Nexus of Economic Growth, Economic Structure, and Environmental Pollution: Using a Novel Machine Learning Approach
Abstract
1. Introduction
2. Theoretical Framework
3. Methodology
3.1. Data
3.2. Optimal Number of Clusters
3.3. Clustering
3.4. Principal Components Analysis (PCA)
4. Results
4.1. Cluster 1 (Richest Countries)
4.2. Cluster 2 (Rich Countries)
4.3. Cluster 3 (Other Countries)
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Environment | Economy | ||||||||
---|---|---|---|---|---|---|---|---|---|
Country | Cluster | EPI | EH | EV | GDP | Serv. | Indu. | Manu. | Agri. |
Luxembourg | 1 | 82 | 93 | 75 | 104,616 | 83,563 | 11,480 | 5024 | 189 |
Switzerland | 1 | 82 | 95 | 73 | 84,637 | 60,173 | 21,553 | 15,729 | 508 |
Ireland | 1 | 73 | 94 | 59 | 79,442 | 41,954 | 31,353 | 28,855 | 699 |
Norway | 1 | 78 | 99 | 64 | 75,287 | 41,891 | 23,967 | 4736 | 1119 |
Singapore | 1 | 58 | 85 | 40 | 59,176 | 40,900 | 15,036 | 12,724 | 19 |
Qatar | 2 | 37 | 57 | 24 | 58,476 | 27,881 | 33,310 | 5120 | 175 |
United States of America | 1 | 69 | 83 | 60 | 58,452 | 45,004 | 10,782 | 6664 | 685 |
Australia | 1 | 75 | 92 | 64 | 58,082 | 40,353 | 13,039 | 3193 | 999 |
Denmark | 2 | 83 | 92 | 76 | 55,654 | 36,168 | 11,344 | 7608 | 494 |
Iceland | 2 | 72 | 98 | 55 | 52,486 | 33,761 | 10,657 | 4901 | 2740 |
Sweden | 2 | 79 | 98 | 66 | 51,953 | 33,991 | 11,311 | 6565 | 676 |
The Netherlands | 2 | 75 | 91 | 65 | 46,303 | 32,033 | 8694 | 5242 | 787 |
Finland | 2 | 79 | 99 | 65 | 44,985 | 27,269 | 10,584 | 6759 | 1064 |
Austria | 2 | 80 | 88 | 74 | 43,344 | 27,028 | 11,264 | 7523 | 479 |
Canada | 2 | 71 | 92 | 57 | 42,390 | 28,941 | 9969 | 3925 | 834 |
United Kingdom | 2 | 81 | 92 | 74 | 42,192 | 29,601 | 8049 | 4358 | 246 |
Germany | 2 | 77 | 90 | 69 | 41,602 | 25,945 | 11,064 | 8127 | 277 |
United Arab Emirates | 2 | 56 | 55 | 56 | 41,276 | 23,497 | 17,549 | 4551 | 350 |
Belgium | 2 | 73 | 86 | 65 | 40,656 | 28,359 | 7880 | 5044 | 245 |
New Zealand | 2 | 71 | 88 | 60 | 39,608 | 26,488 | 8113 | 4114 | 1659 |
Israel | 2 | 66 | 84 | 54 | 38,177 | 26,179 | 7364 | 4877 | 461 |
France | 2 | 80 | 92 | 72 | 35,807 | 25,413 | 6074 | 3634 | 524 |
Japan | 2 | 75 | 90 | 65 | 34,651 | 23,843 | 10,185 | 7190 | 316 |
South Korea | 2 | 67 | 81 | 57 | 31,378 | 17,675 | 10,570 | 8251 | 536 |
Brunei Darussalam | 2 | 55 | 74 | 42 | 30,402 | 11,712 | 18,907 | 6004 | 340 |
Italy | 2 | 71 | 86 | 61 | 29,375 | 19,743 | 6252 | 4158 | 587 |
Cyprus | 2 | 65 | 82 | 54 | 27,090 | 14,285 | 2520 | 1117 | 332 |
Spain | 2 | 74 | 87 | 66 | 24,830 | 16,931 | 4931 | 2601 | 713 |
Kuwait | 2 | 54 | 57 | 51 | 23,929 | 15,747 | 12,704 | 1624 | 133 |
Slovenia | 3 | 72 | 69 | 74 | 22,964 | 12,771 | 6897 | 5043 | 485 |
Bahamas | 2 | 44 | 53 | 37 | 22,831 | 19,574 | 2314 | 287 | 189 |
Bahrain | 3 | 51 | 49 | 52 | 22,579 | 12,946 | 8934 | 3822 | 73 |
Estonia | 3 | 65 | 73 | 60 | 20,118 | 12,456 | 4696 | 2588 | 485 |
Portugal | 3 | 67 | 83 | 56 | 19,802 | 12,853 | 3953 | 2458 | 405 |
Czech Republic | 3 | 71 | 68 | 73 | 19,048 | 10,731 | 6015 | 4516 | 476 |
Saudi Arabia | 3 | 44 | 47 | 42 | 18,857 | 10,142 | 7762 | 2297 | 583 |
Oman | 3 | 39 | 43 | 35 | 17,662 | 8560 | 9351 | 1540 | 499 |
Slovakia | 3 | 68 | 64 | 71 | 17,617 | 10,484 | 4886 | 3322 | 356 |
Greece | 3 | 69 | 81 | 61 | 17,283 | 11,687 | 2777 | 1692 | 704 |
Lithuania | 3 | 63 | 63 | 63 | 17,248 | 10,304 | 4660 | 3034 | 566 |
Uruguay | 3 | 49 | 68 | 37 | 16,460 | 9879 | 4043 | 2086 | 964 |
Seychelles | 3 | 58 | 51 | 63 | 15,322 | 10,393 | 2102 | 957 | 413 |
Latvia | 3 | 62 | 58 | 64 | 15,312 | 9680 | 3060 | 1773 | 563 |
Barbados | 3 | 46 | 61 | 36 | 15,067 | 10,921 | 2170 | 852 | 286 |
Antigua and Barbuda | 3 | 49 | 56 | 44 | 14,804 | 9857 | 3093 | 409 | 272 |
Poland | 3 | 61 | 59 | 62 | 14,775 | 8504 | 4225 | 2562 | 327 |
Hungary | 3 | 64 | 54 | 70 | 14,430 | 8104 | 3535 | 2588 | 485 |
Trinidad and Tobago | 3 | 48 | 55 | 43 | 14,214 | 8657 | 4815 | 2006 | 242 |
Croatia | 3 | 63 | 61 | 64 | 13,075 | 7646 | 2865 | 1684 | 418 |
Chile | 3 | 55 | 63 | 50 | 12,739 | 7417 | 3505 | 1335 | 501 |
Panama | 3 | 47 | 50 | 45 | 12,307 | 8875 | 2694 | 662 | 393 |
Turkey | 3 | 43 | 51 | 37 | 12,180 | 6700 | 3262 | 2009 | 811 |
Costa Rica | 3 | 53 | 61 | 47 | 12,030 | 8182 | 2411 | 1519 | 578 |
Argentina | 3 | 52 | 60 | 47 | 11,347 | 6455 | 2449 | 1484 | 639 |
Kazakhstan | 3 | 45 | 41 | 47 | 10,974 | 6193 | 3764 | 1255 | 553 |
Romania | 3 | 65 | 50 | 74 | 10,899 | 6210 | 3081 | 1972 | 440 |
Malaysia | 3 | 48 | 55 | 43 | 10,383 | 5705 | 3795 | 2372 | 764 |
Russia | 3 | 51 | 53 | 49 | 9714 | 5555 | 2966 | 1324 | 399 |
Mauritius | 3 | 45 | 60 | 35 | 9363 | 6274 | 1613 | 1051 | 304 |
Mexico | 3 | 53 | 48 | 56 | 9274 | 5793 | 2683 | 1827 | 328 |
Guyana | 3 | 36 | 34 | 38 | 9127 | 2422 | 4615 | 291 | 1512 |
Saint Lucia | 3 | 43 | 48 | 40 | 8335 | 5965 | 1041 | 321 | 220 |
Brazil | 3 | 51 | 50 | 52 | 8256 | 5177 | 1508 | 834 | 419 |
Saint Vincent and the Grenadines | 3 | 48 | 44 | 51 | 7948 | 5089 | 1074 | 341 | 548 |
Grenada | 3 | 43 | 46 | 41 | 7915 | 5203 | 1153 | 300 | 390 |
Dominican Republic | 3 | 46 | 36 | 53 | 7572 | 4275 | 2172 | 1073 | 448 |
Suriname | 3 | 45 | 37 | 51 | 7275 | 4199 | 1958 | 1238 | 548 |
Cuba | 3 | 48 | 51 | 47 | 7173 | 5334 | 1568 | 857 | 217 |
Maldives | 3 | 36 | 48 | 27 | 7164 | 5316 | 848 | 182 | 502 |
Gabon | 3 | 46 | 28 | 58 | 6620 | 2665 | 2916 | 1142 | 420 |
Dominica | 3 | 45 | 47 | 43 | 6566 | 3857 | 864 | 212 | 852 |
Serbia | 3 | 55 | 48 | 60 | 6552 | 3316 | 1705 | 932 | 426 |
Montenegro | 3 | 46 | 47 | 46 | 6516 | 3769 | 1159 | 277 | 541 |
Lebanon | 3 | 45 | 53 | 40 | 6486 | 5109 | 1026 | 429 | 346 |
Belarus | 3 | 53 | 56 | 51 | 6252 | 3031 | 1880 | 1346 | 374 |
Paraguay | 3 | 46 | 47 | 46 | 6095 | 2986 | 2083 | 1180 | 590 |
Thailand | 3 | 45 | 48 | 44 | 6048 | 3453 | 2064 | 1567 | 524 |
Equatorial Guinea | 3 | 38 | 28 | 45 | 5996 | 2923 | 3155 | 140 | 140 |
Colombia | 3 | 53 | 55 | 52 | 5853 | 3506 | 1396 | 669 | 399 |
Botswana | 3 | 40 | 20 | 54 | 5811 | 3768 | 1784 | 347 | 117 |
Peru | 3 | 44 | 45 | 43 | 5754 | 3184 | 1645 | 723 | 473 |
South Africa | 3 | 43 | 31 | 51 | 5749 | 3840 | 1207 | 658 | 165 |
Bosnia and Herzegovina | 3 | 45 | 44 | 46 | 5459 | 2993 | 1197 | 612 | 337 |
Ecuador | 3 | 51 | 50 | 52 | 5332 | 2798 | 1582 | 781 | 580 |
Iran | 3 | 48 | 48 | 48 | 5141 | 2806 | 1596 | 743 | 563 |
Azerbaijan | 3 | 47 | 33 | 56 | 5084 | 2384 | 2056 | 333 | 397 |
North Macedonia | 3 | 55 | 44 | 63 | 5067 | 2912 | 1067 | 582 | 432 |
Marshall Islands | 3 | 31 | 33 | 30 | 5060 | 3478 | 545 | 82 | 1053 |
Belize | 3 | 42 | 40 | 43 | 4958 | 3000 | 841 | 380 | 508 |
Jamaica | 3 | 48 | 46 | 50 | 4770 | 2886 | 969 | 404 | 356 |
Fiji | 3 | 34 | 35 | 34 | 4701 | 2473 | 810 | 526 | 442 |
Tonga | 3 | 45 | 44 | 46 | 4638 | 2469 | 686 | 264 | 723 |
Georgia | 3 | 41 | 39 | 43 | 4448 | 2814 | 817 | 368 | 349 |
Albania | 3 | 49 | 45 | 52 | 4419 | 2101 | 962 | 288 | 843 |
Armenia | 3 | 52 | 44 | 58 | 4256 | 2265 | 1174 | 503 | 493 |
Sri Lanka | 3 | 39 | 42 | 37 | 4230 | 2407 | 1251 | 703 | 316 |
Samoa | 3 | 37 | 42 | 34 | 4224 | 3097 | 511 | 176 | 322 |
Iraq | 3 | 40 | 40 | 39 | 4170 | 2117 | 1832 | 107 | 339 |
Namibia | 3 | 40 | 23 | 52 | 4152 | 2523 | 1050 | 486 | 341 |
Guatemala | 3 | 32 | 31 | 33 | 4124 | 2545 | 921 | 594 | 405 |
Mongolia | 3 | 32 | 28 | 35 | 4107 | 1871 | 1177 | 343 | 619 |
Algeria | 3 | 45 | 50 | 41 | 3874 | 2016 | 1320 | 784 | 492 |
Egypt | 3 | 43 | 34 | 50 | 3836 | 2007 | 1314 | 572 | 409 |
Jordan | 3 | 53 | 59 | 50 | 3785 | 2300 | 948 | 685 | 172 |
Indonesia | 3 | 38 | 29 | 44 | 3780 | 1699 | 1443 | 759 | 503 |
El Salvador | 3 | 43 | 43 | 44 | 3776 | 2304 | 917 | 552 | 211 |
Tunisia | 3 | 47 | 49 | 45 | 3699 | 2219 | 829 | 490 | 381 |
Eswatini | 3 | 34 | 18 | 45 | 3673 | 1992 | 1221 | 1076 | 279 |
Viet Nam | 3 | 33 | 41 | 29 | 3352 | 1425 | 1219 | 829 | 414 |
Philippines | 3 | 38 | 34 | 41 | 3196 | 1931 | 948 | 619 | 317 |
Moldova | 3 | 44 | 46 | 44 | 3189 | 1676 | 763 | 356 | 317 |
Uzbekistan | 3 | 44 | 30 | 54 | 3187 | 1290 | 769 | 436 | 838 |
Morocco | 3 | 42 | 33 | 48 | 3082 | 1649 | 826 | 460 | 322 |
Bolivia | 3 | 44 | 36 | 50 | 2920 | 1403 | 669 | 310 | 365 |
Bhutan | 3 | 39 | 30 | 46 | 2884 | 1360 | 980 | 176 | 437 |
Micronesia | 3 | 33 | 31 | 35 | 2883 | 1894 | 152 | 19 | 662 |
Cabo Verde | 3 | 33 | 30 | 35 | 2876 | 1937 | 354 | 143 | 177 |
Djibouti | 3 | 28 | 20 | 33 | 2815 | 2207 | 399 | 115 | 44 |
Papua New Guinea | 3 | 32 | 28 | 35 | 2455 | 1074 | 837 | 37 | 445 |
Angola | 3 | 30 | 20 | 36 | 2435 | 1264 | 885 | 171 | 254 |
Nigeria | 3 | 31 | 14 | 42 | 2401 | 1376 | 436 | 213 | 562 |
Ukraine | 3 | 50 | 49 | 50 | 2350 | 1188 | 477 | 256 | 252 |
Cote d’Ivoire | 3 | 26 | 19 | 30 | 2235 | 1121 | 495 | 310 | 452 |
Honduras | 3 | 38 | 33 | 41 | 2191 | 1356 | 523 | 355 | 279 |
Solomon Islands | 3 | 27 | 20 | 31 | 2080 | 1089 | 341 | 191 | 651 |
Timor-Leste | 3 | 35 | 29 | 40 | 1987 | 775 | 995 | 24 | 221 |
Ghana | 3 | 28 | 20 | 33 | 1951 | 737 | 660 | 227 | 394 |
Nicaragua | 3 | 39 | 40 | 39 | 1904 | 909 | 465 | 277 | 366 |
India | 3 | 28 | 16 | 35 | 1814 | 869 | 484 | 287 | 313 |
Republic of Congo | 3 | 31 | 18 | 39 | 1741 | 642 | 856 | 172 | 147 |
Kenya | 3 | 35 | 26 | 41 | 1617 | 936 | 299 | 146 | 299 |
Bangladesh | 3 | 29 | 22 | 34 | 1593 | 837 | 479 | 295 | 202 |
Mauritania | 3 | 28 | 20 | 33 | 1588 | 776 | 291 | 103 | 348 |
Pakistan | 3 | 33 | 15 | 45 | 1578 | 848 | 296 | 183 | 343 |
Sao Tome and Principe | 3 | 38 | 29 | 44 | 1423 | 999 | 160 | 16 | 144 |
Cameroon | 3 | 34 | 14 | 47 | 1419 | 711 | 357 | 198 | 240 |
Cambodia | 3 | 34 | 31 | 36 | 1404 | 532 | 453 | 227 | 305 |
Senegal | 3 | 31 | 20 | 38 | 1391 | 700 | 312 | 222 | 229 |
Kiribati | 3 | 38 | 23 | 48 | 1358 | 948 | 129 | 58 | 360 |
Haiti | 3 | 27 | 22 | 31 | 1324 | 741 | 306 | 223 | 224 |
Myanmar | 3 | 25 | 25 | 25 | 1295 | 541 | 464 | 281 | 291 |
Zambia | 3 | 35 | 21 | 44 | 1237 | 688 | 431 | 97 | 63 |
Zimbabwe | 3 | 37 | 23 | 47 | 1213 | 741 | 258 | 114 | 123 |
Benin | 3 | 30 | 20 | 36 | 1165 | 556 | 187 | 114 | 320 |
Kyrgyzstan | 3 | 40 | 34 | 44 | 1118 | 553 | 306 | 171 | 159 |
Tanzania | 3 | 31 | 27 | 34 | 1029 | 379 | 289 | 84 | 252 |
Nepal | 3 | 33 | 21 | 41 | 1018 | 512 | 140 | 50 | 256 |
Guinea | 3 | 26 | 19 | 32 | 959 | 377 | 316 | 101 | 188 |
Lesotho | 3 | 28 | 12 | 39 | 944 | 505 | 297 | 173 | 48 |
Uganda | 3 | 36 | 26 | 42 | 918 | 404 | 261 | 153 | 209 |
Togo | 3 | 30 | 16 | 38 | 830 | 405 | 207 | 140 | 155 |
Rwanda | 3 | 34 | 24 | 40 | 822 | 410 | 149 | 65 | 190 |
Ethiopia | 3 | 34 | 25 | 41 | 811 | 331 | 187 | 46 | 248 |
Mali | 3 | 29 | 20 | 36 | 746 | 287 | 128 | 41 | 276 |
Burkina Faso | 3 | 38 | 20 | 51 | 709 | 306 | 193 | 75 | 140 |
Gambia | 3 | 28 | 21 | 32 | 656 | 338 | 134 | 19 | 130 |
Chad | 3 | 27 | 15 | 35 | 622 | 177 | 214 | 17 | 228 |
Sierra Leone | 3 | 26 | 19 | 30 | 608 | 197 | 28 | 10 | 367 |
Mozambique | 3 | 34 | 28 | 38 | 584 | 257 | 109 | 45 | 145 |
Afghanistan | 3 | 26 | 20 | 29 | 529 | 250 | 131 | 85 | 136 |
Niger | 3 | 31 | 17 | 40 | 520 | 190 | 111 | 40 | 192 |
Dem. Rep. Congo | 3 | 36 | 22 | 46 | 487 | 156 | 224 | 76 | 85 |
Madagascar | 3 | 27 | 22 | 29 | 434 | 218 | 75 | 36 | 111 |
Central African Republic | 3 | 37 | 12 | 54 | 375 | 175 | 82 | 73 | 40 |
References
- Guerrero, M.; Liñán, F.; Cáceres-Carrasco, F.R. The influence of ecosystems on the entrepreneurship process: A comparison across developed and developing economies. Small Bus. Econ. 2021, 57, 1733–1759. [Google Scholar] [CrossRef]
- Jones, J.A.; Driscoll, C.T. Long-Term Ecological Research on Ecosystem Responses to Climate Change. BioScience 2022, 72, 814–826. [Google Scholar] [CrossRef]
- Cai, X.; Xiang, H.; Akbari, F. Integrated sustainability perspective to interconnect circular economy, environmental development, and social status: Designation of sustainable development spillovers. Socio-Econ. Plan. Sci. 2025, 101, 102253. [Google Scholar] [CrossRef]
- Doo, S.S.; Kealoha, A.; Andersson, A.; Cohen, A.L.; Hicks, T.L.; Johnson, Z.I.; Long, M.H.; McElhany, P.; Mollica, N.; Shamberger, K.E.F.; et al. The challenges of detecting and attributing ocean acidification impacts on marine ecosystems. ICES J. Mar. Sci. 2020, 77, 2411–2422. [Google Scholar] [CrossRef]
- O’Hara, C.C.; Frazier, M.; Valle, M.; Butt, N.; Kaschner, K.; Klein, C.; Halpern, B.S. Cumulative human impacts on global marine fauna highlight risk to biological and functional diversity. PLoS ONE 2024, 19, e0309788. [Google Scholar] [CrossRef] [PubMed]
- Rowlands, E.; Galloway, T.; Cole, M.; Lewis, C.; Peck, V.; Thorpe, S.; Manno, C. The Effects of Combined Ocean Acidification and Nanoplastic Exposures on the Embryonic Development of Antarctic Krill. Front. Mar. Sci. 2021, 8, 709763. [Google Scholar] [CrossRef]
- Yu, R.-S.; Singh, S. Microplastic Pollution: Threats and Impacts on Global Marine Ecosystems. Sustainability 2023, 15, 13252. [Google Scholar] [CrossRef]
- Amer, E.A.A.A.; Meyad, E.M.A.; Meyad, A.M.; Mohsin, A.K.M. The impact of natural resources on environmental degradation: A review of ecological footprint and CO2 emissions as indicators. Front. Environ. Sci. 2024, 12, 1368125. [Google Scholar] [CrossRef]
- Mujtaba, G.; Shahzad, S.J.H. Air pollutants, economic growth and public health: Implications for sustainable development in OECD countries. Environ. Sci. Pollut. Res. 2021, 28, 12686–12698. [Google Scholar] [CrossRef]
- Uddin, M.M.M. Revisiting the impacts of economic growth on environmental degradation: New evidence from 115 countries. Environ. Ecol. Stat. 2021, 28, 153–185. [Google Scholar] [CrossRef]
- Lera-López, F.; Sánchez, M.; Faulin, J.; Cacciolatti, L. Rural environment stakeholders and policy making: Willingness to pay to reduce road transportation pollution impact in the Western Pyrenees. Transp. Res. Part D Transp. Environ. 2014, 32, 129–142. [Google Scholar] [CrossRef]
- Andrew, R.M. Global CO2 emissions from cement production. Earth Syst. Sci. Data 2018, 10, 195–217. [Google Scholar] [CrossRef]
- Geissbühler, D.; Laemmel, T.; Antoni, M.; Gautschi, P.; Wacker, L.; Sönke Szidat, S. Verification of fossil CO2 emissions from Swiss cement factories using direct and indirect 14CO2 measurements. Atmos. Environ. X 2025, 27, 100349. [Google Scholar] [CrossRef]
- Barros-Rodríguez, A.; Rangseekaew, P.; Lasudee, K.; Pathom-aree, W.; Manzanera, M. Impacts of Agriculture on the Environment and Soil Microbial Biodiversity. Plants 2021, 10, 2325. [Google Scholar] [CrossRef]
- Hannah, L.; Roehrdanz, P.R.; Bahadur, K.K.C.; Fraser, E.D.G.; Donatti, C.I.; Saenz, L.; Wright, T.M.; Hijmans, R.J.; Mulligan, M.; Berg, A.; et al. The environmental consequences of climate-driven agricultural frontiers. PLoS ONE 2020, 15, e0228305. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Intergovernmental Panel on Climate Change 2021. Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 23 June 2025).
- Kerimkhulle, S.; Obrosova, N.; Shananin, A.; Tokhmetov, A. Young Duality for Variational Inequalities and Nonparametric Method of Demand Analysis in Input–Output Models with Inputs Substitution: Application for Kazakhstan Economy. Mathematics 2023, 11, 4216. [Google Scholar] [CrossRef]
- Asıcı, A.A. Economic Growth and Its Impact on Environment: A Panel Data Analysis. Munich Personal RePEc Archive 2011. Available online: https://mpra.ub.uni-muenchen.de/30238/1/economic_growth_and_sustainability_april_asici.pdf (accessed on 23 June 2025).
- Jayachandran, S. How Economic Development Influences the Environment. Annu. Rev. Econ. 2022, 14, 229–252. [Google Scholar] [CrossRef]
- Tleubayev, A.; Kerimkhulle, S.; Tleuzhanova, M.; Uchkampirova, A.; Bulakbay, Z.; Mugauina, R.; Tazhibayeva, Z.; Adalbek, A.; Iskakov, Y.; Toleubay, D. Econometric Analysis of the Sustainability and Development of an Alternative Strategy to Gross Value Added in Kazakhstan’s Agricultural Sector. Econometrics 2024, 12, 29. [Google Scholar] [CrossRef]
- Zou, Y.; Huang, M.; Xiang, W.; Lu, L.; Lu, Y.; Gao, J.; Cheng, Y. The impact of high-tech industry development on energy efficiency and its influencing mechanisms. Front. Environ. Sci. 2022, 10, 962627. [Google Scholar] [CrossRef]
- IEA. Technology Innovation to Accelerate Energy Transitions. International Energy Agency 2020. Available online: https://www.iea.org/reports/technology-innovation-to-accelerate-energy-transitions (accessed on 23 June 2025).
- IEA. Clean Energy Is Boosting Economic Growth. International Energy Agency 2021. Available online: https://www.iea.org/commentaries/clean-energy-is-boosting-economic-growth (accessed on 23 June 2025).
- Feng, R.; Wang, F.; Wang, K.; Wang, H.; Li, L. Urban ecological land and natural-anthropogenic environment interactively drive surface urban heat island: An urban agglomeration-level study in China. Environ. Int. 2021, 157, 106857. [Google Scholar] [CrossRef] [PubMed]
- Niu, L.; Zhang, Z.; Liang, Y.; van Vliet, J. Spatiotemporal patterns and drivers of the urban air pollution island effect for 2273 cities in China. Environ. Int. 2024, 184, 108455. [Google Scholar] [CrossRef]
- Georgiev, E.; Mihaylov, E. Economic growth and the environment: Reassessing the environmental Kuznets Curve for air pollution emissions in OECD countries. Lett. Spat. Resour. Sci. 2015, 8, 29–47. [Google Scholar] [CrossRef]
- Shahbaz, M.; Mutascu, M.; Azim, P. Environmental Kuznets curve in Romania and the role of energy consumption. Renew. Sustain. Energy Rev. 2013, 18, 165–173. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, Z.; Jiang, Z. The environmental Kuznets curve hypothesis: An ML approach to assessing economic growth and environmental sustainability using artificial neural network. Soft Comput. 2024, 28, 3703–3723. [Google Scholar] [CrossRef]
- Makhazhanova, U.; Kerimkhulle, S.; Mukhanova, A.; Bayegizova, A.; Aitkozha, Z.; Mukhiyadin, A.; Tassuov, B.; Saliyeva, A.; Taberkhan, R.; Azieva, G. The Evaluation of Creditworthiness of Trade and Enterprises of Service Using the Method Based on Fuzzy Logic. Appl. Sci. 2022, 12, 11515. [Google Scholar] [CrossRef]
- Mert, M.; Caglar, A.E. Testing pollution haven and pollution halo hypotheses for Turkey: A new perspective. Environ. Sci. Pollut. Res. 2020, 27, 32933–32943. [Google Scholar] [CrossRef]
- Repkine, A.; Min, D. Foreign-Funded Enterprises and Pollution Halo Hypothesis: A Spatial Econometric Analysis of Thirty Chinese Regions. Sustainability 2020, 12, 5048. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, T.; Li, R.; Wang, X. Reexamining the impact of foreign direct investment on carbon emissions: Does per capita GDP matter? Humanit. Soc. Sci. Commun. 2023, 10, 406. [Google Scholar] [CrossRef]
- Casti, J.L. From Social Mood to Collective Events: Measuring the Path by Sociometers. Beac. J. Stud. Ideol. Ment. Dimens. 2022, 4, 020110153. [Google Scholar] [CrossRef]
- Chiriluș, A.; Costea, A. The Effect of FDI on Environmental Degradation in Romania: Testing the Pollution Haven Hypothesis. Sustainability 2023, 15, 10733. [Google Scholar] [CrossRef]
- Dagar, V.; Ahmed, F.; Waheed, F.; Bojnec, Š.; Khan, M.K.; Shaikh, S. Testing the Pollution Haven Hypothesis with the Role of Foreign Direct Investments and Total Energy Consumption. Energies 2022, 15, 4046. [Google Scholar] [CrossRef]
- Yoon, H.; Heshmati, A. Do environmental regulations affect FDI decisions? The pollution haven hypothesis revisited. Sci. Public Policy 2021, 48, 122–131. [Google Scholar] [CrossRef]
- Genbach, A.A.; Beloev, H.I.; Bondartsev, D.Y.; Genbach, N.A. Boiling crisis in porous structures. Energy 2022, 259, 125076. [Google Scholar] [CrossRef]
- Ali, M.U.; Wang, Y. Pollution haven or pollution halo? The role of global value chains in Belt and Road economies. Rev. Dev. Econ. 2024, 28, 168–189. [Google Scholar] [CrossRef]
- Dinda, S. Environmental Kuznets Curve Hypothesis: A Survey. Ecol. Econ. 2004, 49, 431–455. [Google Scholar] [CrossRef]
- Otelbaev, M.; Durmagambetov, A.A.; Seitkulov Ye, N. Conditions for existence of a global strong solution to one class of nonlinear evolution equations in Hilbert space. Sib. Math. J. 2008, 49, 498–511. [Google Scholar] [CrossRef]
- Hao, Y.; Gao, S.; Guo, Y.; Gai, Z.; Wu, H. Measuring the nexus between economic development and environmental quality based on environmental Kuznets curve: A comparative study between China and Germany for the period of 2000–2017. Environ. Dev. Sustain. 2021, 23, 16848–16873. [Google Scholar] [CrossRef]
- Polat, B.; Çil, N. Investigating the environmental Kuznets curve modified with HDI: Evidence from a panel of eco-innovative countries. Environ. Dev. Sustain. 2024, 27, 16655–16682. [Google Scholar] [CrossRef]
- Purcel, A.-A. New insights into the environmental Kuznets curve hypothesis in developing and transition economies: A literature survey. Environ. Econ. Policy Stud. 2020, 22, 585–631. [Google Scholar] [CrossRef]
- Abbasi, M.A.; Nosheen, M.; Rahman, H.U. An approach to the pollution haven and pollution halo hypotheses in Asian countries. Environ. Sci. Pollut. Res. 2023, 30, 49270–49289. [Google Scholar] [CrossRef]
- Le, T.T.H.; Nguyen, V.C.; Phan, T.H.N. Foreign Direct Investment, Environmental Pollution and Economic Growth—An Insight from Non-Linear ARDL Co-Integration Approach. Sustainability 2022, 14, 8146. [Google Scholar] [CrossRef]
- Xie, Q.; Yan, Y.; Wang, X. Assessing the role of foreign direct investment in environmental sustainability: A spatial semiparametric panel approach. Econ. Change Restruct. 2023, 56, 1263–1295. [Google Scholar] [CrossRef]
- Zugravu-Soilita, N. How does Foreign Direct Investment Affect Pollution? Toward a Better Understanding of the Direct and Conditional Effects. Environ. Resour. Econ. 2017, 66, 293–338. [Google Scholar] [CrossRef]
- Hussein, H.; Ezbakhe, F. The Water–Employment–Migration nexus: Buzzword or useful framework? Dev. Policy Rev. 2023, 41, e12676. [Google Scholar] [CrossRef]
- Daher, B.T.; Mohtar, R.H. Water–energy–food (WEF) Nexus Tool 2.0: Guiding integrative resource planning and decision-making. Water Int. 2015, 40, 748–771. [Google Scholar] [CrossRef]
- Huang, H.; Akbari, F. Integrated sustainability perspective and spillover effects of social, environment and economic pillars: A case study using SEY model. Socio-Econ. Plan. Sci. 2024, 96, 102077. [Google Scholar] [CrossRef]
- Nodehi, M.; Arani, A.A.; Taghvaee, V.M. Sustainability spillover effects and partnership between East Asia & Pacific versus North America: Interactions of social, environment and economy. Lett. Spat. Resour. Sci. 2022, 15, 311–339. [Google Scholar] [CrossRef] [PubMed]
- Allouche, J.; Middleton, C.; Gyawali, D. Technical Veil, Hidden Politics: Interrogating the Power Linkages behind the Nexus. Water Altern. 2015, 8, 610–626. [Google Scholar]
- Tatar, M.; Harati, J.; Farokhi, S.; Taghvaee, V.; Wilson, F.A. Good governance and natural resource management in oil and gas resource-rich countries: A machine learning approach. Resour. Policy 2024, 89, 104583. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Y. Examining the integrated sustainability perspective among Russia, UAE, and Iran: Using the SEY model to estimate sustainability elasticities and spillovers. Ann. Reg. Sci. 2025, 74, 31. [Google Scholar] [CrossRef]
- Dai, J.; Fang, J.; Guo, Z.; Hou, J. Research on ecological restoration assessment and eco-economic development of sea area by introducing the K-means clustering algorithm. Environ. Sci. Pollut. Res. 2023, 30, 118318–118331. [Google Scholar] [CrossRef] [PubMed]
- Noviandy, T.R.; Hardi, I.; Zahriah, Z.; Sofyan, R.; Sasmita, N.R.; Hilal, I.S.; Idroes, G.M. Environmental and Economic Clustering of Indonesian Provinces: Insights from K-Means Analysis. Leuser J. Environ. Stud. 2024, 2, 41–51. [Google Scholar] [CrossRef]
- Wang, A. Research on the Economic Development Quality of 40 Asian Countries and Regions Based on Entropy Weighted TOPSIS and K-means Clustering. Acad. J. Math. Sci. 2024, 5. [Google Scholar] [CrossRef]
- Andra, D.; Baizal, A.B. E-commerce Recommender System Using PCA and K-Means Clustering. J. RESTI (Rekayasa Sist. Dan Teknol. Inf.) 2022, 6, 57–63. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Thakur, S.S.; Mandal, J.K. Product recommendation for e-commerce business by applying principal component analysis (PCA) and K-means clustering: Benefit for the society. Innov. Syst. Softw. Eng. 2021, 17, 45–52. [Google Scholar] [CrossRef]
- Malli, S.; Nagesh, H.R.; Rao, B.D. Approximation to the K-Means Clustering Algorithm using PCA. Int. J. Comput. Appl. 2020, 175, 43–46. [Google Scholar] [CrossRef]
- Agusdinata, D.B.; Aggarwal, R.; Ding, X. Economic growth, inequality, and environment nexus: Using data mining techniques to unravel archetypes of development trajectories. Environ. Dev. Sustain. 2021, 23, 6234–6258. [Google Scholar] [CrossRef]
- Osuntuyi, B.V.; Lean, H.H. Economic growth, energy consumption and environmental degradation nexus in heterogeneous countries: Does education matter? Environ. Sci. Eur. 2022, 34, 48. [Google Scholar] [CrossRef]
- Mamipour, S.; Yahoo, M.; Jalalvandi, S. An empirical analysis of the relationship between the environment, economy, and society: Results of a PCA-VAR model for Iran. Ecol. Indic. 2019, 102, 760–769. [Google Scholar] [CrossRef]
- Mirshojaeian Hosseini, H.; Kaneko, S. Causality between pillars of sustainable development: Global stylized facts or regional phenomena? Ecol. Indic. 2012, 14, 197–201. [Google Scholar] [CrossRef]
- Papaspyropoulos, K.G.; Kugiumtzis, D. On the Validity of Granger Causality for Ecological Count Time Series. Econometrics 2024, 12, 13. [Google Scholar] [CrossRef]
- Cai, Y.; Akbari, F.; Taghvaee, V.M. Hypotheses interconnecting economic development with environmental quality: Reviewing empirical methods, equations, and models. Encycl. Monet. Policy Financ. Mark. Bank. 2025, 1, 624–628. [Google Scholar] [CrossRef]
- Xiang, X.; Liu, R.; Luo, W. Pollution haven or pollution halo? Testing direct and spillover effects of FDI. China Econ. Rev. 2024, 88, 102254. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, Y.; Lyulyov, O.; Pimonenko, T. Interactions between Economic Growth and Environmental Degradation toward Sustainable Development. Systems 2022, 11, 13. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, H.; Wang, Z.; Ann Diehl, J.; Xue, S. Evaluating the economic sustainability of commercial complex greening based on cost-benefit analysis: A case study of Singapore’s Shaw center. Ecol. Indic. 2024, 161, 111890. [Google Scholar] [CrossRef]
- Charfeddine, L.; Yousef Al-Malk, A.; Al Korbi, K. Is it possible to improve environmental quality without reducing economic growth: Evidence from the Qatar economy. Renew. Sustain. Energy Rev. 2018, 82, 25–39. [Google Scholar] [CrossRef]
- Lao, G.C.; Luo, G.Q. Linkages between industry, agriculture, growth, renewable energy and the environment and the role of institutional quality, evidence from selected South and East Asian economies. Energy Explor. Exploit. 2025, 43, 354–377. [Google Scholar] [CrossRef]
- Keho, Y. Globalization, Financial Development, and Environmental Degradation: Evidence from West African Countries Using Ecological Footprint. J. Energy Dev. 2024, 49, 73–105. [Google Scholar] [CrossRef]
- Alonso-Fernández, P.; Regueiro-Ferreira, R.M. Extractivism, ecologically unequal exchange and environmental impact in South America: A study using Material Flow Analysis (1990–2017). Ecol. Econ. 2022, 194, 107351. [Google Scholar] [CrossRef]
Number of Clusters | 1 | 2 | 3# | 4 |
---|---|---|---|---|
Calinski Harabasz pseudo-F | - | 447.29 | 542.94 | 374.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamad Taghvaee, V.; Farokhi, S.; Faraji, M.R.; Rostam-Afschar, D.; Tatar, M. Nexus of Economic Growth, Economic Structure, and Environmental Pollution: Using a Novel Machine Learning Approach. Sustainability 2025, 17, 7302. https://doi.org/10.3390/su17167302
Mohamad Taghvaee V, Farokhi S, Faraji MR, Rostam-Afschar D, Tatar M. Nexus of Economic Growth, Economic Structure, and Environmental Pollution: Using a Novel Machine Learning Approach. Sustainability. 2025; 17(16):7302. https://doi.org/10.3390/su17167302
Chicago/Turabian StyleMohamad Taghvaee, Vahid, Soheila Farokhi, Mohammad Reza Faraji, Davud Rostam-Afschar, and Moosa Tatar. 2025. "Nexus of Economic Growth, Economic Structure, and Environmental Pollution: Using a Novel Machine Learning Approach" Sustainability 17, no. 16: 7302. https://doi.org/10.3390/su17167302
APA StyleMohamad Taghvaee, V., Farokhi, S., Faraji, M. R., Rostam-Afschar, D., & Tatar, M. (2025). Nexus of Economic Growth, Economic Structure, and Environmental Pollution: Using a Novel Machine Learning Approach. Sustainability, 17(16), 7302. https://doi.org/10.3390/su17167302