Contrasting Reaction of Dissolved Organic Matter with Birnessite Induced by Humic and Fulvic Acids in Flooded Paddy Soil
Abstract
1. Introduction
2. Methods and Materials
2.1. Sampling and Characterization
2.2. Preparation of Birnessite, HA, and FA
2.3. Anaerobic Incubation Experiment
2.4. FT-ICR-MS Analysis
3. Results and Discussion
3.1. Oxidation and Adsorption of DOM by Birnessite
3.2. Molecular Reactivity of DOM
3.3. Oxidation Product Formed
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lehmann, J.; Kleber, M. The Contentious Nature of Soil Organic Matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef]
- Schmidt, M.W.I.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D.A.C.; et al. Persistence of Soil Organic Matter as an Ecosystem Property. Nature 2011, 478, 49–56. [Google Scholar] [CrossRef]
- Chen, X.; Hu, Y.; Xia, Y.; Zheng, S.; Ma, C.; Rui, Y.; He, H.; Huang, D.; Zhang, Z.; Ge, T.; et al. Contrasting Pathways of Carbon Sequestration in Paddy and Upland Soils. Glob. Change Biol. 2021, 27, 2478–2490. [Google Scholar] [CrossRef]
- Liu, Y.; Ge, T.; van Groenigen, K.J.; Yang, Y.; Wang, P.; Cheng, K.; Zhu, Z.; Wang, J.; Li, Y.; Guggenberger, G.; et al. Rice Paddy Soils Are a Quantitatively Important Carbon Store According to a Global Synthesis. Commun. Earth Environ. 2021, 2, 154. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Ranalli, M.G.; Haddix, M.L.; Six, J.; Lugato, E. Soil Carbon Storage Informed by Particulate and Mineral-Associated Organic Matter. Nat. Geosci. 2019, 12, 989–994. [Google Scholar] [CrossRef]
- Kleber, M.; Eusterhues, K.; Keiluweit, M.; Mikutta, C.; Mikutta, R.; Nico, P.S. Chapter One—Mineral–Organic Associations: Formation, Properties, and Relevance in Soil Environments. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2015; Volume 130, pp. 1–140. ISBN 0065-2113. [Google Scholar]
- Xiao, K.-Q.; Zhao, Y.; Liang, C.; Zhao, M.; Moore, O.W.; Otero-Fariña, A.; Zhu, Y.-G.; Johnson, K.; Peacock, C.L. Introducing the Soil Mineral Carbon Pump. Nat. Rev. Earth Environ. 2023, 4, 135–136. [Google Scholar] [CrossRef]
- Xiao, K.-Q.; Zhao, M.; Moore, O.; Zhao, Y.; Li, X.-N.; Woulds, C.; Babakhani, P.; Mills, B.J.W.; Homoky, W.B.; Johnson, K.; et al. Mineral Carbon Pump in the Earth System. Innovation 2025, 6, 100737. [Google Scholar] [CrossRef]
- Roth, V.-N.; Lange, M.; Simon, C.; Hertkorn, N.; Bucher, S.; Goodall, T.; Griffiths, R.I.; Mellado-Vázquez, P.G.; Mommer, L.; Oram, N.J.; et al. Persistence of Dissolved Organic Matter Explained by Molecular Changes during Its Passage through Soil. Nat. Geosci. 2019, 12, 755–761. [Google Scholar] [CrossRef]
- Rennert, T.; Händel, M.; Höschen, C.; Lugmeier, J.; Steffens, M.; Totsche, K.U. A NanoSIMS Study on the Distribution of Soil Organic Matter, Iron and Manganese in a Nodule from a Stagnosol. Eur. J. Soil Sci. 2014, 65, 684–692. [Google Scholar] [CrossRef]
- Li, H.; Santos, F.; Butler, K.; Herndon, E. A Critical Review on the Multiple Roles of Manganese in Stabilizing and Destabilizing Soil Organic Matter. Environ. Sci. Technol. 2021, 55, 12136–12152. [Google Scholar] [CrossRef]
- Ma, D.; Wu, J.; Yang, P.; Zhu, M. Coupled Manganese Redox Cycling and Organic Carbon Degradation on Mineral Surfaces. Environ. Sci. Technol. 2020, 54, 8801–8810. [Google Scholar] [CrossRef]
- Wang, Y.; Stone, A.T. Reaction of MnIII, IV (Hydr)Oxides with Oxalic Acid, Glyoxylic Acid, Phosphonoformic Acid, and Structurally-Related Organic Compounds. Geochim. Cosmochim. Acta 2006, 70, 4477–4490. [Google Scholar] [CrossRef]
- Allard, S.; Gutierrez, L.; Fontaine, C.; Croué, J.-P.; Gallard, H. Organic Matter Interactions with Natural Manganese Oxide and Synthetic Birnessite. Sci. Total Environ. 2017, 583, 487–495. [Google Scholar] [CrossRef]
- Zhao, W.; Cheng, H.; Tao, S. Structure–Reactivity Relationships in the Adsorption and Degradation of Substituted Phenylarsonic Acids on Birnessite (δ-MnO2). Environ. Sci. Technol. 2020, 54, 1475–1483. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.; Purvis, G.; Lopez-Capel, E.; Peacock, C.; Gray, N.; Wagner, T.; März, C.; Bowen, L.; Ojeda, J.; Finlay, N.; et al. Towards a Mechanistic Understanding of Carbon Stabilization in Manganese Oxides. Nat. Commun. 2015, 6, 7628. [Google Scholar] [CrossRef]
- Tamrat, W.Z.; Rose, J.; Grauby, O.; Doelsch, E.; Levard, C.; Chaurand, P.; Basile-Doelsch, I. Soil Organo-Mineral Associations Formed by Co-Precipitation of Fe, Si and Al in Presence of Organic Ligands. Geochim. Cosmochim. Acta 2019, 260, 15–28. [Google Scholar] [CrossRef]
- Liu, M.-M.; Cao, X.-H.; Tan, W.-F.; Feng, X.-H.; Qiu, G.-H.; Chen, X.-H.; Liu, F. Structural Controls on the Catalytic Polymerization of Hydroquinone by Birnessites. Clays Clay Miner. 2011, 59, 525–537. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, P.; Zhu, M. Effects of Metal Cations on Coupled Birnessite Structural Transformation and Natural Organic Matter Adsorption and Oxidation. Geochim. Cosmochim. Acta 2019, 250, 292–310. [Google Scholar] [CrossRef]
- Trainer, E.L.; Ginder-Vogel, M.; Remucal, C.K. Selective Reactivity and Oxidation of Dissolved Organic Matter by Manganese Oxides. Environ. Sci. Technol. 2021, 55, 12084–12094. [Google Scholar] [CrossRef]
- Zhang, J.; McKenna, A.M.; Zhu, M. Macromolecular Characterization of Compound Selectivity for Oxidation and Oxidative Alterations of Dissolved Organic Matter by Manganese Oxide. Environ. Sci. Technol. 2021, 55, 7741–7751. [Google Scholar] [CrossRef]
- Judd, K.E.; Crump, B.C.; Kling, G.W. Bacterial Responses in Activity and Community Composition to Photo-Oxidation of Dissolved Organic Matter from Soil and Surface Waters. Aquat. Sci. 2007, 69, 96–107. [Google Scholar] [CrossRef]
- Grebel, J.E.; Charbonnet, J.A.; Sedlak, D.L. Oxidation of Organic Contaminants by Manganese Oxide Geomedia for Passive Urban Stormwater Treatment Systems. Water Res. 2016, 88, 481–491. [Google Scholar] [CrossRef] [PubMed]
- Jokic, A.; Wang, M.C.; Liu, C.; Frenkel, A.I.; Huang, P.M. Integration of the Polyphenol and Maillard Reactions into a Unified Abiotic Pathway for Humification in Nature: The Role of δ-MnO2. Org. Geochem. 2004, 35, 747–762. [Google Scholar] [CrossRef]
- Moore, O.W.; Curti, L.; Woulds, C.; Bradley, J.A.; Babakhani, P.; Mills, B.J.W.; Homoky, W.B.; Xiao, K.-Q.; Bray, A.W.; Fisher, B.J.; et al. Long-Term Organic Carbon Preservation Enhanced by Iron and Manganese. Nature 2023, 621, 312–317. [Google Scholar] [CrossRef]
- Antu, U.B.; Roy, T.K.; Kulsum, T.I.; Mitu, P.R.; Ismail, Z.; Arifin, M.; Datta, M.; Hossain, S.A.; Islam, M.S.; Mahiddin, N.A.; et al. Role of Humic Acid for Climate Change Adaptation Measures to Boost up Sustainable Agriculture and Soil Health: A Potential Review. Int. J. Biol. Macromol. 2025, 313, 144043. [Google Scholar] [CrossRef]
- Rui, R.; Hei, J.; Li, Y.; Al Farraj, D.A.; Noor, F.; Wang, S.; He, X. Effects of Humic Acid Fertilizer on the Growth and Microbial Network Stability of Panax Notoginseng from the Forest Understorey. Sci. Rep. 2024, 14, 17816. [Google Scholar] [CrossRef]
- Zhong, X.; Yang, Y.; Liu, H.; Fang, X.; Zhang, Y.; Cui, Z.; Lv, J. New Insights into the Sustainable Use of Soluble Straw Humic Substances for the Remediation of Multiple Heavy Metals in Contaminated Soil. Sci. Total Environ. 2023, 903, 166274. [Google Scholar] [CrossRef]
- Ma, Y.; Cheng, X.; Zhang, Y. The Impact of Humic Acid Fertilizers on Crop Yield and Nitrogen Use Efficiency: A Meta-Analysis. Agronomy 2024, 14, 2763. [Google Scholar] [CrossRef]
- Liu, M.; Wang, C.; Liu, X.; Lu, Y.; Wang, Y. Saline-Alkali Soil Applied with Vermicompost and Humic Acid Fertilizer Improved Macroaggregate Microstructure to Enhance Salt Leaching and Inhibit Nitrogen Losses. Appl. Soil Ecol. 2020, 156, 103705. [Google Scholar] [CrossRef]
- Li, T.; Li, P.; Qin, W.; Wu, M.; Saleem, M.; Kuang, L.; Zhao, S.; Tian, C.; Li, Z.; Jiang, J.; et al. Fertilization Weakens the Ecological Succession of Dissolved Organic Matter in Paddy Rice Rhizosphere Soil at the Molecular Level. Environ. Sci. Technol. 2023, 57, 19782–19792. [Google Scholar] [CrossRef]
- Chen, S.; Dong, H.; Hong, Y.; Gao, F.; Guo, S.; Mi, W. Long-Term Different Fertilization Practices Restructured the Functional Carbon Pools in a Paddy Soil through Distinct Mechanisms. Agric. Ecosyst. Environ. 2024, 374, 109168. [Google Scholar] [CrossRef]
- Zhai, W.; Zhang, R.; Zhou, X.; Ma, Y.; Zhang, X.; Fan, L.; Hashmi, M.Z.; Zhang, D.; Pan, X. Simultaneously Reducing Methane Emissions and Arsenic Mobility by Birnessite in Flooded Paddy Soil: Overlooked Key Role of Organic Polymerisation. Sci. Total Environ. 2024, 953, 176167. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, R.M. The Synthesis of Birnessite, Cryptomelane, and Some Other Oxides and Hydroxides of Manganese. Mineral. Mag. 1971, 38, 493–502. [Google Scholar] [CrossRef]
- Dong, S.; Li, R.; Zhou, K.; Wei, Y.; Li, J.; Cheng, M.; Chen, P.; Hu, X. Response of Humification Process to Fungal Inoculant in Corn Straw Composting with Two Different Kinds of Nitrogen Sources. Sci. Total Environ. 2024, 946, 174461. [Google Scholar] [CrossRef] [PubMed]
- Mo, J.; Zhao, C.; Fang, C.; Yu, W.; Long, Y.; Mei, Q.; Wu, W. Pre-Biodrying Treatment Enhances Lignin-Related Pathways with Phenolic Hydroxyls as Reactive Cores to Accelerate Humification during Composting. Bioresour. Technol. 2025, 416, 131786. [Google Scholar] [CrossRef]
- Li, G.; Shan, Y.; Nie, W.; Sun, Y.; Su, L.; Mu, W.; Qu, Z.; Yang, T. Humic Acid Improves Water Retention, Maize Growth, Water Use Efficiency and Economic Benefits in Coastal Saline-Alkali Soils. Agric. Water Manag. 2025, 309, 109323. [Google Scholar] [CrossRef]
- Chen, H.; Lei, J.; Tong, H.; Gu, M.; Fang, Y.; Wang, X.; Tang, C.; Li, Z.; Liu, C. Effects of Mn(II) on the Oxidation of Fe in Soils and the Uptake of Cadmium by Rice (Oryza Sativa). Water. Air. Soil Pollut. 2019, 230, 190. [Google Scholar] [CrossRef]
- Yang, P.; Jiang, T.; Cao, D.; Sun, T.; Liu, G.; Guo, Y.; Liu, Y.; Yin, Y.; Cai, Y.; Jiang, G. Unraveling Multiple Pathways of Electron Donation from Phenolic Moieties in Natural Organic Matter. Environ. Sci. Technol. 2023, 57, 16895–16905. [Google Scholar] [CrossRef]
- Ohno, T.; He, Z.; Sleighter, R.L.; Honeycutt, C.W.; Hatcher, P.G. Ultrahigh Resolution Mass Spectrometry and Indicator Species Analysis to Identify Marker Components of Soil- and Plant Biomass-Derived Organic Matter Fractions. Environ. Sci. Technol. 2010, 44, 8594–8600. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, S.; Wu, D.; Huang, Y.; Zhang, L.; Liu, K.; Wu, H.; Guo, S.; Zhang, W. Recalcitrant Components Accumulation in Dissolved Organic Matter Decreases Microbial Metabolic Quotient of Red Soil under Long-Term Manuring. Sci. Total Environ. 2024, 934, 173287. [Google Scholar] [CrossRef]
- Brüggenwirth, L.; Behrens, R.; Schnee, L.S.; Sauheitl, L.; Mikutta, R.; Mikutta, C. Interactions of Manganese Oxides with Natural Dissolved Organic Matter: Implications for Soil Organic Carbon Cycling. Geochim. Cosmochim. Acta 2024, 366, 182–200. [Google Scholar] [CrossRef]
- Remucal, C.K.; Ginder-Vogel, M. A Critical Review of the Reactivity of Manganese Oxides with Organic Contaminants. Environ. Sci. Process. Impacts 2014, 16, 1247. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Ding, Y.; Liu, F.; Yang, J.; Li, R.; Dang, Z.; Shi, Z. Coupled Sorption and Oxidation of Soil Dissolved Organic Matter on Manganese Oxides: Nano/Sub-Nanoscale Distribution and Molecular Transformation. Environ. Sci. Technol. 2022, 56, 2783–2793. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhao, H.; Shi, Z.; Zhao, H.; Chen, S.; Chen, Z.; Yuan, Y.; Zhang, C.; Jia, B.; Jia, H. Manganese Dioxides Induce the Transformation and Protection of Dissolved Organic Matter Simultaneously: A Significance of Crystallinity. Environ. Sci. Technol. 2025, 59, 1222–1231. [Google Scholar] [CrossRef]
- Lv, J.; Zhang, S.; Wang, S.; Luo, L.; Cao, D.; Christie, P. Molecular-Scale Investigation with ESI-FT-ICR-MS on Fractionation of Dissolved Organic Matter Induced by Adsorption on Iron Oxyhydroxides. Environ. Sci. Technol. 2016, 50, 2328–2336. [Google Scholar] [CrossRef]
- Stone, A.T. Reductive Dissolution of Manganese(III/IV) Oxides by Substituted Phenols. Environ. Sci. Technol. 1987, 21, 979–988. [Google Scholar] [CrossRef]
- Wu, S.; You, F.; Boughton, B.; Liu, Y.; Nguyen, T.A.H.; Wykes, J.; Southam, G.; Robertson, L.M.; Chan, T.-S.; Lu, Y.-R.; et al. Chemodiversity of Dissolved Organic Matter and Its Molecular Changes Driven by Rhizosphere Activities in Fe Ore Tailings Undergoing Eco-Engineered Pedogenesis. Environ. Sci. Technol. 2021, 55, 13045–13060. [Google Scholar] [CrossRef]
- Brunetti, G.; Senesi, N.; Plaza, C. Organic Matter Humification in Olive Oil Mill Wastewater by Abiotic Catalysis with Manganese(IV) Oxide. Bioresour. Technol. 2008, 99, 8528–8531. [Google Scholar] [CrossRef]
- Li, H.; Lee, L.S.; Schulze, D.G.; Guest, C.A. Role of Soil Manganese in the Oxidation of Aromatic Amines. Environ. Sci. Technol. 2003, 37, 2686–2693. [Google Scholar] [CrossRef]
- Stevenson, F.J. Humus Chemistry: Genesis, Composition, Reactions, Second Edition. J. Chem. Educ. 1995, 72, A93. [Google Scholar] [CrossRef]
- Saar, R.A.; Weber, J.H. Fulvic Acid: Modifier of Metal-Ion Chemistry. Environ. Sci. Technol. 1982, 16, 510A–517A. [Google Scholar] [CrossRef]
- Li, C.; Zhang, B.; Ertunc, T.; Schaeffer, A.; Ji, R. Birnessite-Induced Binding of Phenolic Monomers to Soil Humic Substances and Nature of the Bound Residues. Environ. Sci. Technol. 2012, 46, 8843–8850. [Google Scholar] [CrossRef]
Initial DOM | CK | MN | HA | HM | FA | FM | |
---|---|---|---|---|---|---|---|
Total DOM | 4868 | 3825 | 3121 | 3505 | 3666 | 4828 | 4342 |
CHO (%) | 44.9 (2186) | 37.5 (1568) | 43.1 (1455) | 42.0 (1472) | 46.9 (1721) | 36.4 (1757) | 37.5 (1626) |
CHON (%) | 45.3 (2204) | 32.0 (1225) | 27.3 (854) | 28.5 (1000) | 24.8 (908) | 36.2 (1747) | 34.7 (1506) |
CHOS (%) | 7.8 (378) | 20.2 (740) | 19.4 (593) | 23.2 (814) | 22.4 (822) | 21.6 (1043) | 21.8 (946) |
CHONS (%) | 2.1 (101) | 10.3 (292) | 6.8 (219) | 6.3 (219) | 5.9 (215) | 5.8 (281) | 6.1 (264) |
Saturated fatty acids and carbohydrates % (Numbers) | 3.0 (146) | 5.0 (192) | 5.1 (160) | 4.7 (166) | 4.2 (152) | 3.0 (144) | 4.3 (187) |
Aliphatic compounds % (Numbers) | 28.0 (1362) | 27.3 (1043) | 24.8 (773) | 28.7 (1006) | 28.0 (1026) | 24.0 (1160) | 26.2 (1136) |
Highly unsaturated and phenolic compounds % (Numbers) | 58.1 (2831) | 42.9 (1639) | 42.5 (1326) | 42.0 (1471) | 37.5 (1373) | 52.8 (2547) | 50.3 (2184) |
Polyphenol compounds % (Numbers) | 8.1 (395) | 14.6 (560) | 14.7 (458) | 15.2 (533) | 14.9 (547) | 13.9 (670) | 13.1 (570) |
Condensed aromatic compounds % (Numbers) | 2.8 (134) | 10.2 (391) | 12.9 (404) | 9.4 (329) | 15.5 (568) | 6.4 (307) | 6.10 (265) |
Average molecular (Da) | 395.55 | 431.23 | 411.42 | 427.42 | 413.37 | 428.50 | 428.39 |
H/C | 1.38 | 1.23 | 1.18 | 1.24 | 1.18 | 1.23 | 1.26 |
O/C | 0.46 | 0.40 | 0.40 | 0.39 | 0.36 | 0.39 | 0.37 |
AImod | 0.13 | 0.23 | 0.26 | 0.24 | 0.28 | 0.25 | 0.24 |
DBE | 7.10 | 10.53 | 10.96 | 10.56 | 11.81 | 10.33 | 10.18 |
NOSC | −0.30 | −0.29 | −0.24 | −0.33 | −0.35 | −0.29 | −0.39 |
Pathway | Reaction | |
---|---|---|
Open the aromatic ring | (1) | |
Polymerization | (2) | |
Phenols to quinones | (3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Zhou, X.; Ma, Y.; Zhang, W.; Zhang, R.; Zhai, W. Contrasting Reaction of Dissolved Organic Matter with Birnessite Induced by Humic and Fulvic Acids in Flooded Paddy Soil. Sustainability 2025, 17, 7203. https://doi.org/10.3390/su17167203
Zhang X, Zhou X, Ma Y, Zhang W, Zhang R, Zhai W. Contrasting Reaction of Dissolved Organic Matter with Birnessite Induced by Humic and Fulvic Acids in Flooded Paddy Soil. Sustainability. 2025; 17(16):7203. https://doi.org/10.3390/su17167203
Chicago/Turabian StyleZhang, Xiangbiao, Xin Zhou, Yanyue Ma, Wenjin Zhang, Ruihua Zhang, and Weiwei Zhai. 2025. "Contrasting Reaction of Dissolved Organic Matter with Birnessite Induced by Humic and Fulvic Acids in Flooded Paddy Soil" Sustainability 17, no. 16: 7203. https://doi.org/10.3390/su17167203
APA StyleZhang, X., Zhou, X., Ma, Y., Zhang, W., Zhang, R., & Zhai, W. (2025). Contrasting Reaction of Dissolved Organic Matter with Birnessite Induced by Humic and Fulvic Acids in Flooded Paddy Soil. Sustainability, 17(16), 7203. https://doi.org/10.3390/su17167203