How Do Government Subsidies Affect Innovation? Evidence from Chinese Hi-Tech SMEs
Abstract
1. Introduction
2. Literature Review and Hypotheses
2.1. Subsidies, Crowding out and Additionality
2.2. Subsidies and State Ownership
2.3. Subsidies and Cherry Picking
3. Data and Methodology
3.1. Data
3.2. Methods and Variables
4. Empirical Findings and Discussion
4.1. Baseline Results
4.2. Subsidies and Financial Constraints
4.3. Additionality or Crowding Out?
4.3.1. Subsidies and Innovation Inputs
4.3.2. Subsidies and Innovation Outputs
4.3.3. State Ownership, Subsidies, and Innovation
4.3.4. Control Variables
4.4. Endogeneity and Cherry Picking
4.5. Robustness Test
4.6. Further Discussion
4.6.1. Additionality vs. Crowding-Out Effect
4.6.2. The State Ownership Paradox
4.6.3. The “Cherry-Picking” Mechanism
4.6.4. Boundary Conditions
5. Concluding Remarks
5.1. Net Positive Additionality
5.2. Financial Constraints Persist
5.3. Ownership Dynamics
5.4. Applying Differentiated Subsidy Instruments
5.5. Establishing Subsidy-Finance Linkage Mechanisms
5.6. Implementing Ownership-Specific Efficiency Evaluations
5.7. Self-Reporting Bias
5.8. Latent Variable Confounding
5.9. External Validity Constraints
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marino, M.; Lhuillery, S.; Parrotta, P.; Sala, D. Additionality or crowding-out? An overall evaluation of public R&D subsidy on private R&D expenditure. Res. Policy 2016, 45, 1715–1730. [Google Scholar]
- Montmartin, B.; Herrera, M. Internal and External Effects of R&D Subsidies and Fiscal Incentives: Empirical Evidence Using Spatial Dynamic Panel Models. Res. Policy 2015, 44, 1065–1079. [Google Scholar] [CrossRef]
- Bellucci, A.; Pennacchio, L.; Zazzaro, A. Public R&D subsidies: Collaborative versus individual place-based programs for SMEs. Small Bus. Econ. 2019, 52, 213–240. [Google Scholar]
- Foreman-Peck, J. Effectiveness and efficiency of SME innovation policy. Small Bus. Econ. 2013, 41, 55–70. [Google Scholar] [CrossRef]
- Cecere, G.; Corrocher, N.; Mancusi, M.L. Financial constraints and public funding of eco-innovation: Empirical evidence from European SMEs. Small Bus. Econ. 2020, 54, 285–302. [Google Scholar] [CrossRef]
- Shao, K.; Wang, X. Do government subsidies promote enterprise innovation?—Evidence from Chinese listed companies. J. Innov. Knowl. 2023, 8, 100436. [Google Scholar] [CrossRef]
- Buisseret, T.J.; Cameron, H.; Georghiou, L. What difference does it make? Additionality in the public support of R&D in large firms. Int. J. Technol. Manag. 1995, 10, 587–600. [Google Scholar]
- Zúñiga-Vicente, J.A.; Alonso-Borrego, C.; Forcadell, F.J.; Galán, J.I. Assessing the effect of public subsidies on firm R & D investment: A survey. J. Econ. Surv. 2014, 28, 36–67. [Google Scholar]
- Lerner, J. When bureaucrats meet entrepreneurs: The design of effective ‘public venture capital’ programmes. Econ. J. 2002, 112, 73–84. [Google Scholar] [CrossRef]
- Czarnitzki, D.; Licht, G. Additionality of Public R & D grants in a transition economy: The case of Eastern Germany. Econ. Transit. 2006, 14, 101–131. [Google Scholar]
- Wang, Y.; Li, J.; Furman, J.L. Firm performance and state innovation funding: Evidence from China’s innofund program. Res. Policy 2017, 46, 1142–1161. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.; Xue, X.; Liu, Y. More government subsidies, more green innovation? The evidence from Chinese new energy vehicle enterprises. Renew. Energy 2022, 197, 11–21. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, S.; Shao, D.; Liu, H. Impact of government subsidies on manufacturing innovation in China: The moderating role of political connections and investor attention. Sustainability 2020, 12, 7740. [Google Scholar] [CrossRef]
- Xu, J.; Ng, C.P.; Sam, T.H.; Vasudevan, A.; Tee, P.K.; Ng, A.H.H.; Hoo, W.C. Fiscal and tax policies, access to external financing and green innovation efficiency: An evaluation of Chinese listed firms. Sustainability 2023, 15, 11567. [Google Scholar] [CrossRef]
- Liao, S.; Deng, X.; Lu, H.; Niu, L. Configurational Pathways to Breakthrough Innovation in the Digital Age: Evidence from Niche Leaders. Systems 2024, 12, 542. [Google Scholar] [CrossRef]
- Kong, H.; Sun, L.; Zhang, W. Digitization and Green Technology Innovation of Chinese Firms Under Government Subsidy Policies. Systems 2024, 12, 447. [Google Scholar] [CrossRef]
- Dimos, C.; Pugh, G. The effectiveness of R&D subsidies: A meta-regression analysis of the evaluation literature. Research Policy 2016, 45, 797–815. [Google Scholar]
- Arrow, K. Economic Welfare and the Allocation of Resources for Invention. In The Rate and Direction of Inventive Activity: Economic and Social Factors; Richard, R.N., Ed.; Princeton University Press: Princeton, NJ, USA, 1962. [Google Scholar]
- Hall, B.; Lerner, J. The financing of R & D and innovation. In The Handbook of the Economics of Innovation; Hall, B.H., Rosenberg, N., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; Volume I, pp. 609–639. [Google Scholar]
- Nelson, R. The Simple Economics of Basic Scientific Research. J. Political Econ. 1959, 49, 297–306. [Google Scholar] [CrossRef]
- Liu, S.; Thurasamy, R.; Hati, S.R.H. Determinants and Outcomes of Green Technology Innovation Adoption among Third-Party Logistics Firms in China: A SEM-ANN Analysis. Systems 2024, 12, 331. [Google Scholar] [CrossRef]
- Nguyen, B. Entrepreneurial reinvestment: Local governance, ownership, and financing matter—Evidence from Vietnam. J. Small Bus. Manag. 2019, 57, 323–349. [Google Scholar] [CrossRef]
- Wanzenböck, I.; Scherngell, T.; Fischer, M. How do firm characteristics affect behavioural additionalities of public R&D subsidies? Evidence for the Austrian transport sector. Technovation 2013, 33, 66–77. [Google Scholar] [CrossRef]
- Huergo, E.; Moreno, L. Subsidies or loans? Evaluating the impact of R&D support programmes. Res. Policy 2017, 46, 1198–1214. [Google Scholar] [CrossRef]
- Boeing, P. The allocation and effectiveness of China’s R&D subsidies-evidence from listed firms. Res. Policy 2016, 45, 1774–1789. [Google Scholar]
- Guiso, L.; Minetti, R. The structure of multiple credit relationships: Evidence from U.S firms. J. Money Credit Bank. 2010, 42, 1037–1071. [Google Scholar] [CrossRef]
- Himmelberg, C.; Petersen, B. R&D and internal finance: A panel study of small firms in high-tech sectors. Rev. Econ. Stat. 1994, 76, 38–51. [Google Scholar]
- Carpenter, R.; Petersen, B. Capital market imperfections, high-tech investment, and new equity financing. Econ. J. 2002, 112, 54–72. [Google Scholar] [CrossRef]
- Goodacre, A.; Tonks, I. Finance and technological change. In Handbook of the Economics of Innovation and Technological Change; Paul, S., Ed.; Blackwells: Oxford, UK, 1995; pp. 298–341. [Google Scholar]
- Stiglitz, J.; Weiss, A. Credit rationing in markets with imperfect information. Am. Econ. Rev. 1981, 71, 393–410. [Google Scholar]
- Storey, D.; Tether, B. New technology-based firms in the European union: An introduction. Res. Policy 1998, 26, 933–946. [Google Scholar] [CrossRef]
- Mateut, S. Subsidies, financial constraints and firm innovative activities in emerging economies. Small Bus. Econ. 2018, 50, 131–162. [Google Scholar] [CrossRef]
- Chang, S.J.; Jin, S.Y. The Performance of State Owned Enterprises in China: An Empirical Analysis of Ownership Control Through SASACs; Institute of Management Accountants: Buffalo, NY, USA, 2016. [Google Scholar]
- Lin, J.Y.; Tan, G. Policy burdens, accountability, and the soft budget constraint. Am. Econ. Rev. 1999, 89, 426–431. [Google Scholar] [CrossRef]
- Cull, R.; Xu, L. Bureaucrats, state banks, and the efficiency of credit allocation: The experience of Chinese state-owned enterprises. J. Comp. Econ. 2000, 28, 1–31. [Google Scholar] [CrossRef]
- Zhu, X. Understanding China’s growth: Past, present and future. J. Econ. Perspect. 2012, 26, 103–124. [Google Scholar] [CrossRef]
- Megginson, W.; Ullah, B.; Wei, Z. State ownership, soft-budget constraints, and cash holdings: Evidence from China’s privatized firms. J. Bank. Financ. 2014, 48, 276–291. [Google Scholar] [CrossRef]
- Zhang, D.; Guo, Y. Financing R&D in Chinese private firms: Business associations or political connection? Econ. Model. 2019, 79, 247–261. [Google Scholar] [CrossRef]
- Zhou, K.Z.; Gao, G.Y.; Zhao, H. State Ownership and Firm Innovation in China: An Integrated View of Institutional and Efficiency Logics. Adm. Sci. Q. 2016, 62, 375–404. [Google Scholar] [CrossRef]
- Tonurist, P.; Karo, E. State owned enterprises as instruments of innovation policy. Ann. Public Coop. Econ. 2016, 87, 623–648. [Google Scholar] [CrossRef]
- Megginson, W.; Netter, J. From state to market: A survey of empirical studies on privatization. J. Econ. Lit. 2001, 39, 321–389. [Google Scholar] [CrossRef]
- Kornai, J. Economics of Shortage; North-Holland: Amsterdam, The Netherlands, 1980. [Google Scholar]
- Li, H.; Zhang, Y. The role of managers’ political networking and functional experience in new venture performance: Evidence from China’s transition economy. Strateg. Manag. J. 2007, 28, 791–804. [Google Scholar] [CrossRef]
- Girma, S.; Görg, H.; Strobl, E. The effect of government grants on plant level productivity. Econ. Lett. 2007, 94, 439–444. [Google Scholar] [CrossRef]
- Reinikka, R.; Svensson, J. Local capture: Evidence from a central government transfer program in Uganda. Q. J. Econ. 2004, 119, 679–705. [Google Scholar] [CrossRef]
- Ghoul, S.E.; Guedhami, O.; Wang, H.; Kwok, C.C. Family control and corporate social responsibility. J. Bank. Financ. 2016, 73, 131–146. [Google Scholar] [CrossRef]
- Wooldridge, J. Econometric Analysis of Cross Section and Panel Data, 2nd ed.; The MIT Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Vos, E.; Yeh, A.J.Y.; Carter, S.; Tagg, S. The happy story of small business financing. J. Bank. Financ. 2007, 31, 2648–2672. [Google Scholar] [CrossRef]
- Canepa, A.; Stoneman, P. Financial constraints to innovation in the UK: Evidence from CIS2 and CIS3. Oxf. Econ. Pap. 2008, 60, 711–730. [Google Scholar] [CrossRef]
- Cui, T.; Ye, H.; Teo, H.H.; Li, J. Information technology and open innovation: A strategic alignment perspective. Inf. Manag. 2015, 52, 348–358. [Google Scholar] [CrossRef]
- Chandra, A.; Fealey, T. Business Incubation in the United States, China and Brazil: A Comparison of Role of Government, Incubator Funding and Financial Services. Int. J. Entrep. 2009, 13, 67–86. [Google Scholar]
- Czarnitzki, D.; Delanote, J. R&D policies for young SMEs: Input and output effects. Small Bus. Econ. 2015, 45, 465–485. [Google Scholar] [CrossRef]
Definition | Mean | Std. Dev. | Min. | Max. | |
---|---|---|---|---|---|
RD_intensity | Ordinal dummy variables for the ratio of R&D expenditure to total sales: <1% (1), 1–3% (2), 3–5% (3), 5–10% (4), and >10% (5). | 2.361 | 1.168 | 1.000 | 5.000 |
Innovative_sales(mil) | The sales on new products and/or new technology | 27.835 | 37.449 | 0.000 | 1132.472 |
Finance_difficulty | Seven-point Likert scale from extremely easy to extremely hard | 4.143 | 1.408 | 1.000 | 7.000 |
Grant_dummy | Dummy variable with one if firm the firm obtained government grants in the last year and zero otherwise | 0.173 | 0.378 | 0.000 | 1.000 |
Loan_dummy | Dummy variable with one if firm the firm obtained discount loans in the last year and zero otherwise | 0.122 | 0.328 | 0.000 | 1.000 |
Tax_dummy | Dummy variable with one if firm the firm obtained tax credits in the last year and zero otherwise | 0.181 | 0.386 | 0.000 | 1.000 |
Grant | The amount of government grants obtained in the last year in logarithm | 0.338 | 4.023 | 0.000 | 100.000 |
Loan | The amount of government loans obtained in the last year in logarithm | 0.317 | 3.219 | 0.000 | 90.250 |
Tax credit | The amount of government grants obtained in the last year in logarithm | 0.556 | 7.053 | 0.000 | 181.460 |
State | Dummy variable with one if firm is owned by the state and zero otherwise | 0.329 | 0.470 | 0.000 | 1.000 |
Risk-preference | Dummy variable with one if the firm is not averse to high risk and zero otherwise | 0.058 | 0.234 | 0.000 | 1.000 |
Firm_age | Number of years since firm establishment | 8.207 | 6.864 | 0.000 | 67.000 |
Sale_growth | Ordinal dummy variables for the sales growth rates: <10% (1), 10–20% (2), 20–30% (3), 30–40% (4), and >40% (5). | 1.970 | 0.842 | 1.000 | 5.000 |
Asset | Total assets in 10,000 RMB | 5214.000 | 13,853.000 | 0.830 | 237,600.000 |
Export | Dummy variable with one if firm has exports and zero otherwise | 0.316 | 0.465 | 0.000 | 1.000 |
Joint_RD | Dummy variable with one if the firm is largely relying on joint R&D and zero otherwise | 0.209 | 0.407 | 0.000 | 1.000 |
Self_RD | Dummy variable with one if the firm is largely relying on self R&D and zero otherwise | 0.267 | 0.442 | 0.000 | 1.000 |
Knowledge_supplier | Dummy variable with one if the knowledge is from supplier and zero otherwise | 0.571 | 0.495 | 0.000 | 1.000 |
Knowledge_customer | Dummy variable with one if the knowledge is from customers and zero otherwise | 0.537 | 0.498 | 0.000 | 1.000 |
Knowledge_rival | Dummy variable with one if the knowledge is from business rivals and zero otherwise | 0.256 | 0.436 | 0.000 | 1.000 |
Knowledge_university | Dummy variable with one if the knowledge is from universities and zero otherwise | 0.211 | 0.408 | 0.000 | 1.000 |
Knowledge_association | Dummy variable with one if the knowledge is from association and zero otherwise | 0.251 | 0.434 | 0.000 | 1.000 |
Knowledge_advice | Dummy variable with one if the knowledge is from advisory companies and zero otherwise | 0.127 | 0.333 | 0.000 | 1.000 |
Tech_employee | to what extent firms can get competent employees for R&D | 4.895 | 1.354 | 1.000 | 7.000 |
Market_tech | to what extent the technology in the market is developing rapidly | 4.474 | 1.742 | 1.000 | 7.000 |
Internal_finance | Dummy variable with one if firm relies on internal finance and zero otherwise | 0.672 | 0.469 | 0.000 | 1.000 |
External_debt | Dummy variable with one if firm relies on external debt and zero otherwise | 0.714 | 0.452 | 0.000 | 1.000 |
External_equity | Dummy variable with one if firm relies on external equity and zero otherwise | 0.116 | 0.321 | 0.000 | 1.000 |
Collateral | Dummy variable with one if major loans are collateralized and zero otherwise | 0.549 | 0.498 | 0.000 | 1.000 |
Reward | Dummy variable with one if the firm has go a national reward from the government for the firm’s product over the last three years and zero otherwise | 0.199 | 0.399 | 0.000 | 1.000 |
Dep V | Probit Model | Heckman Models | |||||||
---|---|---|---|---|---|---|---|---|---|
Grant_d | Loan_d | Tax_d | Finance_Difficulty | Finance_Difficulty | Finance_Difficulty | ||||
Coef. | Coef. | Coef. | Coef. | Odds Ratio | Coef. | Odds Ratio | Coef. | Odds Ratio | |
Grant_dummy | 0.306 ** (0 153) | 0.452 | |||||||
Loan_dummy | 0.687 *** (0.198) | 0.510 | |||||||
Tax_dummy | 0.263 * (0.148) | 0.640 | |||||||
state | 0.176 (0.285) | 0.254 (0.303) | 0.731 *** (0.252) | −0.541 (0.360) | −0.606 (0.417) | −0.131 | 0.247 (0.370) | ||
Risk-preference | 0.135 (0.202) | 0.192 (0.229) | 0.250 (0.190) | −0.076 (0.247) | −0.085 (0.235) | −0.559 | −0.321 (0.265) | ||
Firm_age | −0.044 *** (0.011) | −0.035 *** (0.012) | −0.031 *** (0.010) | 0.043 ** (0.022) | 0.040 | 0.036 ** (0.016) | 0.096 | 0.018 (0.016) | |
Sale_growth | 0.129 ** (0.060) | 0.157 ** (0.065) | 0.078 (0.057) | 0.100 (0.098) | 0.125 * (0.075) | 0.384 *** (0.093) | 0.374 | ||
Asset | 0.058 ** (0.028) | −0.012 (0.031) | −0.041 (0.026) | −0.056 (0.043) | −0.031 (0.032) | −0.267 | −0.121 *** (0.032) | −0.100 | |
Export | 0.229 ** (0.111) | 0.367 *** (0.124) | 0.239 ** (0.106) | −0.191 (0.163) | −0.178 (0.153) | −0.393 | −0.016 (0.177) | ||
Internal_finance | −0.328 *** (0.110) | −0.238 * (0.123) | −0.228 ** (0.105) | 0.135 (0.196) | 0.097 (0.150) | −0.661 *** (0.155) | −0.598 | ||
External_debt | 0.472 *** (0.129) | 0.497 *** (0.150) | 0.206 * (0.117) | 0.303 (0.256) | 0.373 ** (0.155) | −1.015 | −0.129 (0.214) | ||
External_equity | 0.454 *** (0.141) | 0.558 *** (0.146) | 0.359 *** (0.136) | 0.238 (0.264) | 0.290 (0.218) | 0.877 *** (0.254) | 0.862 | ||
Collateral | −0.256 ** (0.111) | −0.334 *** (0.125) | −0.076 (0.106) | 0.027 (0.171) | −0.018 (0.125) | −0.400 ** (0.168) | −0.461 | ||
Joint_RD | 0.179 (0.128) | 0.247 * (0.138) | 0.145 (0.122) | 0.391 ** (0.182) | 0.384 | 0.401 ** (0.161) | 0.389 | 0.791 *** (0.185) | 0.808 |
Self_RD | −0.056 (0.125) | −0.261 * (0.144) | −0.047 (0.118) | 0.331 ** (0.140) | 0.408 | 0.332 ** (0.139) | 0.210 (0.165) | ||
Market_tech | 0.026 (0.037) | 0.011 (0.041) | 0.044 (0.034) | 0.055 (0.043) | 0.044 (0.044) | 0.016 (0.044) | |||
Tech_employee | −0.053 (0.038) | −0.106 ** (0.042) | 0.001 (0.037) | 0.168 *** (0.050) | 0.170 | 0.158 *** (0.044) | 0.125 | 0.042 (0.056) | |
Knowledge_ supplier | 0.074 (0.104) | 0.071 (0.117) | 0.067 (0.099) | 0.305 ** (0.120) | 0.340 | 0.308 ** (0.119) | 0.002 (0.130) | ||
Knowledge_ customer | −0.152 (0.108) | −0.126 (0.122) | −0.203 ** (0.102) | −0.143 (0.139) | −0.150 (0.138) | −0.171 (0.134) | |||
Knowledge_ rival | −0.001 (0.123) | 0.034 (0.138) | 0.109 (0.115) | −0.077 (0.130) | −0.104 (0.136) | 0.040 (0.149) | |||
Knowledge_ university | 0.037 (0.151) | 0.316 * (0.163) | 0.284 ** (0.140) | 0.070 (0.180) | 0.019 (0.208) | 0.081 (0.220) | |||
Knowledge_ association | 0.538 *** (0.121) | 0.320 ** (0.136) | 0.368 *** (0.119) | −0.229 (0.289) | −0.127 (0.201) | −1.416 | −0.290 (0.188) | −0.432 | |
Knowledge_ advice | −0.007 (0.118) | −0.013 (0.134) | −0.128 (0.115) | 0.059 (0.135) | 0.082 (0.144) | 0.070 (0.145) | |||
Invmill | −0.278 (0.562) | −0.164 (0.460) | −0.205 (0.370) | ||||||
reward | 0.337 *** (0.127) | 0.410 *** (0.119) | 0224 *** (0.103) | ||||||
cons | −1.787 *** (0.358) | −1.493 *** (0.390) | −1.257 *** (0.330) | ||||||
Cut1 | −2.317 * (1.328) | −2.414 | −1.982 ** (0.921) | −6.440 | −1.150 (0.861) | −1.647 | |||
Cut2 | −0.818 (1.321) | −0.491 (0.912) | −3.625 | 1.621 * (0.862) | |||||
Cut3 | 0.025 (1.321) | 0.339 (0.912) | 3.192 *** (0.873) | 2.709 | |||||
Cut4 | 1.674 (1.322) | 1.607 | 1.976 ** (0.914) | 4.801 *** (0.912) | 4.256 | ||||
Industry FE | yes | yes | yes | yes | yes | yes | yes | yes | yes |
obs | 1095.000 | 1072.000 | 1103.000 | 1095.000 | 1072.000 | 1103.000 | 1095.000 | 1072.000 | 1103.000 |
LR chi2 | 186.630 *** | 157.490 *** | 119.370 *** | 103.430 *** | 107.050 *** | 98.560 *** | 267.200 *** | 247.930 *** | 252.520 *** |
Pseudo R2 | 0.183 | 0.194 | 0.113 | 0.028 | 0.030 | 0.026 | 0.108 | 0.102 | 0.101 |
Dep V | RD_Intensity | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Coef. | Odds Ratio | Coef. | Odds Ratio | Coef. | Odds Ratio | Coef. | Odds Ratio | Coef. | Odds Ratio | Coef. | Odds Ratio | |
Grant_dummy | 0.834 *** (0.160) | 2.303 | 0.794 *** (0.161) | 2.212 | ||||||||
Loan_dummy | 0.688 *** (0.182) | 1.989 | 0.685 *** (0.182) | 1.982 | ||||||||
Tax_dummy | 0.893 *** (0.154) | 2.441 | 0.876 *** (0.154) | 2.400 | ||||||||
State*grant_ dummy | 0.308 * (0.165) | 1.360 | ||||||||||
State*loan_ dummy | 0.116 (0.199) | |||||||||||
State*tax_ dummy | 0.404 ** (0.190) | 1.497 | ||||||||||
state | −0.273 (−0.369) | −0.198 (−0.384) | −0.791 * (−0.432) | 0.453 | −0.736 (−0.449) | −0.275 (−0.406) | −1.315 *** (−0.497) | 0.268 (−0.369) | ||||
Invmill | −1.773 *** (−0.557) | 0.169 | −1.016 *** (−0.339) | −1.209 *** (−0.456) | 0.298 | −1.731 *** (−0.557) | 0.177 | −1.033 *** (−0.341) | 0.125 | −1.284 *** (−0.458) | 0.277 (−0.557) | |
Industry FE | Yes | yes | yes | yes | yes | yes | yes | yes | yes | yes | yes | yes |
Control variables | ||||||||||||
obs | 1095.000 | 1095.000 | 1072.000 | 1072.000 | 1103.000 | 1103.000 | 1095.000 | 1095.000 | 1072.000 | 1072.000 | 1103.000 | 1103.000 |
LR chi2 | 391.860 *** | 391.860 *** | 372.760 *** | 372.760 *** | 372.760 *** | 399.980 *** | 399.980 *** | 395.320 *** | 395.320 *** | 373.100 *** | 373.100 *** | 404.630 *** |
Pseudo R2 | 0.107 | 0.107 | 0.104 | 0.104 | 0.108 | 0.108 | 0.108 | 0.108 | 0.108 | 0.104 | 0.104 | 0.1101 |
Dep V | Innovative_Sales | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Coef. | EXP Marginal Eff-1 | Coef. | EXP Marginal Eff-1 | Coef. | EXP Marginal Eff-1 | Coef. | EXP Marginal Eff-1 | Coef. | EXP Marginal Eff-1 | Coef. | EXP Marginal Eff-1 | |
Grant_dummy | 1.819 *** (0.168) | 5.165 | 1.796 *** (0.170) | 5.025 | ||||||||
Loan_dummy | 1.261 *** (0.201) | 2.528 | 1.269 *** (0.201) | 2.557 | ||||||||
Tax_dummy | 1.065 *** (0.165) | 1.900 | 1.071 *** (0.165) | 1.918 | ||||||||
State*grant_ dummy | 0.142 (0.173) | |||||||||||
State*loan_ dummy | −0.187 (0.228) | |||||||||||
State*tax_ dummy | −0.091 (0.202) | |||||||||||
state | −0.323 (0.375) | −0.209 (0.396) | −0.364 (0.462) | −0.502 (0.434) | −0.139 (0.405) | −0.273 (0.504) | ||||||
Invmill | −1.130 * (0.594) | −0.676 | −0.643 * (0.381) | 3.375 | −0.277 (0.510) | −1.110 * (0.595) | −0.670 | −0.617 (0.382) | −0.263 (0.512) | |||
cons | 2.756 ** (1.401) | 14.736 | 1.476 * (0.889) | 0.554 (1.003) | 2.721 * (1.402) | 14.195 | 1.414 (0.892) | 0.518 (1.007) | ||||
Industry FE | yes | yes | yes | yes | yes | yes | ||||||
Control variables | ||||||||||||
obs | 1095.000 | 1072.000 | 1103.000 | 1095.000 | 1072.000 | 1103.000 | ||||||
F test | 13.370 *** | 640,496.200 | 10.620 *** | 40,944.610 | 10.480 *** | 35,595.410 | 13.050 *** | 465,095.400 | 10.360 *** | 31,570.180 | 10.230 *** | 27,721.510 |
R2 | 0.330 | 0.280 | 0.283 | 0.331 | 0.281 | 0.283 |
Dep V | Model A | Model B | Model C | Model D | Model E | Model F | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RD_Intensity | Grants | RD_Intensity | Loans | RD_Intensity | Tax Credits | Innovative_Sales | Grants | Innovative_Sales | Loans | Innovative_Sales | Tax Credits | |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | |
Grants | 1.040 *** (0.365) | 1.228 *** (0.355) | ||||||||||
Loans | 1.525 *** (0.533) | 1.613 *** (0.560) | ||||||||||
Tax credits | 2.639 * (1.482) | 2.802 * (1.470) | ||||||||||
RD_intensity | 0.153 ** (0.073) | 0.116 * (0.066) | 0.124 * (0.068) | |||||||||
Innovative_ sales | 0.414 *** (0.083) | 0.235 *** (0.075) | 0.244 *** (0.076) | |||||||||
state | −0.595 (0.413) | 0.281 (0.259) | −0.274 (0.435) | 0.042 (0.243) | −2.013 * (1.163) | 0.699 *** (0.250) | −0.341 (0.401) | 0.239 (0.247) | 0.020 (0.459) | −0.011 (0.239) | −1.796 (1.155) | 0.641 *** (0.243) |
Reward | 0.466 *** (0.131) | 0.234 (0.097) | 0.110 (0.100) | 0.239 (0.131) | 0.099 * (0.097) | 0.050 (0.098) | ||||||
cons | 0.542 (0.420) | −0.459 ** (0.231) | 0.324 (0.428) | −0.255 (0.216) | 1.028 (0.935) | −0.402 * (0.224) | 1.055 *** (0.395) | −0.684 *** (0.227) | 0.737 * (0.444) | −0.357 * (0.215) | 0.123 (0.925) | −0.508 ** (0.219) |
Industry FE | yes | yes | yes | yes | yes | yes | yes | yes | yes | yes | yes | yes |
Control variables | ||||||||||||
obs | 1103.000 | 1103.000 | 1103.000 | 1103.000 | 1103.000 | 1103.000 | 1103.000 | 1103.000 | 1103.000 | 1103.000 | 1103.000 | 1103.000 |
LR chi2 | 262.580 *** | 234.680 *** | 228.920 *** | 166.500 *** | 289.310 *** | 133.800 *** | 420.560 *** | 274.210 *** | 313.190 *** | 176.890 *** | 506.110 *** | 147.850 *** |
R2 | −0.187 | 0.186 | −0.736 | 0.136 | −3.099 | 0.119 | 0.179 | 0.249 | −0.236 | 0.155 | −1.682 | −1.682 |
Variable | Unmatched Matched | Mean | % Change | t-Test | |||
---|---|---|---|---|---|---|---|
Treated | Control | % Bias | |bias| | t | p > |t| | ||
state | U | 0.053 | 0.021 | 17.200 | 2.800 | 0.005 | |
M | 0.053 | 0.565 | −1.900 | 89.100 | −0.180 | 0.854 | |
Risk-preference | U | 0.074 | 0.052 | 8.900 | 1.350 | 0.177 | |
M | 0.074 | 0.060 | 5.800 | 35.100 | 0.670 | 0.503 | |
Firm_age | U | 2.904 | 4.379 | −27.600 | −3.620 | 0.000 | |
M | 2.905 | 3.313 | −7.600 | 72.300 | −1.070 | 0.285 | |
Sale_growth | U | 2.131 | 1.910 | 25.400 | 3.820 | 0.000 | |
M | 2.131 | 2.187 | −6.500 | 74.400 | −0.730 | 0.463 | |
Asset | U | 6.983 | 6.421 | 26.000 | 3.730 | 0.000 | |
M | 6.983 | 6.971 | 0.600 | 97.800 | 0.070 | 0.945 | |
Export | U | 0.406 | 0.271 | 28.900 | 4.300 | 0.000 | |
M | 0.406 | 0.378 | 6.000 | 79.200 | 0.690 | 0.492 | |
Internal_finance | U | 0.618 | 0.704 | −18.100 | −2.660 | 0.008 | |
M | 0.618 | 0.594 | 5.200 | 71.000 | 0.600 | 0.548 | |
External_debt | U | 0.788 | 0.704 | 19.400 | 2.750 | 0.006 | |
M | 0.788 | 0.795 | −1.600 | 91.600 | −0.210 | 0.836 | |
External_equity | U | 0.201 | 0.089 | 32.300 | 5.110 | 0.000 | |
M | 0.201 | 0.194 | 2.000 | 93.700 | 0.210 | 0.833 | |
Collateral | U | 0.548 | 0.560 | −2.400 | −0.350 | 0.725 | |
M | 0.548 | 0.579 | −6.400 | −163.900 | −0.760 | 0.446 | |
Joint_RD | U | 0.237 | 0.168 | 17.100 | 2.560 | 0.011 | |
M | 0.237 | 0.208 | 7.100 | 58.700 | 0.810 | 0.420 | |
Self_RD | U | 0.310 | 0.223 | 19.900 | 2.970 | 0.003 | |
M | 0.310 | 0.300 | 2.400 | 87.900 | 0.270 | 0.785 | |
Market_tech | U | 4.625 | 4.423 | 14.000 | 2.030 | 0.043 | |
M | 4.625 | 4.473 | 10.500 | 24.900 | 1.230 | 0.219 | |
Tech_employee | U | 4.891 | 4.932 | −3.100 | −0.460 | 0.646 | |
M | 4.891 | 4.813 | 5.800 | −88.500 | 0.670 | 0.502 | |
Knowledge_supplier | U | 0.565 | 0.548 | 3.600 | 0.520 | 0.604 | |
M | 0.565 | 0.583 | −3.600 | 0.800 | −0.420 | 0.671 | |
Knowledge_customer | U | 0.534 | 0.545 | −2.300 | −0.340 | 0.737 | |
M | 0.534 | 0.519 | 2.800 | −22.300 | 0.340 | 0.737 | |
Knowledge_rival | U | 0.247 | 0.259 | −2.600 | −0.370 | 0.710 | |
M | 0.247 | 0.194 | 12.200 | −373.800 | 1.520 | 0.129 | |
Knowledge_university | U | 0.159 | 0.107 | 15.200 | 2.310 | 0.021 | |
M | 0.159 | 0.191 | −9.400 | 38.500 | −0.990 | 0.320 | |
Knowledge_association | U | 0.336 | 0.155 | 42.900 | 6.670 | 0.000 | |
M | 0.336 | 0.360 | −5.900 | 86.300 | −0.620 | 0.538 | |
Knowledge_advice | U | 0.279 | 0.232 | 10.900 | 1.600 | 0.109 | |
M | 0.279 | 0.276 | 0.800 | 92.600 | 0.090 | 0.925 |
Innovation | Treatment | Sample | Treated | Controls | Difference | S.E. | T-Stat | Num |
---|---|---|---|---|---|---|---|---|
RD_intensity | Subsidy | Unmatched | 2.752 | 2.132 | 0.620 | 0.072 | 8.530 | 1103.000 |
ATT | 2.752 | 2.300 | 0.452 | 0.103 | 4.360 | 283.000 | ||
Grant | Unmatched | 2.860 | 2.171 | 0.689 | 0.083 | 8.230 | 1103.000 | |
ATT | 2.860 | 2.528 | 0.332 | 0.143 | 2.300 | 193.000 | ||
Loan | Unmatched | 2.844 | 2.214 | 0.630 | 0.098 | 6.410 | 1103.000 | |
ATT | 2.844 | 2.614 | 0.230 | 0.162 | 1.410 | 135.000 | ||
Tax | Unmatched | 2.832 | 2.170 | 0.662 | 0.082 | 8.060 | 1103.000 | |
ATT | 2.832 | 2.305 | 0.527 | 0.123 | 4.260 | 203.000 | ||
Innovative_sales | Subsidy | Unmatched | 4.980 | 3.028 | 1.952 | 0.148 | 13.160 | 1103.000 |
ATT | 4.980 | 3.398 | 1.582 | 0.235 | 6.710 | 283.000 | ||
Grant | Unmatched | 5.560 | 3.098 | 2.462 | 0.167 | 14.690 | 1103.000 | |
ATT | 5.560 | 4.045 | 1.515 | 0.317 | 4.780 | 193.000 | ||
Loan | Unmatched | 5.063 | 3.314 | 1.749 | 0.205 | 8.490 | 1103.000 | |
ATT | 5.063 | 3.887 | 1.176 | 0.323 | 3.640 | 135.000 | ||
Tax | Unmatched | 4.653 | 3.275 | 1.378 | 0.174 | 7.880 | 1103.000 | |
ATT | 4.653 | 3.718 | 0.935 | 0.276 | 3.380 | 203.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, D.; Matousek, R.; Worthington, A.C.; Jiang, Y. How Do Government Subsidies Affect Innovation? Evidence from Chinese Hi-Tech SMEs. Sustainability 2025, 17, 7168. https://doi.org/10.3390/su17157168
Xiang D, Matousek R, Worthington AC, Jiang Y. How Do Government Subsidies Affect Innovation? Evidence from Chinese Hi-Tech SMEs. Sustainability. 2025; 17(15):7168. https://doi.org/10.3390/su17157168
Chicago/Turabian StyleXiang, Dong, Roman Matousek, Andrew C. Worthington, and Yue Jiang. 2025. "How Do Government Subsidies Affect Innovation? Evidence from Chinese Hi-Tech SMEs" Sustainability 17, no. 15: 7168. https://doi.org/10.3390/su17157168
APA StyleXiang, D., Matousek, R., Worthington, A. C., & Jiang, Y. (2025). How Do Government Subsidies Affect Innovation? Evidence from Chinese Hi-Tech SMEs. Sustainability, 17(15), 7168. https://doi.org/10.3390/su17157168