Toward Sustainable Geohazard Assessment: Dynamic Response and Failure Characteristics of Layered Rock Slopes Under Earthquakes via DEM Simulations
Abstract
1. Introduction
2. DEM Modeling and Parameter Calibration
2.1. DEM Formulation and Mechanical Behavior
2.2. Selection and Calibration of Micro-Mechanical Parameters
2.3. Boundary Conditions
3. Simulation on Layered Slope Under Earthquake
3.1. DEM Model of the Generalized Layer Slope
3.2. Dynamic Response and Deformation Characteristics of Bedding/Anti-Dip Slopes
4. The Influence of Strata Parameters on Landslides
4.1. Bedding/Anti-Dip Slopes with Different Strata Dip Angles
4.2. Bedding/Anti-Dip Slopes with Different Strata Thicknesses
5. Discussion
6. Conclusions
- The generalized layered slopes experience two fierce failure processes corresponding to the two seismic peaks. The first peak creates cracks both in joint faces and rock masses extensively, while the second one mainly causes additional cracks in rock masses. Following the second peak, the localized amplification effect becomes increasingly significant, exacerbating the failure process within the slope bodies.
- LAZs and LEDZs are formed near the free surface of the slope, and their location and distribution are mainly influenced by the structure parameter θdip. The LEDZ for the bedding slope is concentrated at the top with smooth PSS, while the LEDZ is a slender area with neatly fractured rock blocks distributed along the slope’s surface.
- Within the dip angle range of 20–35°, both bedding and anti-dip slopes exhibit sharp increases in crack numbers, suggesting the presence of a critical dip angle range that poses an elevated risk of high-toss actions and landslides, respectively. The bedding slope in this range exhibits a significant increase in both the displacement and area of the LEDZ within this dip angle range, indicating a high risk of landslide. This regularity aligns with the statistical data related to post-earthquake investigations.
- The coupling between LAZ and LEDZ determines the landslide initiation and movement. When θdip approximates the critical dip angle range, the controlling effect of the joint face shifts to the block situated near the slope surface, which can be extruded and fractured, thereby increasing the likelihood of landslides. Conversely, attributed to the key block positioned beneath the LEDZ, the anti-dip slope is more stable.
- As the strata thickness h increases, the distribution of the LAZ remains basically unchanged and the crack number decreases uniformly. The displacement amplitude of LEDZ becomes more controlled, indicating an overall improvement in stability.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DEM | Discrete Element Method. |
PFC | Particle Flow Code. |
SBM | Soft-bond model. |
SJM | Smooth-Joint Model. |
UCT | Uniaxial compression test. |
BST | Brazilian splitting test. |
DST | Direct shear tests. |
CTSR | Compression–tension strength ratio. |
PSS | Potential slip surface. |
LAZ | Local amplification zone. |
LEDZ | Local extreme-displacement zone. |
PSZ | Potential sliding zone. |
TLM | Tangjiashan landslide model. |
Appendix A
Simulation on Tangjiashan Landslide Under Earthquake
References
- Eeckhaut, M.V.D.; Poesen, J.; Govers, G.; Verstraeten, G.; Demoulin, A. Characteristics of the size distribution of recent and historical landslides in a populated hilly region. Earth Planet. Sci. Lett. 2007, 256, 588–603. [Google Scholar] [CrossRef]
- Sassa, K.; Tsuchiya, S.; Ugai, K.; Wakai, A.; Uchimura, T. Landslides: A review of achievements in the first 5 years (2004–2009). Landslides 2009, 6, 275–286. [Google Scholar] [CrossRef]
- Nam, K.; Wang, F.; Dai, Z.; Kim, J.; Choo, C.O.; Jeong, G.-C. A Long-Runout Landslide Triggered by Extreme Rainfall in Gokseong, South Korea on 7 August 2020. J. Eng. Geol. 2022, 32, 571–583. [Google Scholar] [CrossRef]
- Lim, H.H.; Lee, S.M.; Cheon, E.; Song, E.; Seo, J.J.; Rae, L.S. Landslide Mapping Using a Combination of Sentinel-2 Multi Spectral Instruments and GIS Data at Namwon, Jeollabuk-Do, South Korea. Geomech. Eng. 2024, 39, 385–396. [Google Scholar] [CrossRef]
- Yang, X.L.; Pan, Q.J. Three dimensional seismic and static stability of rock slopes. Geomech. Eng. 2015, 8, 97–111. [Google Scholar] [CrossRef]
- Guo, P.X.; Beheshti, S.B.; Shokravi, M.; Behshad, A. Assessment of Geological Hazards in Landslide Risk Using the Analysis Process Method. Steel Compos. Struct. 2023, 47, 451–454. [Google Scholar] [CrossRef]
- Campbell, C.S.; Cleary, P.W.; Hopkins, M. Large-scale landslide simulations: Global deformation, velocities and basal friction. J. Geophy. Res. 1995, 100, 8267–8283. [Google Scholar] [CrossRef]
- Kirschbaum, D.B.; Adler, R.; Hong, Y.; Hill, S.; Lerner-Lam, A. A global landslide catalog for hazard applications: Method, results, and limitations. Nat. Hazards 2010, 52, 561–575. [Google Scholar] [CrossRef]
- Marinos, P.; Hoek, E. Estimating the geotechnical properties of heterogeneous rock masses such as flysch. Bull. Eng. Geol. Environ. 2001, 60, 85–92. [Google Scholar] [CrossRef]
- Lombardi, M.; Monica, C.; Giuseppe, R. Spatial Variability Analysis of Soil Strength to Slope Stability Assessment. Geomech. Eng. 2017, 12, 483–503. [Google Scholar] [CrossRef]
- Perras, M.A.; Diederichs, M.S. A Review of the Tensile Strength of Rock: Concepts and Testing. Geotech. Geol. Eng. 2014, 32, 525–546. [Google Scholar] [CrossRef]
- Shemirani, A.B.; Hadi, H.; Vahab, S.; Ahmadreza, H. A Review Paper about Experimental Investigations on Failure Behaviour of Non-Persistent Joint. Geomech. Eng. 2017, 13, 535–570. [Google Scholar] [CrossRef]
- Paraskevopoulou, C.; Saroglou, H.; Kaushik, A. Rock Mass Classification of Chalk, a UK Perspective. Rock Mech. Rock Eng. 2024, 1–21. [Google Scholar] [CrossRef]
- Kumar, T.A.; Saseendran, R.; Sundaravel, V. Engineering Characterization of Intermediate Geomaterials—A Review. Geomech. Eng. 2023, 33, 453–462. [Google Scholar] [CrossRef]
- Lee, J.; Hong, J.W. Crack Initiation and Fragmentation Processes in Pre-Cracked Rock-like Materials. Geomech. Eng. 2018, 15, 1047–1059. [Google Scholar] [CrossRef]
- He, J.X.; Qi, S.W.; Zhan, Z.F.; Guo, S.F.; Li, C.L.; Zheng, B.W.; Huang, X.L.; Zou, Y.; Yang, G.X.; Liang, N. Seismic response characteristics and deformation evolution of the bedding rock slope using a large-scale shaking table. Landslides 2021, 18, 2835–2853. [Google Scholar] [CrossRef]
- Liu, H.D.; Zhao, Y.W.; Dong, J.Y.; Wang, Z.F. Experimental study of the dynamic response and failure mode of anti-dip rock slopes. Bull. Eng. Geol. Environ. 2021, 80, 6583–6596. [Google Scholar] [CrossRef]
- Liu, H.X.; Xu, Q.; Li, Y.R. Effect of lithology and structure on seismic response of steep slope in a shaking table test. J. Mt. Sci. 2014, 11, 371–383. [Google Scholar] [CrossRef]
- Song, D.Q.; Zhang, S.; Liu, C.; Nie, W. Cumulative damage evolution of jointed slopes subject to continuous earthquakes: Influence of joint type on dynamic amplification effect and failure mode of slopes. Comput. Geotech. 2024, 166, 106016. [Google Scholar] [CrossRef]
- Shabani, M.J.; Mohammad, S.; Ali, G. Slope Topography Effect on the Seismic Response of Mid-Rise Buildings Considering Topography-Soil-Structure Interaction. Earthq. Struct. 2021, 20, 187–200. [Google Scholar] [CrossRef]
- Jin, Y.; Kim, D.; Jeong, S.; Park, K. Prediction of Dynamic Behavior of Full-Scale Slope Based on the Reduced Scale Shaking Table Test. Geomech. Eng. 2022, 31, 423–437. [Google Scholar] [CrossRef]
- Yun, J.W.; Han, J.T.; Ahn, J.K. Acceleration Amplification Characteristics of Embankment Reinforced with Rubble Mound. Geomech. Eng. 2024, 36, 157–166. [Google Scholar] [CrossRef]
- Zheng, L.; Chen, G.Q.; Zen, K.K.; Kasama, K. Numerical Validation of Multiplex Acceleration Model for Earthquake Induced Landslides. Geomech. Eng. 2012, 4, 39–53. [Google Scholar] [CrossRef]
- Xin, C.L.; Li, W.H.; Wang, Z.; Feng, W.K.; Hajirasouliha, I.; Yu, X.Y. Shaking table tests on the stability of dip and anti-dip rock slopes with structural planes induced by seismic motions. Eng. Geol. 2024, 341, 107707. [Google Scholar] [CrossRef]
- Zang, M.D.; Yang, G.X.; Dong, J.Y.; Qi, S.W.; He, J.X.; Liang, N. Experimental study on seismic response and progressive failure characteristics of bedding rock slopes. J. Rock Mech. Geotech. Eng. 2022, 14, 1394–1405. [Google Scholar] [CrossRef]
- Liao, D.M.; Cao, L.; Sun, F.; Chen, T. Research Status and Prospect on Numerical Simulation Technology of Casting Macroscopic Process. Acta. Metall. Sin. 2018, 54, 161–173. [Google Scholar] [CrossRef]
- Haeri, H.; Sarfarazi, V.; Zhu, Z.M.; Nejati, H.R. Numerical Simulations of Fracture Shear Test in Anisotropy Rocks with Bedding Layers. Adv. Concr. Constr. 2019, 7, 241–247. [Google Scholar] [CrossRef]
- Ma, Y.F.; Huang, H.Y. Effect of shear bond failure on the strength ratio in DEM modeling of quasi-brittle materials. Acta Geotech. 2021, 16, 2629–2642. [Google Scholar] [CrossRef]
- Lan, H.X.; Song, Z.T.; Bao, H.; Ma, Y.F.; Yan, C.G.; Liu, S.; Wang, J.T. Shear strength parameters identification of loess interface based on borehole micro static cone penetration system. Geoenviron. Dis. 2024, 11, 24. [Google Scholar] [CrossRef]
- Scholtes, L.; Donze, F.V. A DEM model for soft and hard rocks: Role of grain interlocking on strength. J. Mech. Phys. Solids 2013, 61, 352–369. [Google Scholar] [CrossRef]
- Hoek, E.; Martin, C.D. Fracture initiation and propagation in intact rock—A review. J. Rock Mech. Geotech. Eng. 2014, 6, 287–300. [Google Scholar] [CrossRef]
- Guo, S.F.; Qi, S.W.; Zou, Y.; Zheng, B.W. Numerical Studies on the Failure Process of Heterogeneous Brittle Rocks or Rock-Like Materials under Uniaxial Compression. Materials 2017, 10, 378. [Google Scholar] [CrossRef]
- Ghadernejad, S.; Nejati, H.R.; Yagiz, S. A New Rock Brittleness Index on the Basis of Punch Penetration Test Data. Geomech. Eng. 2020, 21, 391–399. [Google Scholar] [CrossRef]
- Ma, Y.F.; Huang, H.Y. A displacement-softening contact model for discrete element modeling of quasi-brittle materials. Int. J. Min. Sci. Tech. 2018, 104, 9–19. [Google Scholar] [CrossRef]
- Bai, Q.S.; Zhang, C.; Konietzky, H. Effects of particle shape on mechanical responses of rock materials using bonded-particle model. Comput. Geotech. 2024, 176, 106754. [Google Scholar] [CrossRef]
- Wang, X.E.; Kanani, A.Y.; Gu, Z.; Yang, J.; Ye, J.; Hou, X. Investigation on the transitional micromechanical response of hybrid composite adhesive joints by a novel adaptive DEM model. Theor. Appl. Fract. Mech. 2023, 124, 103760. [Google Scholar] [CrossRef]
- Shi, C.; Li, W.Y.; Meng, Q.X. A Dynamic Strain-Rate-Dependent Contact Model and Its Application in Hongshiyan Landslide. Geofluids 2021, 2021, 9993693. [Google Scholar] [CrossRef]
- Huang, X.L.; Qi, S.W.; Guo, S.F. Experimental Study of Ultrasonic Waves Propagating Through a Rock Mass with a Single Joint and Multiple Parallel Joints. Rock Mech. Rock Eng. 2014, 47, 549–559. [Google Scholar] [CrossRef]
- Li, L.L.; Xiao, M.L.; Tan, C. A New Rock Joint Generation Method and Its Verification in PFC2D. Adv. Mater. Sci. 2018, 2018, 3946105. [Google Scholar] [CrossRef]
- Xu, W.J.; Xu, Q.; Wang, Y.J. The mechanism of high-speed motion and damming of the Tangjiashan landslide. Eng. Geol. 2013, 157, 8–20. [Google Scholar] [CrossRef]
- Luo, Y.H.; Zhang, Y.; Wang, Y.S.; He, Y.; Zhang, Y.Y.; Cao, H. A unique failure model for a landslide induced by the Wenchuan earthquake in the Liujiawan area, Qingchuan County, China. Eng. Geol. 2021, 295, 106412. [Google Scholar] [CrossRef]
- Ding, X.H.; Luo, B.; Zhou, H.T.; Chen, Y.H. Generalized solutions for advection–dispersion transport equations subject to time- and space-dependent internal and boundary sources. Comput. Geotech. 2025, 178, 106944. [Google Scholar] [CrossRef]
- Luo, Y.H.; Wang, Y.S. Mountain Slope Ground Motion Topography Amplification Effect Induced by Wenchuan Earthquake. J. Mt. Sci. 2013, 31, 200–210. [Google Scholar] [CrossRef]
- Yang, G.X.; Qi, S.W.; Wu, F.Q.; Zhan, Z.F. Seismic amplification of the anti-dip rock slope and deformation characteristics: A large-scale shaking table test. Soil Dyn. Earthq. Eng. 2018, 115, 907–916. [Google Scholar] [CrossRef]
- Wu, C.Y.; Qiao, J.P. Analysis on “12.3” Super Large-scaled Landslide in Zongling, Nayong, Guizhou. Res. Soil Wtr. Conserv. 2006, 13, 100–103. [Google Scholar] [CrossRef]
- Wang, W.N.; Chigira, M.; Furuya, T. Geological and geomorphological precursors of the Chiu-fen-erh-shan landslide triggered by the Chi-chi earthquake in central Taiwan. Eng. Geol. 2003, 69, 1–13. [Google Scholar] [CrossRef]
- Zhang, M.; Yin, Y.P.; McSaveney, M. Dynamics of the 2008 earthquake-triggered Wenjiagou Creek rock avalanche, Qingping, Sichuan, China. Eng. Geol. 2016, 200, 75–87. [Google Scholar] [CrossRef]
- Wang, M.; Su, J.S.; Qin, H.Y.; Shang, L.Y.; Kang, J.X.; Liu, W.W.; Li, M.; Zhang, F.; Xin Li, X.; Fang, Z.Z. Research on Active Advanced Support Technology of Backfilling and Mining Face. Rock Mech. Rock Eng. 2024, 57, 7623–7642. [Google Scholar] [CrossRef]
- Zhou, Z.Q.; Gao, T.; Sun, J.W.; Gao, C.L.; Bai, S.S.; Jin, G.H.; Liu, Y.H. An FDM-DEM coupling method based on REV for stability analysis of tunnel surrounding rock. Tunn. Undergr. Sp. Technol. 2024, 152, 105917. [Google Scholar] [CrossRef]
- Chen, Y.H.; Zhang, L.; Xu, L.R.; Zhou, S.; Luo, B.; Ding, K. In-situ investigation on dynamic response of highway transition section with foamed concrete. Earthq. Eng. Eng. Vib. 2025, 24, 547–563. [Google Scholar] [CrossRef]
- Yang, T.T.; Lu, Y.; Mei, G. A federated learning based approach for predicting landslide displacement considering data security. Future Gener. Comput. Syst. 2023, 149, 184–199. [Google Scholar] [CrossRef]
Mechanical Parameters | Value |
---|---|
Compressive strength (MPa) | 85.04 |
Elastic modulus (GPa) | 12.23 |
Poisson’s ratio | 0.21 |
Tensile strength (MPa) | 7.29 |
Cohesion of joint face (MPa) | 0.35 |
Angle of internal friction of joint faces (°) | 36.00 |
Micro-Mechanical Parameters | Description | Value |
---|---|---|
Rock mass | ||
E | Effective modulus (GPa) | 32.0 |
k* | Stiffness ratio | 3.5 |
Normal strength (MPa) | 18.0 | |
Shear strength (MPa) | 70.0 | |
Softening factor | 20.0 | |
Joint faces | ||
Normal stiffness (N/m) | 1.2 × 1011 | |
Shear stiffness (N/m) | 3.2 × 1010 | |
Tensile strength (MPa) | 6.0 | |
Joint cohesion (MPa) | 7.9 | |
Joint friction | 0.7 | |
Dilation angle (°) | 60.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Yang, G.; Guo, D.; Liu, X.; Wang, X.; Hu, G. Toward Sustainable Geohazard Assessment: Dynamic Response and Failure Characteristics of Layered Rock Slopes Under Earthquakes via DEM Simulations. Sustainability 2025, 17, 7374. https://doi.org/10.3390/su17167374
Li F, Yang G, Guo D, Liu X, Wang X, Hu G. Toward Sustainable Geohazard Assessment: Dynamic Response and Failure Characteristics of Layered Rock Slopes Under Earthquakes via DEM Simulations. Sustainability. 2025; 17(16):7374. https://doi.org/10.3390/su17167374
Chicago/Turabian StyleLi, Fangfei, Guoxiang Yang, Dengke Guo, Xiaoning Liu, Xiaoliang Wang, and Gengkai Hu. 2025. "Toward Sustainable Geohazard Assessment: Dynamic Response and Failure Characteristics of Layered Rock Slopes Under Earthquakes via DEM Simulations" Sustainability 17, no. 16: 7374. https://doi.org/10.3390/su17167374
APA StyleLi, F., Yang, G., Guo, D., Liu, X., Wang, X., & Hu, G. (2025). Toward Sustainable Geohazard Assessment: Dynamic Response and Failure Characteristics of Layered Rock Slopes Under Earthquakes via DEM Simulations. Sustainability, 17(16), 7374. https://doi.org/10.3390/su17167374