Hydrodynamics of the Qiantang Tidal Bore and Its Responses to Embankment, Morphology, and River Discharge
Abstract
1. Introduction
2. Mathematical Model
2.1. Governing Equations
2.2. Empirical Relations
2.3. Numerical Methods
2.3.1. Finite Volume Discretization on Unstructured Triangular Meshes
2.3.2. GPU Parallel Computing Architecture
2.3.3. The Local Time Step Estimations
- (1)
- Compute the local time step for each cell, using the following equation:
- (2)
- Compute the global minimum time step and the potential grade exponent for each cell (i), using the following equations:
- (3)
- Compute the actual grades for cells and faces, determine the LTS time step for each cell, and compute the global maximum time step , using the following equations:
2.3.4. Numerical Structure of GPU-LTS
3. Study Area and Model Setup
3.1. Tidal Bores in the QE
3.2. Model Setup
4. Reproduction of Tidal Bore Phenomena
4.1. Tide Validation and Bore Reproduction
4.2. Analysis of Tidal Bore Characteristics
4.2.1. Definition and Calculation Methods of Tidal Bore Characteristic Parameters
- (1)
- Tidal bore height (H) and tidal bore velocity (v)
- (2)
- Tidal bore propagation speed (C) and Froude number (Fr)
4.2.2. Distribution of Tidal Bore Characteristic Parameters Along the River Reach
5. Formation Mechanisms of Typical Tidal Bores
5.1. Cross-Shaped Tidal Bores in Mid-Channel Bar Reaches
5.2. Thread-Shaped Tidal Bores in Straight–Narrow–Shallow Reaches
5.3. Returned Tidal Bores in Sharp Turning Corners
6. Discussion on Tidal Bore Responses to Different Runoffs
6.1. Longitudinal Characteristics of Tidal Bores
6.2. Velocity Distributions Across Reaches of Distinct Geometry
7. Conclusions
- (1)
- The model accurately captures abrupt water level changes, rapid velocity increases, and sudden flow direction shifts at the tidal bore front and replicates the three-phase evolution (generation, development, and decay) of tidal bores in the QE. Importantly, it achieves this simulation with a high computational efficiency, requiring only 1.2 h to simulate a 2-day tidal bore phenomenon. Despite these advantages, 2D models cannot resolve 3D turbulence in tidal bore fronts, thereby constraining precise characterization of energy dissipation mechanisms. Future studies should thus progress to 3D modeling frameworks to holistically capture multi-scale bore hydrodynamics.
- (2)
- The morphology, intensity, and distribution of tidal bores are influenced by natural geomorphology and artificial structures. The cross-shaped bore appears first and is generated by flow division around mid-channel bars; after its removal, the tidal bore landscape transitions to a thread-shaped tidal bore. Further upstream, the thread-shaped bore is formed due to the increasingly narrow river along a straight reach. At the YC bending reach, the reflection of the bore results in returned bores, while spur dikes further increase the tidal bore height and strengthen the bore landscape. Moreover, removing a spur dike shifts the bore closer to the riverbank.
- (3)
- When the discharge increases to the annual mean discharge, the intensity of the tidal bore increases while vmax is reduced. However, extremely high flood peak discharge can inhibit bore propagation by enhancing ebb dominance. In the main channels, the maximum ebb velocities are higher and vmax is lower, contrasting with shoals, where the opposite is true. These lateral differences remain consistent, even under varying discharge conditions.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xie, D.; Pan, C.; Gao, S.; Wang, Z.B. Morphodynamics of the Qiantang Estuary, China: Controls of River Flood Events and Tidal Bores. Mar. Geol. 2018, 406, 27–33. [Google Scholar] [CrossRef]
- Reungoat, D.; Lubin, P.; Leng, X.; Chanson, H. Tidal Bore Hydrodynamics and Sediment Processes: 2010–2016 Field Observations in France. Coast. Eng. J. 2018, 60, 484–498. [Google Scholar] [CrossRef]
- Wolanski, E.; Williams, D.; Spagnol, S.; Chanson, H. Undular Tidal Bore Dynamics in the Daly Estuary, Northern Australia. Estuar. Coast. Shelf Sci. 2004, 60, 629–636. [Google Scholar] [CrossRef]
- Wisha, U.J.; Wijaya, Y.J.; Hisaki, Y. Tidal Bore Generation and Transport Mechanism in the Rokan River Estuary, Indonesia: Hydro-Oceanographic Perspectives. Reg. Stud. Mar. Sci. 2022, 52, 102–309. [Google Scholar] [CrossRef]
- Carneiro, A.G.; Rollnic, M. Hydrodynamic and Turbulence Associated with Tidal Bore Propagation in an Amazonian Macrotidal System. Reg. Stud. Mar. Sci. 2024, 77, 103721. [Google Scholar] [CrossRef]
- Yeh, H.H.; Mok, K.M. On Turbulence in Bores. Phys. Fluids A 1990, 2, 821–828. [Google Scholar] [CrossRef]
- Lubin, P.; Chanson, H.; Glockner, S. Large Eddy Simulation of Turbulence Generated by a Weak Breaking Tidal Bore. Environ. Fluid Mech. 2010, 10, 587–602. [Google Scholar] [CrossRef]
- Koch, C.; Chanson, H. An Experimental Study of Tidal Bores and Positive Surges: Hydrodynamics and Turbulence of the Bore Front; Report No. CH56/05; The University of Queensland, Department of Civil Engineering: Brisbane, Australia, 2005. [Google Scholar] [CrossRef]
- Bonneton, P.; Bonneton, N.; Parisot, J.P.; Castelle, B. Tidal Bore Dynamics in Funnel-shaped Estuaries. J. Geophys. Res. Oceans 2015, 120, 923–941. [Google Scholar] [CrossRef]
- Qin, X.; LeVeque, R.J.; Motley, M.R. Accelerating an Adaptive Mesh Refinement Code for Depth-Averaged Flows Using GPUs. J. Adv. Model. Earth Syst. 2019, 11, 2606–2628. [Google Scholar] [CrossRef]
- Chanson, H. Tidal bore processes in the Baie du Mont Saint Michel (France): Field observations and discussion. In Proceedings of the 31st IAHR Congress 2005: Water Engineering for the Future, Choices and Challenges, Seoul, Republic of Korea, 11–16 September 2005; pp. 4037–4046. [Google Scholar]
- Savenije, H.H.; Toffolon, M.; Haas, J.; Veling, E.J. Analytical Description of Tidal Dynamics in Convergent Estuaries. J. Geophys. Res. 2008, 113, C04030. [Google Scholar] [CrossRef]
- Furuyama, S.I.; Chanson, H. A Numerical Simulation of a Tidal Bore Flow. Coast. Eng. J. 2010, 52, 215–234. [Google Scholar] [CrossRef]
- Filippini, A.G.; Arpaia, L.; Bonneton, P.; Ricchiuto, M. Modeling Analysis of Tidal Bore Formation in Convergent Estuaries. Eur. J. Mech. B Fluids 2019, 73, 55–68. [Google Scholar] [CrossRef]
- Roy-Biswas, T.; Sen, D. Tidal Bore Dynamics of a Mixed Estuary: The Hooghly River, India. J. Waterw. Port Coast. Ocean Eng. 2023, 149, 05022005. [Google Scholar] [CrossRef]
- Fan, D.; Tu, J.; Shang, S.; Cai, G. Characteristics of Tidal-Bore Deposits and Facies Associations in the Qiantang Estuary, China. Mar. Geol. 2014, 348, 1–14. [Google Scholar] [CrossRef]
- Xie, D.; Gao, S.; Wang, Z.B.; Pan, C.; Wu, X.; Wang, Q. Morphodynamic Modeling of a Large Inside Sandbar and Its Dextral Morphology in a Convergent Estuary: Qiantang Estuary, China. J. Geophys. Res. Earth Surf. 2017, 122, 1553–1572. [Google Scholar] [CrossRef]
- Pan, C.H.; Lu, H.Y.; Zeng, J. Characteristic and numerical simulation of tidal bore in Qiantang River. Hydro-Sci. Eng. 2008, 2, 1–9. (In Chinese) [Google Scholar] [CrossRef]
- Pan, C.H.; Lin, B.Y.; Mao, X.Z. A Godunov-type scheme for 2-D shallow-water flow with bottom topography. J. Hydrodyn. 2003, 18, 16–23. (In Chinese) [Google Scholar] [CrossRef]
- Pan, C.H.; Xu, K. Kinetic flux vector splitting scheme for solving 2-D shallow water equations with triangular mesh. J. Hydraul. Eng. 2006, 37, 858–864. (In Chinese) [Google Scholar] [CrossRef]
- Xie, D.F.; Pan, C.H.; Wu, X.G. Three-dimensional numerical modeling of tidal bore in Qiantang based on FVCOM. Ocean. Eng. 2011, 29, 47–52. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Q.S.; Pan, C.H. Numerical simulation on the effect of Typhoon In-Fa on the Qiantang tidal bore. Hydro-Sci. Eng. 2021, 6, 17–24. (In Chinese) [Google Scholar] [CrossRef]
- Huang, T.; Zhang, H.; Shi, Y.L. Numerical Simulation of the Tidal Bore in the Qiantang River Based on Boussinesq-Type Equations. Chin. J. Geophys. 2022, 65, 79–95. (In Chinese) [Google Scholar] [CrossRef]
- Hu, P.; Han, J.; Li, W.; Sun, Z.; He, Z. Numerical investigation of a sandbar formation and evolution in a tide-dominated estuary using a hydro-morphodynamic model. Coast. Eng. J. 2018, 60, 466–483. [Google Scholar] [CrossRef]
- Hu, P.; Lei, Y.; Han, J.; Cao, Z.; Liu, H.; He, Z.; Yue, Z. An improved local time step for 2D shallow-water modeling based on unstructured grids. J. Hydraul. Eng. 2019, 145, 06019017. [Google Scholar] [CrossRef]
- Hu, P.; Lei, Y.; Han, J.; Cao, Z.; Liu, H.; He, Z. Computationally efficient modeling of hydro-sediment-morphodynamic processes using a hybrid local time step/global maximum time step. Adv. Water Resour. 2019, 127, 26–38. [Google Scholar] [CrossRef]
- Osher, S.; Sanders, R. Numerical Approximations to Nonlinear Conservation Laws with Locally Varying Time and Space Grids. Math. Comput. 1983, 41, 321–336. [Google Scholar] [CrossRef]
- Sanders, B.F. Integration of a Shallow Water Model with a Local Time Step. J. Hydraul. Res. 2008, 46, 466–475. [Google Scholar] [CrossRef]
- Dazzi, S.; Vacondio, R.; Dal Palù, A.; Mignosa, P. A local time stepping algorithm for GPU-accelerated 2D shallow water models. Adv. Water Resour. 2018, 111, 274–288. [Google Scholar] [CrossRef]
- Hu, P.; Zhao, Z.; Ji, A.; Li, W.; He, Z.; Liu, Q.; Li, Y.; Cao, Z. A GPU-accelerated and LTS-based finite volume shallow water model. Water 2022, 14, 922. [Google Scholar] [CrossRef]
- Zhao, Z.G.; Hu, P.; Li, W.; Cao, Z.G.; Li, Y.Z. An Engineering-Oriented Shallow-Water Hydro-Sediment-Morphodynamic Model Using the GPU-Acceleration and the Hybrid LTS/GMaTS Method. Adv. Eng. Softw. 2025, 200, 103821. [Google Scholar] [CrossRef]
- Liu, G.; Ji, T.; Wu, G.; Yu, P. Improved Local Time-Stepping Schemes for Storm Surge Modeling on Unstructured Grids. Environ. Model. Softw. 2024, 179, 106107. [Google Scholar] [CrossRef]
- Liu, G.; Ji, T.; Wu, G.; Tian, H.; Yu, P. Cross-Scale Modeling of Shallow Water Flows in Coastal Areas with an Improved Local Time-Stepping Method. J. Mar. Sci. Eng. 2024, 12, 1065. [Google Scholar] [CrossRef]
- Chanson, H. Tidal Bores, Aegir, Eagre, Mascaret, Pororoca Theory and Observations; World Scientific: Singapore, 2012. [Google Scholar] [CrossRef]
- Toro, E.F. Shock-Capturing Methods for Free-Surface Shallow Flows; John Wiley & Sons: New York, NY, USA, 2001. [Google Scholar]
- Hou, J.; Liang, Q.; Simons, F.; Hinkelmann, R. A 2D Well-Balanced Shallow Flow Model for Unstructured Grids with Novel Slope Source Term Treatment. Adv. Water Resour. 2013, 52, 107–131. [Google Scholar] [CrossRef]
- Liang, Q.; Marche, F. Numerical resolution of well-balanced shallow water equations with complex source terms. Adv. Water Resour. 2009, 32, 873–884. [Google Scholar] [CrossRef]
- Lin, B.Y. Characteristics of Tidal Bore in Qiantang River; Ocean Press: Beijing, China, 2008. (In Chinese) [Google Scholar]
- Li, W.; Zhang, Y.; Hu, P.; Chen, F.; He, Z. Evolutions of hydrodynamics and sediment transport pattern in the Qiantang Estuary (China) in response to multidecadal embankment constructions. Estuar. Coast. Shelf Sci. 2024, 309, 108965. [Google Scholar] [CrossRef]
- Pan, C.H.; Han, Z.C. Research on Conservation and Regulation of Qiantang Estuary; China Water Power Press: Beijing, China, 2017. (In Chinese) [Google Scholar]
- Allen, J.I.; Somerfield, P.J.; Gilbert, F.J. Quantifying Uncertainty in High-Resolution Coupled Hydrodynamic-Ecosystem Models. J. Mar. Syst. 2007, 64, 3–14. [Google Scholar] [CrossRef]
- Ralston, D.K.; Geyer, W.R.; Lerczak, J.A. Structure, Variability, and Salt Flux in a Strongly Forced Salt Wedge Estuary. J. Geophys. Res. 2010, 115, C06005. [Google Scholar] [CrossRef]
- Chu, N.; Yao, P.; Ou, S.; Wang, H.; Yang, H.; Yang, Q. Response of Tidal Dynamics to Successive Land Reclamation in the Lingding Bay over the Last Century. Coast. Eng. 2022, 173, 104095. [Google Scholar] [CrossRef]
- Li, L.; Ren, Y.; Ye, T.; Wang, X.H.; Hu, J.; Xia, Y. Positive Feedback Between the Tidal Flat Variations and Sediment Dynamics: An Example Study in the Macro-Tidal Turbid Hangzhou Bay. J. Geophys. Res. Oceans 2023, 128, e2022JC019414. [Google Scholar] [CrossRef]
- Koch, C.; Chanson, H. Turbulence Measurements in Positive Surges and Bores. J. Hydraul. Res. 2009, 47, 29–40. [Google Scholar] [CrossRef]
- Lin, B.Y.; Huang, S.C.; Pan, C.H. Basic characters about bore. J. Yangtze River Sci. Res. Inst. 2003, 20, 12–15. (In Chinese) [Google Scholar] [CrossRef]
- Bolle, A.; Wang, Z.B.; Amos, C.; De Ronde, J. The Influence of Changes in Tidal Asymmetry on Residual Sediment Transport in the Western Scheldt. Cont. Shelf Res. 2010, 30, 871–882. [Google Scholar] [CrossRef]
- Friedrichs, C.T.; Aubrey, D.G. Non-Linear Tidal Distortion in Shallow Well-Mixed Estuaries: A Synthesis. Estuar. Coast. Shelf Sci. 1988, 27, 521–545. [Google Scholar] [CrossRef]
- Guo, L.; Van Der Wegen, M.; Roelvink, J.A.; He, Q. The Role of River Flow and Tidal Asymmetry on 1-D Estuarine Morphodynamics. J. Geophys. Res. Earth Surf. 2014, 119, 2315–2334. [Google Scholar] [CrossRef]
Cases | Bathymetry and Shoreline | Features | Status | Discharge (m3/s) | Simulation Period |
---|---|---|---|---|---|
R1 | 2012 | YC spur dike | YES | 954 m3/s | 12–10 October 2012 |
Y1 | NO | ||||
M1 | 2016 | Mid-Channel Bar | YES | 8–10 August 2016 | |
M2 | NO | ||||
D1 | 2012 | YC spur dike | YES | 600 m3/s | 10–12 October 2012 |
D2 | YES | 15,000 m3/s |
Stations | Hydrodynamics | RMSE | CC | SS | Level |
---|---|---|---|---|---|
DQ | Tidal level | 0.194 m | 0.982 | 0.976 | Excellent |
HD | 0.212 m | 0.871 | 0.968 | ||
DQ | Tidal current velocity | 0.191 m/s | 0.941 | 0.938 | |
HD | 0.224 m/s | 0.937 | 0.942 | ||
DQ | Tidal current direction | 20° | 0.908 | 0.896 | |
HD | 22° | 0.912 | 0.882 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, Y.; Li, W.; Chen, F.; Hu, P.; Zhao, Z.; Zhang, Y.; Zeng, J.; He, Z. Hydrodynamics of the Qiantang Tidal Bore and Its Responses to Embankment, Morphology, and River Discharge. Sustainability 2025, 17, 7363. https://doi.org/10.3390/su17167363
Qiu Y, Li W, Chen F, Hu P, Zhao Z, Zhang Y, Zeng J, He Z. Hydrodynamics of the Qiantang Tidal Bore and Its Responses to Embankment, Morphology, and River Discharge. Sustainability. 2025; 17(16):7363. https://doi.org/10.3390/su17167363
Chicago/Turabian StyleQiu, Yu, Wei Li, Fuyuan Chen, Peng Hu, Zixiong Zhao, Yiming Zhang, Jian Zeng, and Zhiguo He. 2025. "Hydrodynamics of the Qiantang Tidal Bore and Its Responses to Embankment, Morphology, and River Discharge" Sustainability 17, no. 16: 7363. https://doi.org/10.3390/su17167363
APA StyleQiu, Y., Li, W., Chen, F., Hu, P., Zhao, Z., Zhang, Y., Zeng, J., & He, Z. (2025). Hydrodynamics of the Qiantang Tidal Bore and Its Responses to Embankment, Morphology, and River Discharge. Sustainability, 17(16), 7363. https://doi.org/10.3390/su17167363