1.004 | 0.442 | 0.457 | 0.527 | 0.335 | 1.076 |
Item | Resource Input Slack Variables | Service Input Slack Variables | Capital Input Slack Variables | Labor Input Slack Variables |
---|---|---|---|---|
Constant term | –8.148 *** | 22.43 *** | –22.60 *** | –14.54 *** |
Economic development level | 1.197 *** | –0.470 *** | 1.344 *** | 0.339 *** |
Industrial structure | 1.084 *** | –0.321 ** | 3.345 *** | 2.904 *** |
Government intervention | 0.232 ** | 0.108 ** | 0.391 *** | 0.422 *** |
Urban greening Area | –0.694 *** | 1.113 | 0.0433 | 0.165 *** |
Sigma2 | 0.251 | 1.564 | 1.596 | 11.700 |
Gamma | 0.646 | 0.987 | 0.884 | 0.986 |
Unilateral LR test value | 7.31 *** | 0.74 | 8.29 *** | 6.96 *** |
City | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fuzhou | 0.499 | 0.496 | 0.501 | 0.508 | 0.515 | 0.525 | 0.548 | 0.572 | 0.610 | 0.639 | 0.644 | 0.782 |
Xiamen | 1.007 | 0.866 | 0.791 | 0.758 | 0.726 | 0.719 | 0.739 | 0.790 | 1.002 | 0.888 | 1.003 | 1.100 |
Putian | 1.078 | 1.009 | 1.001 | 1.010 | 1.001 | 0.958 | 0.953 | 1.012 | 1.005 | 1.019 | 0.950 | 1.034 |
Sanming | 0.719 | 0.732 | 0.727 | 0.721 | 0.698 | 0.679 | 0.676 | 0.675 | 0.679 | 0.683 | 0.623 | 0.700 |
Quanzhou | 0.390 | 0.392 | 0.404 | 0.415 | 0.427 | 0.441 | 0.460 | 0.487 | 0.505 | 0.523 | 0.498 | 0.531 |
Zhangzhou | 0.743 | 0.691 | 0.698 | 0.661 | 0.639 | 0.630 | 0.641 | 0.648 | 0.646 | 0.664 | 0.621 | 0.745 |
Nanping | 1.007 | 1.002 | 0.963 | 0.880 | 0.819 | 0.777 | 0.784 | 0.784 | 0.793 | 0.793 | 0.727 | 0.717 |
Longyan | 0.767 | 0.738 | 0.739 | 0.715 | 0.700 | 0.672 | 0.665 | 0.667 | 0.678 | 0.689 | 0.666 | 0.803 |
Ningde | 1.005 | 1.003 | 0.966 | 1.005 | 0.980 | 0.932 | 1.001 | 0.882 | 1.004 | 1.002 | 0.857 | 1.049 |
Wenzhou | 0.406 | 0.411 | 0.424 | 0.437 | 0.457 | 0.474 | 0.501 | 0.520 | 0.550 | 0.547 | 0.570 | 0.549 |
Lishui | 0.666 | 0.621 | 0.598 | 0.576 | 0.563 | 0.560 | 0.577 | 0.584 | 0.585 | 0.603 | 0.616 | 0.586 |
Quzhou | 0.751 | 0.729 | 0.718 | 0.696 | 0.667 | 0.640 | 0.631 | 0.653 | 0.651 | 0.684 | 0.735 | 1.019 |
Shantou | 0.443 | 0.452 | 0.456 | 0.459 | 0.470 | 0.496 | 0.519 | 0.542 | 0.563 | 0.629 | 0.608 | 0.616 |
Chaozhou | 0.786 | 0.800 | 0.804 | 0.792 | 0.788 | 0.780 | 0.782 | 0.790 | 0.836 | 1.008 | 1.016 | 1.109 |
Jieyang | 0.479 | 0.498 | 0.508 | 0.511 | 0.524 | 0.548 | 0.583 | 0.748 | 1.050 | 1.034 | 0.509 | 1.460 |
Meizhou | 0.375 | 0.405 | 0.419 | 0.430 | 0.447 | 0.462 | 0.479 | 0.498 | 0.523 | 0.570 | 0.442 | 0.517 |
Average Value | 0.695 | 0.678 | 0.670 | 0.661 | 0.651 | 0.643 | 0.659 | 0.678 | 0.730 | 0.748 | 0.693 | 0.782 |
Impact Factor | 2010 | 2013 | 2016 | 2019 | 2021 | |||||
---|---|---|---|---|---|---|---|---|---|---|
q | Sorting | q | Sorting | q | Sorting | q | Sorting | q | Sorting | |
Economic development (X1) | 0.435 | 5 | 0.354 | 4 | 0.239 | 5 | 0.252 | 3 | 0.208 | 1 |
Tourism industrial structure (X2) | 0.085 | 6 | 0.126 | 6 | 0.13 | 6 | 0.037 | 6 | 0.104 | 6 |
Transportation (X3) | 0.472 | 2 | 0.341 | 5 | 0.3 | 4 | 0.123 | 4 | 0.2 | 3 |
Government intervention (fiscal expenditure) (X4) | 0,471 | 3 | 0.573 | 2 | 0.509 | 1 | 0.555 | 1 | 0.204 | 2 |
Urbanization level (X5) | 0.496 | 1 | 0.689 | 1 | 0.366 | 3 | 0.322 | 2 | 0.178 | 4 |
Green space level (X6) | 0.595 | 4 | 0.482 | 3 | 0.395 | 2 | 0.116 | 5 | 0.125 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, B.; Yu, Y.; Zhang, L.; Zhang, F.; Wei, L.; Lin, Y. Spatiotemporal Evolution and Driving Factors of Tourism Eco-Efficiency: A Three-Stage Super-Efficiency SBM Approach. Sustainability 2025, 17, 7526. https://doi.org/10.3390/su17167526
Xie B, Yu Y, Zhang L, Zhang F, Wei L, Lin Y. Spatiotemporal Evolution and Driving Factors of Tourism Eco-Efficiency: A Three-Stage Super-Efficiency SBM Approach. Sustainability. 2025; 17(16):7526. https://doi.org/10.3390/su17167526
Chicago/Turabian StyleXie, Bing, Yanhua Yu, Lin Zhang, Fazi Zhang, Layan Wei, and Yuying Lin. 2025. "Spatiotemporal Evolution and Driving Factors of Tourism Eco-Efficiency: A Three-Stage Super-Efficiency SBM Approach" Sustainability 17, no. 16: 7526. https://doi.org/10.3390/su17167526
APA StyleXie, B., Yu, Y., Zhang, L., Zhang, F., Wei, L., & Lin, Y. (2025). Spatiotemporal Evolution and Driving Factors of Tourism Eco-Efficiency: A Three-Stage Super-Efficiency SBM Approach. Sustainability, 17(16), 7526. https://doi.org/10.3390/su17167526